首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
采用计算流体力学方法研究了SK型静态混合器中气液两相流的三维流场.结果表明,气液两相流体通过混合单元时湍动的增强而达到强化混合的效果,其中第1个混合单元的强化作用最强,之后沿轴向呈递减趋势,流体经第7个混合单元后混合湍动基本达到稳定;在混合单元中部区域混合效应较强烈.采用准数方程表征气液两相流压力降的关联式为:Eumix=0.737Re0.431lFr0.185g.  相似文献   

2.
燃料/空气文丘里混合器结构简单,其结构参数能够直接影响燃烧器性能。本文对燃料/空气文丘里混合器的研究现状进行了综述。首先,详细阐述了影响文丘里混合器掺混均匀性的重要因素:几何结构参数和燃料与空气的流动方式。其次,根据燃料与空气的混合流动方式,将文丘里混合器分为两类:文丘里直流式混合器和文丘里旋流式混合器。对燃料/空气文丘里混合器的研究及发展趋势进行综述,探讨了混合特性随几何结构参数和燃料与空气的流动方式的变化规律。最后,本文工作可为全预混燃烧器中的文丘里混合器的进一步优化设计提供一定的参考。  相似文献   

3.
设计了一种新型乙醇汽油防静电混合器,基于CFD方法对新型乙醇汽油防静电混合器及简单的T型管混合器的内部流场分别进行数值分析,通过比较混合器中各组分浓度分布、压力分布、速度分布等特征,研究乙醇与汽油在混合器中的混合效果,并分析静电产生的风险。结果表明:在新型混合器螺旋叶片的作用下,乙醇汽油在出口处几乎混合均匀,速度趋于一致,且压力损失较小,说明新型混合器可以在较小的能耗下获得较好的混合效果,从而有效减少静电积聚。  相似文献   

4.
为探明甲烷在不同混合均匀性下的爆炸特性,预防甲烷气体爆炸,设计由喷射流混合器和静态混合器组成的2级气体混合器,并利用自行研制的可燃气体爆炸特性测试装置,试验测试不使用和使用2级气体混合器2种情况下甲烷的爆炸极限和爆炸压力。结果表明:在2级气体混合器的作用下,甲烷的爆炸下限从5. 25%降低到5. 15%,爆炸上限从17. 15%升高到17. 55%,甲烷爆炸极限范围拓宽了4. 20%,且甲烷爆炸上限受混合均匀性的影响较大;使用2级气体混合器时,甲烷爆炸压力升高,且随着甲烷体积分数的升高,爆炸压力的增幅先增大后减小,当甲烷体积分数为11%时,爆炸压力的增幅最大,甲烷爆炸压力受混合均匀性的影响也最大。  相似文献   

5.
文章介绍了可燃气体放散管经常遭受雷击并起火的情况,通过分析,确定无法使用常规的避雷针及避雷线进行直击雷防护。根据可燃气体的性质,设计了一种气体混合器,可燃气体和空气或水蒸气可在混合器中充分混合,可燃气体浓度降低到可燃浓度以下后排出放散口。  相似文献   

6.
<正>混合碳四综合利用装置是利用混合碳四生产高纯度MTBE和丁烯-1产品的装置,额定设计规模为处理混合碳四5万t/a。该装置由加氢、醚化、水洗、丁烯-1精制4个单元组成。工艺过程涉及噪声、甲醇、MTBE、二乙胺、丁烯-1、丁烯-2  相似文献   

7.
环氧乙烷生产系统的安全性评价   总被引:1,自引:0,他引:1  
用道氏火灾、爆炸危险指数评价方法对抚顺乙烯化工厂环氧乙烷生产系统进行安全性评价.针对环氧乙烷生产系统实际运转情况,对其中的M101混合器单元从一般工艺危险性、特殊工艺危险性和安全补偿措施等方面进行了系统分析,并对该系统的危险性因素进行辨识并提出了相应的整改措施.结果表明,该生产系统中5个评价单元内的实际最大可能财产损失分别是1.407×107元、1.488×107元、0.489×107元、0.804×107元和0.711×107元,均在该评价方法规定的最大可能财产损失范围内,说明现役环氧乙烷生产系统在理论上是可以安全运行的.  相似文献   

