首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bottlenose dolphins (Tursiops truncatus) face a variety of threats, including risk of exposure to brevetoxins produced by blooms of the harmful alga Karenia brevis. This study investigated brevetoxin exposure in a population of dolphins inhabiting Sarasota Bay, Florida, USA (27°N, 82°W), utilizing tissues from dolphins recovered between 1994 and 2003. Brevetoxin levels detected by ELISA in tissues, gastric samples and excreta from dolphin carcasses (n = 19) associated with K. brevis blooms were compared with with levels in carcasses (n = 16) associated with background K. brevis conditions. In the K. brevis-exposed set, 84% of dolphin carcasses recovered during K. brevis blooms had detectable brevetoxin levels, with values ranging between 7 and 2,896 ng PbTx-3 eq g−1. Over 50% of dolphin carcasses recovered during non-bloom conditions also tested positive by ELISA for brevetoxins, with concentrations ranging from 6 to 44 ng PbTx-3 eq g−1. Control samples from the east coast of Florida were negative by the ELISA. Results from this study establish baseline brevetoxin body burdens in a dolphin population frequently exposed to K. brevis blooms, and data indicate that dolphin carcasses not associated with large-scale mortality events can contain levels of brevetoxins comparable to carcasses stranding during such events.  相似文献   

2.
In October 2000, a mass mortality of blacktip sharks (Carcharhinus limbatus) and Atlantic sharpnose sharks (Rhizoprionodon terraenovae) in northwest Florida occurred in conjunction with a Karenia brevis red tide bloom. Before this incident, no information existed on red tide-induced shark mortalities or baseline brevetoxin levels in sharks and rays from red tide-endemic areas. We report here that brevetoxin accumulation in live and red tide-killed elasmobranchs is common during K. brevis blooms and non-bloom periods. Strong relationships were found between the frequency of red tide blooms and the average brevetoxin concentrations in elasmobranch tissues. The presence of brevetoxins in Atlantic coast sharks in the absence of documented K. brevis blooms may suggest that blooms are occurring in areas that are not well monitored. Although red tide-related shark mortalities are rarely observed, the presence of brevetoxins in shark embryos raises questions about the effects these toxins may have on the reproductive success of sharks.  相似文献   

3.
Globally, many commercial bivalve populations have declined in recent decades. In addition to overharvesting and habitat loss, the increasing frequency and intensity of harmful algal blooms (HABs) are likely to contribute to bivalve losses, particularly in cases where blooms negatively impact larval stages. This paper reports on the lethal effects of clonal cultures and blooms of Cochlodinium polykrikoides from the US Atlantic coast on the larvae of three species of commercially and ecologically valuable bivalves: the Eastern oyster (Crassostrea virginica), the bay scallop (Argopecten irradians), and the Northern quahog (hard clam; Mercenaria mercenaria). Both cultures and blooms of C. polykrikoides were highly toxic to all three species of bivalve larvae causing 80–100% mortality during 24- to 72-h exposures at concentrations of 1–2 × 103 cells ml−1. Toxicity was dependent on cell densities, growth stage of C. polykrikoides (i.e. cultures in exponential stage growth were more toxic than later stages), exposure time of larvae to cells (i.e. longer exposure caused higher mortality), the age of larvae (i.e. younger larvae were more sensitive), and the relative abundance of C. polykrikoides (i.e. the presence of other microalgae decreased toxicity). Free radical-scavenging enzymes (peroxidase and catalase) and the removal of C. polykrikoides cells (i.e. culture filtrate) significantly increased larval survival suggesting toxicity is maximized by contact with live cells and may involve labile toxins bound by these compounds including e.g. reactive oxygen species. The toxicity of C. polykrikoides to bivalve larvae was generally more severe than other HAB species (e.g. Karenia brevis, Karlodinium veneficum, Alexandrium tamarense, Prorocentrum minimum). Since the bivalves in this study spawn in the months when C. polykrikoides blooms on the east coast of North America, these results suggest that these blooms may have detrimental effects on efforts to restore these already diminished populations.  相似文献   

