首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 273 毫秒
1.
This study reports the effects of two model toxicants, copper and diazinon, on two characteristic riverine insect species, the caddisfly Cyrnus trimaculatus and the mayfly Ephoron virgo. It was demonstrated that these species are very sensitive to both compounds in comparison with aquatic insects traditionally used in ecotoxicity tests. For diazinon, the 96-h LC(50) value of Cyrnus trimaculatus (1.1 microg/l) is lower than for any other insect species known from the literature and for copper it was demonstrated that Ephoron virgo is among the most sensitive aquatic insect species. The observed low LC(50) values stress the importance of using these indigenous species in assessing the risk of environmental contaminants in large European rivers and in defining conditions for ecological recovery.  相似文献   

2.
A plea for the use of copepods in freshwater ecotoxicology   总被引:1,自引:1,他引:0  
Standard species used in ecological risk assessment are chosen based on their sensitivity to various toxicants and the ease of rearing them for laboratory experiments. However, this mostly overlooks the fact that species in the field that may employ variable life-history strategies, which may have consequences concerning the vulnerability of such species to exposure with contaminants. We aimed to highlight the importance of copepods in ecology and to underline the need to include freshwater copepods in ecotoxicology. We carried out a literature search on copepods and Daphnia in ecology and ecotoxicology to compare the recognition given to these two taxa in these respective fields. We also conducted a detailed analysis of the literature on copepods and their current role in ecotoxicology to characterize the scale and depth of the studies and the ecotoxicological information therein. The literature on the ecology of copepods outweighed that in ecotoxicology when compared with daphnids. Copepods, like other zooplankton, were found to be sensitive to toxicants and important organisms in aquatic ecosystems. The few studies that were conducted on the ecotoxicology of copepods mainly focused on marine copepods. However, very little is known about the ecotoxicology of freshwater copepods. To enable a more realistic risk higher tier environmental risk assessment, we recommend considering freshwater copepods as part of the hazard assessment process. This could include the establishment of laboratory experiments to analyse the effects of toxicants on copepods and the development of individual-based models to extrapolate effects across species and scenarios.  相似文献   

3.
BACKGROUND: Triggered by the requirement of Water Framework Directive for a good ecological status for European river systems till 2015 and by still existing lacks in tools for cause identification of insufficient ecological status MODELKEY (http:// www.modelkey.org), an Integrated Project with 26 partners from 14 European countries, was started in 2005. MODELKEY is the acronym for 'Models for assessing and forecasting the impact of environmental key pollutants on freshwater and marine ecosystems and biodiversity'. The project is funded by the European Commission within the Sixth Framework Programme. OBJECTIVES: MODELKEY comprises a multidisciplinary approach aiming at developing interlinked tools for an enhanced understanding of cause-effect-relationships between insufficient ecological status and environmental pollution as causative factor and for the assessment and forecasting of the risks of key pollutants on fresh water and marine ecosystems at a river basin and adjacent marine environment scale. New modelling tools for risk assessment including generic exposure assessment models, mechanistic models of toxic effects in simplified food chains, integrated diagnostic effect models based on community patterns, predictive component effect models applying artificial neural networks and GIS-based analysis of integrated risk indexes will be developed and linked to a user-friendly decision support system for the prioritisation of risks, contamination sources and contaminated sites. APPROACH: Modelling will be closely interlinked with extensive laboratory and field investigations. Early warning strategies on the basis of sub-lethal effects in vitro and in vivo are provided and combined with fractionation and analytical tools for effect-directed analysis of key toxicants. Integrated assessment of exposure and effects on biofilms, invertebrate and fish communities linking chemical analysis in water, sediment and biota with in vitro, in vivo and community level effect analysis is designed to provide data and conceptual understanding for risk arising from key toxicants in aquatic ecosystems and will be used for verification of various modelling approaches. CONCLUSION AND PERSPECTIVE: The developed tools will be verified in case studies representing European key areas including Mediterranean, Western and Central European river basins. An end-user-directed decision support system will be provided for cost-effective tool selection and appropriate risk and site prioritisation.  相似文献   