8.
采用计算流体力学方法对光催化氧化VOCs处理设备三维模型进行模拟,考察了设备结构优化前后入口管路气相组分混合程度以及反应室内部气流分配效果。结果表明,现场实验数据与模拟结果高度吻合,最大相对误差为14.6%,模型可靠;原处理设备入口管路监测面浓度梯度较大,速度均方根值高达0.96,反应室空间流线紊乱,速度梯度为1.8 m/s,脉动压强为1.5 kPa;入口管路替换为Kenics型静态混合器监测面组分浓度基本保持为定值,混合效果较好;反应室进气口加入旋流器,监测面速度梯度减小为0.1 m/s,压强保持在5 kPa,有效改善了气流分配的均匀性。  相似文献   

9.
为研究容器长径比对铝合金网状材料抑爆性的影响,选取其长径比例分别为15,25和35的3种铝合金网状材料测试容器,容器内填充典型铝合金网状材料,通过可燃气体/空气预混在容器中的爆炸过程试验,分析铝合金网状材料对爆炸压力的抑制作用及规律。结果表明:测试容器长径比越大,爆炸平均增压值越小,表明铝合金网状材料的抑爆性能评价效果越好;测试容器长径比不小于30是较为合理的选择。  相似文献   

10.
内部爆炸载荷作用下容器动力响应的数值模拟   总被引:1,自引:0,他引:1  
运用ANSYS/LS-DYNA非线性显式动力学有限元程序,采用流固耦合算法,对平板封头圆柱形爆炸容器(长径比1∶1)在内部爆炸载荷作用下的动力响应进行了数值模拟;研究容器壳体和平板封头典型位置的内部爆炸载荷和等效应力的历史;分别给出壳体和平板封头的应力云图;分析对比壳体和封头不同位置应力响应。数值模拟结果为爆炸容器的经验设计和防护提供了科学依据。  相似文献   

11.
为厘清压缩空气泡沫水平管道输运压力衰减规律,考虑压缩空气泡沫实际工程运用,利用STAR-CCM软件研究泡沫液种类、混合比和管径对湿泡沫水平管网输运过程中压力衰减的影响规律,并结合理论分析建立压缩空气泡沫水平输运过程中的压力衰减预测模型。研究结果表明:管路压降与泡沫液黏度呈正相关性,在混合液流量270 L/min,气体流量1 750 L/min条件下,相同管径高黏度抗溶性水成膜泡沫(AFFF/AR)压降约为低黏度A类和水成膜泡沫(AFFF)1.3倍;对于相同类型泡沫,混合比对管路压降影响较小,100 m长90 mm管径不同混合比之间最大压降差值约为7.21 kPa;管径对压降影响较大,相同泡沫条件下,50 mm管径压降是80 mm管径压降的约9.4倍,80 mm管径压降是100 mm管径压降的约2.8倍,当管径大于80 mm时,不同泡沫对压降的影响逐步减小。压力衰减预测模型计算的压降值与模拟值较前人开展研究所得实验值误差在18%以内,研究结果可以为压缩空气泡沫水平管网设计提供一定理论参考。  相似文献   