4.
Great scallop, Pecten maximus, and blue mussel, Mytilus edulis, clearance rate (CR) responses to low natural seston concentrations were investigated in the laboratory to study (1) short-term CR variations in individual bivalves exposed to a single low seston diet, and (2) seasonal variations in average CR responses of bivalve cohorts to natural environmental variations. On a short temporal scale, mean CR response of both species to 0.06 μg L−1 chlorophyll a (Chl a) and 0.23 mg L−1 suspended particulate matter (SPM) remained constant despite large intra-individual fluctuations in CR. In the seasonal study, cohorts of each species were exposed to four seston treatments consisting of ambient and diluted natural seston that ranged in mean concentration from 0.15 to 0.43 mg L−1 SPM, 0.01 to 0.88 μg L−1 Chl a, 36 to 131 μg L−1 particulate organic carbon and 0.019 to 0.330 mm3 L−1 particle volume. Although food abundance in all treatments was low, the nutritional quality of the seston was relatively high (e.g., mean particulate organic content ranged from 68 to 75%). Under these low seston conditions, a high percentage of P. maximus (81–98%) and M. edulis (67–97%) actively cleared particles at mean rates between 9 and 12 and between 4 and 6 L g−1 h−1, respectively. For both species, minimum mean CR values were obtained for animals exposed to the lowest seston concentrations. Within treatments, P. maximus showed a greater degree of seasonality in CR than M. edulis, which fed at a relatively constant rate despite seasonal changes in food and temperature. P. maximus showed a non-linear CR response to increasing Chl a levels, with rates increasing to a maximum at approximately 0.4 μg L−1 Chl a and then decreasing as food quantity continued to increase. Mean CR of M. edulis also peaked at a similar concentration, but remained high and stable as the food supply continued to increase and as temperatures varied between 4.6 and 19.6°C. The results show that P. maximus and M. edulis from a low seston environment, do not stop suspension-feeding at very low seston quantities; a result that contradicts previous conclusions on the suspension-feeding behavior of bivalve mollusks and which is pertinent to interpreting the biogeographic distribution of bivalve mollusks and site suitability for aquaculture.  相似文献   

5.
The bloom-forming dinoflagellates Prorocentrum minimum and Karlodinium veneficum can have detrimental effects on some marine life, including shellfish, but little is known about their effects on early life history stages of bivalves. In the Chesapeake Bay region, blooms of these dinoflagellates overlap with the spawning season of the eastern oyster, Crassostrea virginica. In laboratory experiments, we compared the effects of P. minimum and K. veneficum on the survival and development of embryos and larvae of the eastern oyster. At 104 cells ml−1, P. minimum did not have a negative effect on embryos and larvae in 2-day exposures. The yield of D-hinge larvae was equal to or greater than in control treatments. At 2 × 104 cells ml−1 (approximately equal biomass to the P. minimum treatment) K. veneficum caused significant mortality to oyster embryos within 1 day and almost no embryos developed into D-hinge larvae. This effect was not alleviated by the provision of an alternate food source (Isochrysis sp.). Significant mortality was observed when larvae were exposed to K. veneficum at concentrations of 104 cells ml−1 (approximately 5 ng ml−1 of karlotoxin). The K. veneficum cultures used in these experiments were relatively low in toxin content, more toxic strains could be expected to cause mortality at lower cell concentrations. Survival and maturation of embryos and larvae may be reduced when spawns of the eastern oyster coincide with high bloom densities of K. veneficum.  相似文献   