4.
Understanding the ecological status of aquatic ecosystems and the impact of anthropogenic contamination requires correlating exposure to toxicants with impact on biological communities. Several tools exist for assessing the ecotoxicity of substances, but there is still a need for new tools that are ecologically relevant and easy to use. We have developed a protocol based on the substrate-induced respiration of a river biofilm community, using the MicroResp™ technique, in a pollution-induced community tolerance approach. The results show that MicroResp™ can be used in bioassays to assess the toxicity toward biofilm communities of a wide range of metals (Cu, Zn, Cd, Ag, Ni, Fe, Co, Al and As). Moreover, a community-level physiological profile based on the mineralization of different carbon substrates was established. Finally, the utility of MicroResp™ was confirmed in an in-situ study showing gradient of tolerance to copper correlated to a contamination gradient of this metal in a small river.  相似文献   

5.
Background, Aim and Scope Extensive monitoring programs on chemical contamination are run in many European river basins. With respect to the implementation of the European Union (EU) Water Framework Directive (WFD), these programs are increasingly accompanied by monitoring the ecological status of the river basins. Assuming an impact of chemical contamination on the ecological status, the assignment of effects in aquatic ecosystems to those stressors that cause the effects is a prerequisite for taking political or technical measures to achieve the goals of the WFD. Thus, one focus of present European research is on toxicant identification in European river basins in order to allow for a reduction of toxic pressure on aquatic ecosystems according to the WFD. Main Features: An overview is presented on studies that were performed to link chemical pollution in European river basins to measurable ecotoxic effects. This includes correlation-based approaches as well as investigations that apply effect-directed analysis (EDA) integrating toxicity testing, fractionation and non-target chemical analysis. Effect-based key toxicants that were identified in European surface waters are compiled and compared to EU priority pollutants. Further needs for research are identified. Results: Studies on the identification of effect-based key toxicants focused on mutagenicity, aryl hydrocarbon receptor-mediated effects, endocrine disruption, green algae, and invertebrates. The identified pollutants include priority pollutants and other well-known environmental pollutants such as polycyclic aromatic hydrocarbons, polychlorinated dibenzo-p-dioxins, furans, and biphenyls, nonylphenol, some pesticides and tributyltin, but also other compounds that were neither considered as environmental pollutants before nor regulated such as substituted phenols, natural or synthetic estrogens and androgens, dinaphthofurans, 2-(2-naphthalenyl)benzothiophene, and N-phenyl-2-naphthylamine. Discussion: Individual studies at specific sites in a European river basin demonstrated the power of combined biological and chemical analytical approaches and, particularly, of effect-directed analysis. However, the available information on effect-based key toxicants is very limited with respect to the entirety of rivers possibly at risk due to chemical contamination and with respect to toxicological endpoints considered at a specific site. A relatively broad basis of information exists only for estrogenicity and aryl hydrocarbon, receptor-mediated effects. Conclusions: The development of tools and strategies for an identification of key toxicants on a broader scale are a challenging task for the next years. Since investigations dealing with toxicant identification are too labor and cost-intensive for monitoring purposes, they have to be focused on the key sites in a river basin. These should include hot spots of contamination, particularly if there is evidence that they might pose a risk for downstream areas, but may also involve accumulation zones in the lower reach of a river in order to get an integrated picture on the contamination of the basin. Perspectives: While EDA is almost exclusively based on measurable effects in in vitro and in vivo biotests to date, an increasing focus in the future should be on the integration of EDA into Ecological Risk Assessment and on the development of tools to confirm EDA-determined key toxicants as stressors in populations, communities and ecosystems. Considering these requirements and applied in a focused way, toxicant identification may significantly help to implement the Water Framework Directive by providing evidence on the main stressors and possible mitigation measures in order to improve the ecological status of a river ecosystem.  相似文献   

6.
Distinguishing between effects of natural and anthropogenic environmental factors on ecosystems is a fundamental problem in environmental science. In river systems the longitudinal gradient of environmental factors is one of the most relevant sources of dissimilarity between communities that could be confounded with anthropogenic disturbances. To test the hypothesis that in macroinvertebrate communities the distribution of species' sensitivity to organic toxicants is independent of natural longitudinal factors, but depends on contamination with organic toxicants, we analysed the relationship between community sensitivity SPEARorganic (average community sensitivity to organic toxicants) and natural and anthropogenic environmental factors in a large-scale river system, from alpine streams to a lowland river. The results show that SPEARorganic is largely independent of natural longitudinal factors, but strongly dependent on contamination with organic toxicants (petrochemicals and synthetic surfactants). Usage of SPEARorganic as a stressor-specific longitude-independent measure will facilitate detection of community disturbance by organic toxicants.  相似文献   