12.
为验证压缩空气泡沫扑救大型火灾的有效性,分别开展225 m2甲醇和450 m2重油油池火灭火实验,采用压缩空气泡沫系统搭配消防机器人远距离喷射压缩空气泡沫的灭火方法,分析该方法的灭火效能。研究结果表明:压缩空气泡沫系统可以实现远距离灭火,压缩空气泡沫的施加可以有效降低油池内燃料温度、火场温度以及油池附近热辐射强度。在压缩空气泡沫系统混合液流量为3 900 L/min时,距离油池边缘29 m条件下扑救450 m2全尺寸重油火灾的灭火时间为130 s,灭火阶段水和3%泡沫液的消耗量分别为8 233 L和273 L;在压缩空气泡沫系统混合液流量为3 600 L/min时,距离油池边缘不小于35 m条件下扑救225 m2全尺寸甲醇火灾的灭火时间为231 s,灭火阶段水和6%泡沫液的消耗量分别为12 962 L和808 L。研究结果对提升扑救大型油池火灾的作战能力具有重要意义。  相似文献   

13.
采用实验室压缩气体泡沫系统,通过缩尺油盘火试验,分别考察基于不同气源的压缩气体泡沫对于石油醚火灾的灭火性能,分析探讨适用于低沸点的石油醚类燃料火灾扑救的气源类型和供气方案。结果表明,在泡沫溶液供给强度为2.5 L/(min·m2)的条件下,压缩氮气泡沫和压缩空气泡沫均可扑灭石油醚火灾,具有良好的抗烧性能;二者相比,压缩氮气泡沫比压缩空气泡沫的控灭火性能和抗烧性能均有一定提升;对于石油醚类的低沸点易燃液体火灾,建议采用以氮气作为气源的压缩氮气泡沫系统;该研究可为压缩气体泡沫系统在石油化工行业工程应用提供技术支撑。  相似文献   

14.
为评估不同气源压缩气体泡沫扑救浮顶罐密封圈火灾的有效性,通过足尺灭火试验,研究不同工况下压缩气体泡沫对浮顶罐密封圈火灾的灭火性能以及气源类型、挡雨板遮挡对灭火的影响。结果表明:在泡沫溶液供给强度为5 L/(min·m2)条件下,压缩氮气泡沫和压缩空气泡沫均可快速有效扑灭典型浮顶罐密封圈火灾,且灭火后不发生复燃;密封圈挡雨板对泡沫施加和灭火均有较大影响,不利于快速灭火;无论是否设置挡雨板,压缩氮气泡沫的灭火性能均比压缩空气泡沫略有提升,实际工程中有氮气源的场所建议直接采用已有供氮设备作为气源。研究结果对压缩气体泡沫系统工程设计以及在大型浮顶罐工程中的应用具有重要意义。  相似文献   

15.
压缩空气泡沫灭火技术是一项新型灭火技术,为验证压缩空气泡沫系统与蛋白泡沫灭火剂结合使用时是否可以成为含PFOS泡沫灭火剂的替代技术,开展了压缩空气蛋白泡沫抑制液体火有效性试验.在对压缩空气蛋白泡沫的泡沫性能进行分析的基础上,进一步采用标准油盘火试验模型对压缩空气蛋白泡沫的灭火性能进行评估,并与吸气式泡沫产生系统进行了对比.试验结果表明压缩空气蛋白泡沫具有优异的泡沫性能,同时具备抑制非水溶性液体火的有效性,可以作为含PFOS泡沫灭火剂的替代技术.  相似文献   

16.
基于Fluent对压缩空气泡沫在长距离管道中的流动特性进行了数值模拟研究,将压缩空气泡沫近似为弥散流,采用Saplart-Allmaras模型模拟了不同管径下压缩空气泡沫以及不同泡沫原液浓度的AFFF泡沫在长距离管道内的流动及压降变化。模拟结果表明,随着距离变化,各管径管道内压降均呈现线性变化,且随着压缩空气泡沫的流动,压降线性增大。管道管径对管内压降变化具有显著影响,管道直径越小,管道内压降越大;泡沫原液浓度对压降的影响较小,且压缩空气泡沫在长距离输送中的压力随距离线性衰减。将模拟结果与长距离输送的试验结果进行了对比,误差在10%以内。  相似文献   