6.
The time-course of uptake and elimination of benzo(a)pyrene (BaP) for the Pacific oyster, Crassostrea gigas and reproduction damage and reproductive outputs were studied. Sexually immature C. gigas broodstock were fed for 28 days with live algae grown in four BaP solutions of 0, 50, 500, and 5,000 μg L−1 (hereafter, control, 50, 500, and 5,000 oysters) and were subsequently conditioned to maturation by a feeding with BaP-free live algae under temperature manipulation for another 28 days. The 5,000 μg L−1 oysters gained a steady state concentration, around 30,000 ng g−1 d.w. for digestive gland, a week earlier compared to the 500 μg L−1 oysters. The earlier gain or longer persistence of the steady state concentration influenced elimination of BaP, with an eliminating trend for 500 μg L−1 oysters, while no elimination for 5,000 μg L−1 oysters. The maternal persistence of the steady state concentration resulted in significant damages in the reproductive success and their reproductive outputs in terms of the hatching rate and larval growth, survival, and settlement. The 50 μg L−1 oysters remained far below the steady state concentration, and showed a manifest eliminating behavior during the subsequent BaP-free 28 day maturation period. The reproductive success and initial larval events of 50 μg L−1 oysters were comparable to those of control. However, the damage potential of the 50 μg L−1 oysters might be more significant if their maternal exposure continued beyond 28 days, since the accumulation profile at this dose was linear.  相似文献   

7.
The role of multi-species benthic diatom films (BDF) in the settlement of late pediveliger larvae of the bivalve Macoma balthica was investigated in still-water bioassays and multiple choice flume experiments. Axenic diatom cultures that were isolated from a tidal mudflat inhabited by M. balthica were selected to develop BDF sediment treatments characterized by a different community structure, biomass, and amount of extracellular polymeric substances (EPS). Control sediments had no added diatoms. Although all larvae settled and initiated burrowing within the first minute after their addition in still water, regardless of treatment, only 48–52% had completely penetrated the high diatom biomass treatments after 5 min, while on average 80 and 69% of the larvae had settled and burrowed into the control sediments and BDF with a low diatom biomass (<3.5 μg Chl a g−1 dry sediment), respectively. The percentage of larvae settling and burrowing into the sediment was negatively correlated with the concentration of Chl a and EPS of the BDF. This suggests higher physical resistance to bivalve penetration by the BDF with higher diatom biomass and more associated sugar and protein compounds. The larval settlement rate in annular flume experiments at flow velocities of 5 and 15 cm s−1 was distinctly lower compared to the still-water assays. Only 4.6–5.8% of the larvae were recovered from BDF and control sediments after 3 h. Nonetheless, a clear settlement preference was observed for BDF in the flume experiments; i.e., larvae settled significantly more in BDF compared to control sediments irrespective of flow speed. Comparison with the settlement of polystyrene mimics and freeze-killed larvae led to the conclusion that active selection, active secondary dispersal and, at low flow velocities (5 cm s−1), passive adhesion to the sediment are important mechanisms determining the settlement of M. balthica larvae in estuarine biofilms.  相似文献   

8.
The objectives of this study were to determine the effects of sediment contamination on the benthic macrofauna and to predict macrofaunal changes following remediation at a Superfund (uncontrolled hazardous waste) site in San Francisco Bay, California, USA. DDT and its metabolites (ΣDDT) were the contaminants of concern. With few small-scale exceptions, all (>100) other sediment contaminants ever measured at the site were present at background or non-toxic levels. In hierarchical regressions [Y=f(X 1, X 2, X 3), where X 1=sediment %silt + clay, X 2=sediment total organic carbon (OC), and X 3=log 10 (ΣDDT μg g−1 OC)] with data from samples collected at the study site, log10(ΣDDT μg g−1 OC) explained a highly significant amount of the variance in the infaunal index (II ) and log10(number of Amphipoda excluding Grandidierella japonica + 1) after statistically controlling for the potential effects of sediment %silt + clay and OC. The ratios of change of II and log10(number of Amphipoda excluding G. japonica + 1) with respect to log10(ΣDDT μg g−1 OC) were about −9:1 and −0.4:1, respectively. Most of the 92 species collected were present at low to moderate densities over the entire range of ΣDDT sediment concentrations. The bivalve Theora lubrica, tubificids, most polychaetes, a tanaid (Zeuxo normani), and an amphipod (G. japonica), were common, while four other amphipods (Ampelisca abdita, Corophium heteroceratum, Photis brevipes, Dulichia rhabdoplastis), a phoronid (Phoronis cf. pallida), a bivalve (Cryptomya californica), and a cumacean (Eudorella pacifica), were rare or absent from sites with high ΣDDT sediment-concentrations. Received: 1 August 1997 / Accepted: 13 August 1997  相似文献   