7.
A case study is presented where an integrated, ecologically relevant exposure assessment is presented for a polluted lowland river. Using partial least squares regression of latent structures (PLS), an analysis of the impact of two effluents on physico-chemical water quality measures, macroinvertebrate and diatom communities, and in situ bioassay responses with four different test species are combined into an integrative exposure assessment. Bioassays focussed on growth and condition related endpoints, because they are key functional processes of organisms and populations. Integrating these multiple lines of evidence, we were able to discriminate among the impact of both effluents, link changes in physico-chemical water quality with bioassay endpoints and ecological quality of the ecosystem, and address the importance of integrating all information into one exposure assessment framework. The bioassays under field conditions indicated that most endpoints measured are a reflection of ecological effects rather than pollution related effects, or at least a combination of both ecological and toxicological effects. Factors such as food availability clearly influenced the outcome of in situ bioassays and ecological information was essential to explain observed discrepancies when trying to extrapolate bioassay results from the laboratory to the field.  相似文献   

8.
Invertebrate communities in polluted rivers are often exposed to a wide variety of compounds. Due to complex interactions, 'pollution tolerant' species are not necessarily the most tolerant species to toxicants tested under standard laboratory conditions. It was hypothesized that the distribution of species in polluted rivers is not only dependent on the tolerance of species to toxicants, but also on species-specific capacities to modify or compensate for negative effects of toxicants. To test this hypothesis, species-specific responses to metals in organically enriched river water were studied under controlled conditions. The zebra mussel Dreissena polymorpha and the midge Chironomus riparius were exposed to metal-polluted water from the River Dommel. Additionally, the (interactive) effects of metals and humic acids (HA) on both species were evaluated. In spite of a lower tolerance of Chironomus riparius to metals in laboratory studies, the midge was the most tolerant of the two test species to metal-polluted site water. The results indicated that the sensitivities of the two test species determined in laboratory tests were inversely related to their sensitivities to polluted river water. In accordance with these results, midge larvae were protected from copper (Cu) toxicity by HA, while metal toxicity was not reduced (Cu) or even amplified (cadmium) by HA for the zebra mussel. Thus, the presence of (naturally occurring) HA in site water may partly account for discrepancies between responses of species to bioassays and toxicity tests. It is suggested that these differences in responses to metals in site water are strongly influenced by species-specific preferences for organic compounds (like HA). It is concluded that the response to organic compounds present in site water largely determines whether a species is classified as 'pollution tolerant' or 'pollution sensitive'.  相似文献   

9.
The chemical speciation model BIOCHEM was extended with ecotoxicological transfer functions for uptake of metals (As, Cd, Cu, Ni, Pb, and Zn) by plants and soil invertebrates. It was coupled to the object-oriented framework ORCHESTRA to achieve a flexible and dynamic decision support system (DSS) to analyse natural or anthropogenic changes that occur in river systems. The DSS uses the chemical characteristics of soils and sediments as input, and calculates speciation and subsequent uptake by biota at various scenarios. Biotic transfer functions were field-validated, and actual hydrological conditions were derived from long-term monitoring data. The DSS was tested for several scenarios that occur in the Meuse catchment areas, such as flooding and sedimentation of riverine sediments on flood plains. Risks are expressed in terms of changes in chemical mobility, and uptake by flood plain key species (flora and fauna).  相似文献   

10.
Marine protected areas (MPAs) are being promoted in Tanzania to mitigate the drivers of ecosystem change such as overfishing and other anthropogenic impacts on marine resources. The effectiveness of MPAs in managing those drivers was assessed in three ecological zones, seafront, mangrove, and riverine of Mnazi Bay Marine Park, using Participatory Community Analysis techniques, questionnaire survey, checklist and fishery resource assessment methods. Eleven major drivers of ecosystem change were identified. Resource dependence had a major effect in all ecological zones of the park. The results indicated that the park’s legislations/regulations, management procedures, and conservation efforts are reasonably effective in managing its resources. The positive signs accrued from conservation efforts have been realized by the communities in terms of increased catch/income, awareness and compliance. However, some natural and anthropogenic drivers continued to threaten the park’s sustainability. Furthermore, implementation of resource use and benefit sharing mechanisms still remained a considerable challenge to be addressed.  相似文献   