17.
压缩气体射流与水射流混合后所产生的气-水两相射流,可获得连续、高速喷射的细水雾,水滴粒径小,穿入火焰的能力强,可沿水平方向射入火焰中,比喷淋方式水雾灭火可节省90%的用水量,缩短了灭火时间,发挥了细水雾的灭火优势,是细水雾灭火技术的最新发展。所制成的便携式、车载式、固定式的两相射流细水雾灭火装置,可扑灭多种类型的火灾,尤其适合用于扑灭有人存在的空间的火灾。以涡喷发动机为喷射动力的气-水两相射流喷射系统,制成了超大功率的喷射雾状水的消防装备,大幅度提高了控制油、气大火火势的能力和灭火效率。气-水两相射流还有稀释、吹散泄漏出的可燃性气体,防止其点燃的功能,适合于在天然气和有毒有害气体泄漏事故抢险救援中使用。将压缩气体和泡沫液按比例混和后喷射的压缩空气泡沫喷射系统,产生了喷射“干泡沫”的消防车,使灭火用水的利用率提高了8倍,被称为是世界最先进的泡沫灭火技术。气-水两相射流促进了灭火技术革命性的发展,新型的气-水两相射流消防装备不断涌现,展示出了广阔的应用前景。  相似文献   

18.
分析了密封圈火灾过程及特点,建立了压缩空气泡沫灭火试验装置,参照10×10~4m~3浮顶储罐建立了20 m长的密封圈试验装置,以汽油为介质开展了多次泡沫灭火试验。试验结果表明:该压缩空气泡沫灭火试验装置可在30 s内完成灭火,泡沫混合液供给强度约14~19 L/(min·m~2),具有在大型浮顶储罐上应用的可能性。针对单台10×10~4m~3浮顶储罐浮盘密封圈灭火提出了工程应用方案,该储罐共需泡沫液量1200 L,分为4套压缩空气泡沫灭火装置均匀分布在浮盘边缘,浮盘密封圈火灾报警系统与该泡沫灭火装置联锁启动自动灭火,各套灭火装置的持续喷射时间约1 min。  相似文献   

19.
为研究压缩空气泡沫与4.65 m2汽油池火作用过程中隧道内温度、热辐射强度、高温烟气等的变化规律,采用30 m×6 m×6 m公路隧道实验模型,考察公路隧道压缩空气泡沫系统对油池火的灭火性能。结果表明:在供给强度为5.1 L/(min·m2)、气液比14∶1条件下,公路隧道压缩空气泡沫系统对于汽油池火具有优异的控灭火能力,控火时间为21 s,灭火时间为27 s,且泡沫性能稳定,抗复燃能力强;压缩空气泡沫对于隧道内高温烟气层扰动很小,不会导致高温烟气下降到隧道下部,故不影响人员逃生疏散;在压缩空气泡沫作用下,隧道顶部及侧壁100 ℃以上高温持续时间均不超过150 s,并且可在30 s内将油池火周围的热辐射强度降至安全范围。  相似文献   

20.
Foam technology is more efficient than water sprays for dust control in coal mines, but the traditional foam system is complex and poses problems related to foam production and spraying application, with high water consumption, unstable equipment and relatively low utilization efficiency of foam. This paper describes an optimized foam system which overcomes these disadvantages. The proposed foam generator has a self-suction unit that uses a turbulent-flow water jet to automatically draw in ambient air and foaming agent, thereby eliminating the need for compressed-air hoses and pipes. As well as simplifying the system, it solves the current problem of water backflow created by high-pressure compressed air. A refined foam spraying structure was developed for use in conjunction with an operating roadheader as it produces and diffuses dust. The structure consists of foam distribution supports and arc-fan nozzles. It can produce a more focused, continuous and uniform coverage at the source of the dust. The optimized system consumes less water and foaming agent, and achieves greater dust-suppression efficiency than methods in current use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号