9.
Suspension-feeding bivalves increase the quantity and quality of sedimenting organic matter through the production of faeces and pseudofaeces that are remineralised in coastal sediments and thus increase sediment oxygen demand and nutrient regeneration. Bivalves are intensively cultivated worldwide; however, no bivalve biodeposit decay rates are available to parameterise models describing the environmental effects of bivalve culture. We examined sediment biogeochemical changes as bivalve biodeposits age by incubating coastal sediments to which we added fresh mussel (Perna canaliculus) biodeposits and measured O2 and nutrient fluxes as well as sediment characteristics over an 11-day period. Biodeposits elevated organic matter, chlorophyll a, phaeophytin a, organic carbon and nitrogen concentrations in the surface sediments. Sediment oxygen consumption (SOC) increased significantly (P=0.016) by ∼1.5 times to 1,010 μmol m−2 h−1 immediately after biodeposit addition and remained elevated compared to control cores without additions for the incubation period. This increase is in the range of observed in situ oxygen demand enhancements under mussel farms. To calculate a decay rate for biodeposits in sediments we fitted a first-order G model to the observed increase in SOC. The significant model fit (P=0.001, r 2=0.72) generated a decay rate of 0.16 day−1 (P=0.033, SE=0.05) that corresponds to a half-life time of 4.3 day. This decay rate is 1–2 orders of magnitude higher than published decay rates of coastal sediments without organic enrichment but similar to rates of decaying zooplankton faecal pellets. NH4+ release increased rapidly on the day of biodeposit addition (P=0.013) and reached a maximum of 144 μmol m−2 h−1 after 5 days which was 3.6 times higher compared to control cores. During this period NH4+ release was significantly (P<0.001 to P=0.043) higher in the cores with biodeposit additions than in control cores.  相似文献   

10.
Morphology, elemental content and isotopic composition of leaves of the seagrasses Posidonia oceanica and Cymodocea nodosa were highly variable across the Illes Balears, a Spanish archipelago in the western Mediterranean, and varied seasonally at one site in the study area. The data presented in this paper generally expand the reported ranges of nitrogen, phosphorus, iron and arsenic content and δ13C and δ15N for these species. Nitrogen and phosphorus content of P. oceanica leaves also showed significant seasonal variability; on an annual basis, P. oceanica leaves averaged 1.55% N and 0.14% P at this monitoring site. Both N and P were more concentrated in the leaves in winter than in summer, with winter maxima of 1.76% N and 0.17% P and summer minima of 1.34% N and 0.11% P. There was no significant annual pattern observed in the δ13C of P. oceanica leaves, but there was a repeated 0.6‰ seasonal fluctuation in δ15N. Mean annual δ15N was 4.0‰; δ15N was lowest in May and it increased through the summer and autumn to a maximum in November. Over the geographic range of our study area, there were interspecific differences in the carbon, nitrogen and phosphorus content of the two species. Posidonia oceanica N:P ratios were distributed around the critical value of 30:1 while the ratios for C. nodosa were lower than this value, suggesting P. oceanica we collected was not consistently limited by N or P while C. nodosa tended toward nitrogen limitation. Nutrient content was significantly correlated to morphological indicators of plant vigor. Fe content of P. oceanica leaves varied by a factor of 5×, with a minimum of 31.1 μg g−1 and a maximum of 167.7 μg g−1. Arsenic was present in much lower tissue concentrations than Fe, but the As concentrations were more variable; the maximum concentration of 1.60 μg g−1 was eight times as high as the minimum of 0.20 μg g−1. There were interspecific differences in δ13C of the two species; C. nodosa was consistently more enriched (δ13C = −7.8 ± 1.7‰) than P. oceanica (−13.2 ± 1.2‰). The δ13C of both species decreased significantly with increasing water depth. Depth related and regional variability in the δ13C and δ15N of both species were marked, suggesting that caution needs to be exercised when applying stable isotopes in food web analyses.  相似文献   