11.
Numerous environmental chemicals, both long-known toxicants such as persistent organic pollutants as well as emerging contaminants such as pharmaceuticals, are known to modulate immune parameters of wildlife species, what can have adverse consequences for the fitness of individuals including their capability to resist pathogen infections. Despite frequent field observations of impaired immunocompetence and increased disease incidence in contaminant-exposed wildlife populations, the potential relevance of immunotoxic effects for the ecological impact of chemicals is rarely considered in ecotoxicological risk assessment. A limiting factor in the assessment of immunotoxic effects might be the complexity of the immune system what makes it difficult (1) to select appropriate exposure and effect parameters out of the many immune parameters which could be measured, and (2) to evaluate the significance of the selected parameters for the overall fitness and immunocompetence of the organism. Here, we present - on the example of teleost fishes - a brief discussion of how to assess chemical impact on the immune system using parameters at different levels of complexity and integration: immune mediators, humoral immune effectors, cellular immune defenses, macroscopical and microscopical responses of lymphoid tissues and organs, and host resistance to pathogens. Importantly, adverse effects of chemicals on immunocompetence may be detectable only after immune system activation, e.g., after pathogen challenge, but not in the resting immune system of non-infected fish. Current limitations to further development and implementation of immunotoxicity assays and parameters in ecotoxicological risk assessment are not primarily due to technological constraints, but are related from insufficient knowledge of (1) possible modes of action in the immune system, (2) the importance of intra- and inter-species immune system variability for the response against chemical stressors, and (3) deficits in conceptual and mechanistic assessment of combination effects of chemicals and pathogens.  相似文献   

12.
Chen CS 《Chemosphere》2005,61(8):1142-1158
An ecological risk assessment was conducted for Keelung River in northern Taiwan. The objective of this study was to assess the risk to fish, aquatic insects, and benthic macroinvertebrates associated with chemical-of-potential-concern (COPC) in the river and to rank ecological risk for these chemicals. The protection of at least 95% of the species 90% of the time from acute and chronic COPC exposures was the defined assessment endpoint. Nine inorganic and organic contaminants were selected to evaluate the impact to aquatic community in the Keelung River. The quotient method served as screen level estimation of risk. The Aquatic Ecological Risk Assessment model was used to analyze exposure and ecological effects and to estimate community level risk. The logarithmic regression model between probability and lethal concentration was established. The combined risks of multiple chemicals were evaluated under assumption of additive risk. The results indicated that zinc and copper pose higher risk among metals. Ammonia, copper, and zinc posed virtually all of the risk, while organic COPCs posed a negligible risk. Potential ecological risk from ammonia exposure was greatest. The probability of more than 5% of the species being affected by acute or chronic toxicity of COPCs is about 100%. In average (50% of the time), 99% of the species would be affected by acute toxicity of COPCs, and about all the species would be affected by chronic toxicity of COPCs. Uncertainties in this assessment were associated with variability in ecosystem stressors, exposure data, ecological effect data, and risk characterization.  相似文献   

13.
Bioassays with unicellular algae are frequently used as ecotoxicological test systems to evaluate the toxicity of contaminated environmental samples or chemicals. In contrast, aquatic macrophyte test systems are still rarely used as they are laborious to handle because species exhibit distinct ecological requirements. The aim of this study was to establish a fast and reproducible measuring system for aquatic macrophyte species to overcome those limitations for use. Thus, a newly developed pulse-amplitude modulated chlorophyll fluorometer (Imaging-PAM) was applied as an effect detection in short-term bioassays with aquatic macrophyte species. This multiwell-plate-based measuring device enables the incubation and measurement of up to 24 samples in parallel. The Imaging-PAM was used (i) to establish and validate the sensitivity of the test systems to three Photosystem II (PSII) inhibitors (atrazine, prometryn, isoproturon), (ii) to compare the test systems with established biotests for macrophytes and (iii) to define necessary time scales in aquatic macrophyte testing. The results showed that fluorescence-based measurements with the Imaging-PAM allow rapid and parallel analysis of large amounts of aquatic macrophyte samples and of toxicants effects of the PSII inhibitors tested on aquatic macrophytes. Measurements revealed a good correlation between obtained median effective concentrations (EC50s) for the new and the established biotest systems. Hence, the Imaging-PAM measuring device is a promising tool to allow fast chemical effect screening for high amounts of samples with little time and material and thus offers scope for high-throughput biotesting using aquatic macrophyte species.  相似文献   

14.
A Bérard  C Benninghoff 《Chemosphere》2001,45(4-5):427-437
Algae communities exposed to a herbicide like atrazine (PS II inhibitor) are expected to be selected and to be more tolerant to the herbicide than unexposed communities (pollution-induced community tolerance, PICT). The PICT may be an ecotoxicological tool for detecting this selective action of chronic pollution, and this method has been applied to several toxicants in experimental systems and in field studies. But the detection of PICT with PS II inhibitors has sometimes been variable. This work was done to study the long-term effects of exposure to atrazine (10 microg/l) and the PICT responses of phytoplankton communities in repeated outdoor nanocosms. Phytoplankton communities were sampled in Lake Geneva at different periods of the year and the effects of atrazine were analysed by studying community structure, biomass and primary production, and by measuring tolerance to atrazine in a short-term physiological test based on 14C incorporation. We find that PICT is a sensitive method for measuring effects. Even atrazine concentrations causing little restructuring induced tolerance in most of our experiments. But the short- and long-term responses of phytoplankton to atrazine varied between experiments, probably due to the initial compositions of the communities and environmental factors associated with seasonal parameters. The selection and detection steps of PICT to atrazine thus vary greatly with environmental conditions and the physiological adaptations of algae to the herbicide. To monitor risk assessment in aquatic systems, PICT studies applied to algae, must be investigated in the light of seasonal contaminations and seasonal events and successions.  相似文献   

15.
Mesocosms consisting of physically and biologically intact segments of natural communities are an ideal compromise between single species tests and ecosystem experiments in the assessment of sediment contamination. Therefore, large intact sediment cores, as mesocosms with naturally co-adapted communities, would allow sediment contamination to be assessed using the replicability and statistical power of laboratory techniques, while retaining much of the ecological realism of field studies. This study investigates the collection and maintenance of such cores, collected from an unimpacted site in Lake Erie. It demonstrates that box cores containing relatively undisturbed freshwater sediments can be brought back to the laboratory and maintained for up to 8 weeks with little change in the resident benthic fauna. Feeding the systems is not required, nor is it deleterious to the indigenous fauna.  相似文献   

16.
A copper-cadmium-nickel-zinc mixture was assessed in seven different river waters to study metal toxicity to the ciliate protozoan Colpidium campylum, the interactions occurring between metals, and the influence of the receiving water on toxicity. In the range of concentrations tested, which are representative of electroplating industry wastes, the main part of the toxicity can be attributed to copper and to cadmium-copper synergy. A classification of waters, based on a principal component analysis (PCA), was used to examine the main parameters of the water, which can affect the toxicity of metal mixtures. It appears that the mineralization of the water, more than the total organic carbon (TOC), is an important parameter for the expression of toxicity. A strategy for the estimation of ecotoxicological hazard assessment, based on a simplified factorial experiment is proposed. It enables one to study, in a two-step bioassay, the toxicity of an effluent, the influence of river water on its toxicity, and the effects of contact time and dilution. By applying PCA to data from very different waters, it may be possible to estimate the ecotoxicological risk associated with the discharge of an effluent, on the basis of the chemistry of the receiving water.  相似文献   

17.