11.
The central California coast is a highly productive, biodiverse region that is frequently affected by the toxin-producing dinoflagellate Alexandrium catenella. Despite the consistent presence of A. catenella along our coast, very little is known about the movement of its toxins through local marine food webs. In the present study, we investigated 13 species of commercial finfish and rock crabs harvested in Monterey Bay, California for the presence of paralytic shellfish toxins (PSTs) and compared them to the presence of A. catenella and PSTs in sentinel shellfish over a 3-year period. Between 2003 and 2005, A. catenella was noted in 55% of surface water samples (n = 307) and reached a maximum concentration of 17,387 cells L−1 at our nearshore site in Monterey Bay. Peak cell densities occurred in the month of July and were associated with elevated shellfish toxicity in the summers of 2004 and 2005. When A. catenella was present, particulate PSTs were detected 71% of the time and reached a maximum concentration of 962 ng STXeq L−1. Of the 13 species tested, we frequently detected PSTs in Pacific sardines (Sardinops sagax; maximum 250 μg STXeq 100 g−1), northern anchovies (Engraulis mordax; maximum 23.2 μg STXeq 100 g−1), brown rock crabs (Cancer antennarius; maximum 49.3 μg STXeq 100 g−1) and red rock crabs (C. productus; 23.8 μg STXeq 100 g−1). PSTs were also present in one sample of Pacific herring (Clupea pallas; 13.3 μg STXeq 100 g−1) and one sample of English sole (Pleuronectes vetulus; 4.5 μg STXeq 100 g−1), and not detected in seven other species of flatfish tested. The presence of PSTs in several of these organisms reveals that toxins produced by A. catenella are more prevalent in California food webs than previously thought and also indicates potential routes of toxin transfer to higher trophic levels. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
The French Atlantic coast contains large highly productive intertidal mudflats that are colonised by juveniles of numerous flatfish species, including the common sole (Solea solea, L.). These ecosystems are also heavily exploited by the shellfish farming industry. Intensive bivalve culture is associated with substantial biodeposition (1–6 t-dw ha−1 day−1), which directly or indirectly contributes to increase exopolysaccharide (EPS) concentrations at the interface between water column and seabed. EPS are long-chain molecules organised into colloids, which influence rheological properties of water, particularly viscosity. Increased water viscosity had consequences for ventilatory activity of juvenile flatfish, whereby the minimal pressure required to ventilate the medium increases directly with EPS concentration. Moreover, the critical EPS concentration ([EPS]crit) at which water was no longer able to flow through the branchial basket ranged from almost nil to over 30 mg l−1, depending on species and size. [EPS]crit was lower in small individuals and individuals from species with high metabolic rates (turbot and plaice). These differences may depend upon gill and bucco-branchial cavity morphometrics. The ventilatory workload of sole increased with viscosity to a maximum at 2 mg EPS l−1. Viscosity might, therefore, be a limiting factor for flatfish post larvae, which colonise the intertidal mudflats, depending upon their size and species. EPS concentrations in the field can reach 15 mg l−1. A selective effect is conceivable but remains to be estimated in the field.  相似文献   

13.
Carbon consumption and nitrogen requirements were estimated for populations of the sandy beach bivalve Donax serra on nine beaches of the west coast of South Africa. Subtidal populations composed mainly of adult clams were responsible for the bulk of standing stock (3538 g C m−1), annual carbon consumption (13 444 g C m−1 yr−1), faeces production (6478 g C m−1 yr−1 ) and nitrogen regeneration (2525 g N m−1 yr−1). Kelp detritus, bacteria and kelp consumers' faeces available in the water column surpass several times the carbon and nitrogen requirements of intertidal and subtidal clam populations. Individual Donax serra pop ulations, in turn, may regenerate up to 3.2% of the total nitrogen requirements of all primary producers from kelp beds and 14% of the requirements of phytoplankton. These high standing stocks of clams are presumably supported mainly by organic matter originating from kelp which, in contrast to phytoplankton, is in constant supply and comprises the largest proportion of the annual production of particulate organic matter on this coast. Wide and shallow continental shelves with gentle slopes probably limit the penetration of upwelled waters to the nearshore waters, decreasing the influence of external inputs and increasing the importance of internal flows of nutrients and carbon within the nearshore zone. In this context, sandy beaches, rocky shores and kelp beds may be more closely interlinked compartments of a larger ecosystem encompassing the whole nearshore than traditionally thought. Received: 28 August 1996 / Accepted: 7 October 1996  相似文献   