Background, aim, and scope  

Riverine retention decreases loads of nitrogen (N) and phosphorus (P) in running water. It is an important process in nutrient cycling in watersheds. However, temporal riverine nutrient retention capacity varies due to changes in hydrological, ecological, and nutrient inputs into the watershed. Quantitative information of seasonal riverine N and P retention is critical for developing strategies to combat diffuse source pollution and eutrophication in riverine and coastal systems. This study examined seasonal variation of riverine total N (TN) and total P (TP) retention in the ChangLe River, an agricultural drainage river in east China.  相似文献   

18.
Residues of five pesticides in surface water were surveyed during 2001 and 2003 in the Traiguen river basin in Southern Chile. Simazine, hexazinone, 2,4-D, picloram herbicides and carbendazim fungicide were selected through a pesticide risk classification index. Six sampling stations along the river were set up based on agricultural and forestry land use. The water sampling was carried out before and after the pesticide application periods and in correspondence to some rain events. Pesticides were analyzed by HPLC with DAD detection in a multiresidue analysis. During 2001, in the first sampling campaign (March), the highest concentrations of pesticides were 3.0 microg l(-1) for simazine and hexazinone and 1.8 microg l(-1) for carbendazim. In the second sampling (September), the highest concentration were 9.7 microg l(-1) for 2,4-D, 0.3 microg l(-1) for picloram and 0.4 microg l(-1) for carbendazim. In the last sampling period (December), samples indicated contamination with carbendazim fungicide at levels of up to 1.2 microg l(-1). In sampling carried out on May 2003, no pesticides were detected. In October 2003, the highest concentrations of pesticides were 4.5 microg l(-1) for carbendazim and 2.9 microg l(-1) for 2,4-D. Data are discussed in function of land use and application periods of the products, showing a clear seasonal pattern pollution in the Traiguen river. Risk assessment for these pesticides was calculated by using a risk quotient (RQ = PNEC/PEC). For picloram the calculated RQ < was 0, which indicates that no adverse effects may occur due to the exposure to this herbicide in the Traiguen river basin. For 2,4-D, simazine, hexazinone, carbendazim RQ > 1, meaning that adverse effects could occur and it is necessary to reduce pesticide exposure in surface waters. It is recommended to continue with a pesticide monitoring program and the implementation of ecotoxicological testing with local and standardized species in order to consider the probability of effects occurrence, with less uncertainty. Thus, it will be more feasible to make some recommendations to regulatory agencies regarding the pesticide use.  相似文献   

19.
Screening-level ecological risk assessments are commonly conducted to identify those contaminants and receptors on which to focus future phases or tiers of the ecological risk assessment process. Most screening assessments are performed using a suite of individual species subjected to intensive evaluation of exposure (endpoint species) and selected for their appropriateness for serving as representatives or 'indicators' for all other species. As site complexity and the number of contaminants of concern increase, it becomes more difficult to assure with confidence that the potential for significant effects has been adequately assessed through an appropriate choice of endpoint species. As an alternative, functional groups demonstrating biological similarity and similar potential for contaminant exposure were developed for INEEL screening-level ecological risk assessments using taxonomic, trophic and habitat parameters. Data for individual species within each group are then integrated to address the potential for risk of adverse effects from contaminant exposure for the group as a whole.  相似文献   

20.
In developing countries, the management of environmental toxicants is inadequate, thus, humans may be exposed to levels higher than normal levels (background levels). Therefore, the aim of this study was to evaluate the exposure level of Mexican children to dichlorodiphenyltrichloroethane (DDT), dichlorodiphenyldichloroethylene (DDE), lead, and polycyclic aromatic hydrocarbons [using 1-hydroxypyrene (1-OHP) as exposure biomarker] and to assess the percentage of children exposed to these four compounds at concentrations higher than normal in each community studied. We performed random sampling in eight communities in Mexico (five communities in Chiapas State and three communities in San Luis Potosi State). DDT and DDE were analyzed by gas chromatography/mass spectrometry, the quantification of lead in blood was performed using atomic absorption spectrophotometry, and 1-OHP analyses were performed using HPLC with a fluorescence detector. Elevated DDT, DDE, and 1-OHP levels were found in children living in the indigenous communities of Chiapas State, while higher blood lead levels were found in two communities in San Luis Potosí. Approximately 30 % of children living in Chiapas were exposed to all four compounds at concentrations above the guidelines for each compound, whereas 48 % of children studied were exposed to all four contaminants at concentrations higher than normal in a community in San Luis Potosí State. As expected, our results showed that in hot spots, children are exposed to levels higher than normal. Therefore, child environmental health programs are urgently needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号