14.
The filtration activity of the Mediterranean mussel, Mytilus galloprovincialis, was assessed under different concentrations and compositions of seston by using a new automated image acquisition and analysis system. This approach allowed for frequent and simultaneous measurements of valve gape and exhalant siphon area. Filtration rates were measured through clearance measurements whereas pumping rates were measured using hot-film probes. The average filtration rate (17.5 l g h−1 DW−1 for a 0.36 g DW mussel) recorded during the present study was higher than those available for Mytilus edulis when standardized to flesh dry weight but almost equivalent (17.5 l h−1 g DW−1 for a 53 mm shell length mussel) to those rates when standardized to shell length. Immediately after the addition of algal cells (Isochrysis galbana; 4.5 μm in size), valve gape, exhalant siphon area and filtration rate increased quickly as mussels reached their maximum filtration activity. These three parameters then gradually decreased until complete closure of the shell. The algal cell concentration inducing this transition was close to 800 cells ml−1 and 0.5 μg Chl a l−1. When algal concentration was maintained above this threshold by successive algal additions, both valve gape and exhalant siphon area remained maximal. Temporal changes in the exhalant siphon area were continuous as opposed to those of valve gape. Therefore, despite the significant correlation between these two parameters, valves and siphon were sometimes dissociated due to a reduction of the area or even a closure of the exhalant siphon while the valves remained open. The velocity of exhaled water tended to be constant irrespective of exhalant siphon area and thus pumping rates were a linear function of exhalant siphon area. Consequently, reductions in exhalant siphon area and pumping rate were almost similar in M. galloprovincialis. Our results thus clearly support the hypothesis that exhalant siphon area constitutes a better proxy of pumping rate than valve gape as already suggested for Mytilus edulis. Finally, the high filtration rates measured during the present study together with the high concentrations of inorganic matter (> 40 mg DW l−1) requested to alter those rates suggest that the studied mussels were well adapted to oligotrophic waters featuring strong hydrodynamism and frequent sediment resuspension events.  相似文献   

15.
Under laboratory conditions, the scallop Chlamys nobilis and the mussel Perna viridis were exposed to N-sulfocarbamoyl toxins (C2 toxin), a paralytic shellfish toxin (PST), by feeding a local toxic strain of the dinoflagellate Alexandrium tamarense (ATDP) that produced C2 toxin exclusively. The bivalves were subsequently depurated in the field, and their depuration kinetics, biotransformation and toxin distribution were quantified. Depuration was characterized by a rapid loss within the first day, followed by a secondary slower loss of toxins. In the fast depuration phase, scallops detoxified PSTs more quickly than the mussels (depuration rate constants for scallops and mussels were 1.16 day–1 and 0.87 day–1, respectively). In contrast, the mussels detoxified PSTs more quickly than the scallops in the slow depuration phase, and the calculated depuration rate constants (mean+SE) from day 2 to day 13 were 0.063+0.009 day–1 and 0.040+0.019 day–1 for mussels and scallops, respectively. The differences in the appearances of gonyautoxins, GTX2 and GTX3, and their decarbamoyl derivatives, dcGTX2, dcGTX3 and GTX5, which are all derivatives of C2 toxin, indicated active and species-specific biotransformation of the algal toxins in the two bivalves. In both species of bivalves, the non-viscera tissue contained fewer toxins and lower concentrations than the viscera-containing tissue compartment. In scallops, very little toxin was distributed in the adductor muscle. In mussels, most of the PSTs were found in the digestive gland with significant transport of toxins into the digestive gland from other tissues during the course of depuration. The toxin profiles of scallops and mussels differed from each other and from that of the toxic algae fed. A significant fraction of GTX5 was detected in the mussels but not in the scallops. Our study demonstrates a species specificity in the depuration kinetics, biotransformation and tissue distribution of PSTs among different bivalves.Communicated by T. Ikeda, Hakodate  相似文献   

16.
Chattonella marina, a raphidophycean flagellate, is a highly toxic red tide phytoplankton which causes severe damage to fish farming. Recent studies demonstrated that Chattonella spp. continuously release superoxide anions (O2 ) while they are living. Heterosigma akashiwo, another raphidophycean flagellate, also produces O2 . In the present study, we found that lectins such as concanavalin A (Con A), wheat germ agglutinin (WGA), and castor bean hemagglutinin (CBH) stimulated  C. marina and H. akashiwo to generate enhanced amounts of O2 in a concentration-dependent manner. The lectin-specific sugars potently inhibited the lectin-induced increase of O2 production, suggesting that the effects of lectins are mediated mainly through the interaction of these lectins with carbohydrate moiety present on the flagellate cell surface. In contrast to the potent ability of native Con A (tetravalent), succinylated Con A (divalent) showed only a slight stimulative effect on these flagellates. O2 production was totally inhibited by treatment with proteinase K for 30 min, without affecting the viabilities of flagellates. These results suggest that cell-surface redox enzymes may be involved in O2 production, and such enzymes are responsible for the lectin-stimulation. Received: 21 August 1997 / Accepted: 8 January 1998  相似文献   

17.
Spatial and seasonal distribution pattern, life history and production of three species of Neomysis (Mysidacea) which commonly occur in northwestern subarctic Pacific coastal waters, were investigated throughout the year in the Akkeshi-ko estuary, northern Japan. The most abundant species Neomysis awatschensis (annual mean density: 179.8 inds. m−2, biomass: 108.8 mg DW m−2) occurred at the inner part of the estuary including low salinity areas with no clear preference for the seagrass bed. The second most abundant Neomysis mirabilis (mean density: 95.8 inds. m−2, biomass: 90.1 mg DW m−2) occurred at relatively saline seagrass site throughout the year. Occurrence of Neomysis czerniawskii in the estuary was limited to the seagrass bed during summer when their population mainly consisted of juveniles, suggesting that this species is a seasonal migrant between the estuary and the marine environment. Both N. awatschensis and N. mirabilis populations were composed of two generation types, a larger sized overwintering and smaller sized spring/summer generations; however, each species had a different reproductive strategy. N. awatschensis was characterized by fast growth to maturity at a smaller size than N. mirabilis with a relatively high fecundity during warm season, suggesting that this species is an r-strategist which can utilize opportunistically a wide variety of habitats. In contrast, the seagrass bed resident N. mirabilis was a K-strategist which matures at a larger size producing fewer but larger offspring. The annual production of N. awatschensis (0.57–0.70 g DW m−2, mean of the whole estuary) and N. mirabilis (0.58–0.68 g DW m−2, mean of the seagrass bed) at their respective habitats was comparable. Consequently, species-specific life history and distribution pattern are concluded to allow Neomysis spp. to coexist in the estuary and the high carrying capacity of seagrass bed is suggested to contribute to maintain their high biomass level.  相似文献   

18.
The present work is a comprehensive study of reproduction and embryonic development of Armases cinereum. Ovigerous A. cinereum (Bosc, 1802) females from Sebastian Inlet, Florida (9.88–19.4 mm CW) lay 2,000–12,000 eggs per brood, depending on their CW (mm): fecundity = 24.662 CW1.9432. A. cinereum displayed significant brood loss through development (ca. 500 eggs per brood) independently from their CW (no senescence). However, since smaller females lay fewer eggs than larger ones, the percentage of eggs lost during embryonic development is greater in smaller females. The number of eggs carried on a later stage of development (potential fertility = 5.5593 CW2.4417) is a more accurate estimate of the reproductive output and subsequent recruitment. Egg volume increased during development (64%, 0.025–0.041 mm3 or 0.36–0.43 mm of diameter, N = 270) and was strongly correlated with egg water content increase (19.21%, r = 0.89). Lipids, particularly fatty acids, seem to be the major energy source for embryonic development, decreasing 56.31 and 37.08% (respectively) during embryonic development; both are negatively correlated with egg volume (r = −0.90). The utilization of fatty acids through the different developmental stages of A. cinereum is presented. The most consumed fatty acids are the monounsatured (43.33 μg mg−1 dw), followed by the saturated (29.91 μg mg−1 dw) and polyunsaturated (24.03 μg mg−1). Palmitic (16:0) and linoleic (18:2n-6) acids are preferentially consumed (19.5 and 17.9 μg mg−1 dw, respectively). The high proportion of essential polyunsaturated fatty acids of C18 and C20 reflects the consumption of primary producers such as mangrove leaves. EPA/DHA ratio (2.85–3.84) and low DHA content indicated that this species appears in a medium-low level of the trophic chain. The low ratio of 18:1n-7/18:1n-9 and high percentage of 18:1n-9 (marker of carnivory) may be a sign of the consumption of juvenile invertebrates. The high percentage of odd-numbered FA indicated the occurrence of detritivores/scavenger behaviours. The fatty acid composition of the eggs reflects adult feeding ecology (omnivorous) and habitat.  相似文献   

19.
Cyanobacterial blooms are a common phenomenon in the Baltic Sea, and the hepatotoxin nodularin has been frequently detected in certain Baltic Sea fishes and mussels. However, there is no knowledge about the naturally occurring concentrations of nodularin in Baltic Sea zooplankton. The aim of this study was to survey the concentrations of nodularin in natural zooplankton assemblages, and to study the depuration of nodularin in one common copepod species, Eurytemora affinis, experimentally. The nodularin concentrations in common zooplankton species were determined from field-collected samples from the northern Baltic Proper in 2001 and 2002, during cyanobacterial blooms, and the samples were analysed by ELISA immunoassay. Nodularin could be detected from the field-collected zooplankton, suggesting that during a natural bloom event toxins accumulate in their tissues. The concentrations were relatively low (0.07±0.01 μg g−1 ww), ranging from below detection limit to 0.62 μg g−1 ww. Some variation occurred in the concentrations between species and years; generally concentrations were higher in 2001 than in 2002. In the depuration experiment E. affinis copepods were fed with toxic Nodularia spumigena for 24 h, and their toxin contents were monitored for 24 h after transferring them to filtered seawater. A rapid decrease in nodularin concentrations occurred during the first 0.5–3 h after the exposure. However, after a 24-h depuration period in filtered seawater, nodularin could be still detected in E. affinis tissues, indicating that part of the accumulated nodularin, or its derivatives, could be transferred to planktivores.  相似文献   

20.
The feeding ecology of Sesarma plicata (Grapsidae: Sesarminae), the most abundant crab species in a mangrove forest dominated by Kandelia candel at Jiulongjiang Estuary, China, was investigated through field and laboratory experiments. Feeding preference and consumption rates were determined on mature, senescent and decomposed leaves of Kandelia candel, Bruguiera gymnorrhiza and Aegiceras corniculatum. In the laboratory, S. plicata preferred leaves of K. candel over those of B. gymnorrhiza and A. corniculatum, and consumed significantly more decomposed leaves than mature and senescent ones, irrespective of crab size. Field experiments with limited power failed to reveal detectable species preferences despite more consumption of K. candel, but decomposed leaves of each species were again preferred. Leaf characteristics associated with preference changed with plant species and leaf state. Low tannins and high water content characterized the preference for decomposed state of leaves. Species preference was significantly and negatively related to crude fibers and C:N ratios for mature leaves, and crude fiber for senescent leaves, but significantly and positively related to water content for decomposed leaves. Leaf consumption rates averaged for all leaf categories from laboratory no-choice feeding experiments were 0.101, 0.055 and 0.017 gDW ind−1 d−1 for large, medium and small crabs, respectively. In this forest, mean density of S. plicata was 20.5 ind m−2 as assessed by a manual catching method. Leaf litter removal rate during neap tides by sesarmid crabs was about 1.33 gDW m−2 d−1 in April 2006. The leaves removed by crabs were grazed on the sediment surface or taken into crab burrows, shredded and stored before being eaten.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号