首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The deposition of sulfur dioxide on growing vegetation is affected by diverse environmental factors, many of which undergo large diurnal and spatial variations. The aerodynamic resistance to vertical transfer in the surface boundary layer can be formulated in terms of the friction velocity, height of observation, vertical heat flux, and surface roughness. Also important are the resistance in the air layer closest to the surface elements and, in dry vegetation, the average stomatal resistance of the plants. The latter variable is among the most difficult to estimate, but over many agricultural field crops like those in the midwestern U.S., a typical minimum value of average stomatal resistance to SO2 transfer is about 0.7 s cm-1, as is indicated by various experimental data. The deposition velocity can be estimated as the inverse of the sum of the resistances of the layers, necessarily down to where the concentrations are zero; in the surface boundary layer, any of the various resistances might be dominant. Above the surface layer, the micrometeorological relationships are known with less certainty, but reasonable approximations indicate that during unstable conditions the resistance to transfer is very small at heights of several tens of meters and during stable conditions the aerodynamic resistance is very large aloft.  相似文献   

2.
In a land- and sea-breeze situation, effects of dry deposition on the dynamics of the concentrations of chemically reacting air pollutants are investigated using a transport/transformation/removal model with diurnally varying deposition velocities modeled in terms of the aerodynamic, surface, and residual resistances. The results show that the diurnally varying flows and eddy diffusivities, which are characteristic of the landand sea-breeze system, transfer the effects of dry deposition on the concentrations quickly to the upper layer over the land and sea surfaces. The dry deposition effect on one species can be transmitted to others through the network of chemical reactions, e.g. inclusion of dry deposition into the simulation resulted in the increase of hydrocarbon concentrations. It is also predicted that the dry deposition processes could remove a considerable part of emitted NOx, and SO2 from the local circulations, e.g. for 2 days about 40% of the emitted NOx was removed by the dry deposition of NO, NO2, HNO3 and PAN and in the case of SO2, 25 % by that of SO2 and SO42−.  相似文献   

3.
A concentration gradient/resistance model approach was used to determine the flux density, deposition velocity, and transport resistances for sulfur dioxide (SO2 ) between the atmosphere and a loblolly pine (Pirms taeda L.) plantation. Measurements were made on 54 clear to partly sunny days during the period from June 1982 to May 1983. For this stand and these days, the average daylight flux density was 0.052 μg m−2s−1 and the deposition velocity for SO2 was 0.72±0.65 cms−1. The average transport resistance for SO2 includes the aerodynamic resistance (ra), canopy resistance (rc), and internal resistance corrected for solubility (rir). The values for these resistances were 15 ±4, 127 ±94 and 14+-39 s m−1, respectively.  相似文献   

4.
A series of short-term laboratory experiments were conducted in which galvanized steel samples were exposed to sub-ppm levels of SO2. Dew was produced periodically on the test panels, and, at the end of some experiments, panels were sprayed with solutions of various pH levels. Both dew and rain rinse samples were analyzed for SO32−, SO42− and Zn.The laboratory results suggest that as a first approximation the damage to galvanized steel induced by the dry deposition of SO2 can be calculated by equating the dry SO2 flux to the Zn corrosion flux. SO2 will deposit onto a fresh dry surface until an amount similar to that of a monolayer has formed. Under wet conditions, the dry deposition flux is controlled by the gas-phase resistance of the atmosphere. Wet deposition of ammonium bisulphate induces corrosion which depends not only on the pH of the incident rain, but also on the exposure history of the samples.  相似文献   

5.
It is well known that skin sea surface temperature (SSST) is different from bulk sea surface temperature (BSST) by a few tenths of a degree Celsius. However, the extent of the error associated with dry deposition (or uptake) estimation by using BSST is not well known. This study tries to conduct such an evaluation using the on-board observation data over the South China Sea in the summers of 2004 and 2006. It was found that when a warm layer occurred, the deposition velocities using BSST were underestimated within the range of 0.8–4.3%, and the absorbed sea surface heat flux was overestimated by 21 W m?2. In contrast, under cool skin only conditions, the deposition velocities using BSST were overestimated within the range of 0.5–2.0%, varying with pollutants and the absorbed sea surface heat flux was underestimated also by 21 W m?2. Scale analysis shows that for a slightly soluble gas (e.g., NO2, NO and CO), the error in the solubility estimation using BSST is the major source of the error in dry deposition estimation. For a highly soluble gas (e.g., SO2), the error in the estimation of turbulent heat fluxes and, consequently, aerodynamic resistance and gas-phase film resistance using BSST is the major source of the total error. In contrast, for a medium soluble gas (e.g., O3 and CO2) both the errors from the estimations of the solubility and aerodynamic resistance are important. In addition, deposition estimations using various assumptions are discussed. The largest uncertainty is from the parameterizations for chemical enhancement factors. Other important areas of uncertainty include: (1) various parameterizations for gas-transfer velocity; (2) neutral-atmosphere assumption; (3) using BSST as SST, and (4) constant pH value assumption.  相似文献   

6.
SO2 dry deposition was studied over short vegetation, in Portugal, by means of the concentration gradient method. The experimental study involved one first phase of long-term measurements carried out in a grassland and, subsequently, a second period of several 1997 intensive field campaigns performed in three places representing different climate and surface conditions. Temporal and spatial patterns of dry deposition parameters show that downward fluxes of SO2 are by some extent affected by surface processes. Median Rc varied from 140 s cm−1 to values around 200 s cm−1, in a wide range of environmental conditions. Stomatal uptake is an important sink when vegetation is biologically active, but its contribution is effectively low when compared with non-stomatal mechanisms, especially when the surface is wet. Under dry conditions Rc increases by a factor of two, but SO2 deposition rates then still are significant. The parameterisation of the surface resistance for SO2 proved to be difficult, but Vd derived with the Erisman parameterisation (Erisman et al., Atmos. Environ. 28 (16) (1994) 2595) compared best with measured values, at low time resolution scale and especially under moisture conditions.  相似文献   

7.
Methods for estimating the dry deposition velocities of atmospheric gases in the U.S. and surrounding areas have been improved and incorporated into a revised computer code module for use in numerical models of atmospheric transport and deposition of pollutants over regional scales. The key improvement is the computation of bulk surface resistances along three distinct pathways of mass transfer to sites of deposition at the upper portions of vegetative canopies or structures, the lower portions, and the ground (or water surface). This approach replaces the previous technique of providing simple look-up tables of bulk surface resistances. With the surface resistances divided explicitly into distinct pathways, the bulk surface resistances for a large number of gases in addition to those usually addressed in acid deposition models (SO2, O3 NOx, and HNO3) can be computed, if estimates of the effective Henry's Law constants and appropriate measures of the chemical reactivity of the various substances are known. This has been accomplished successfully for H2O2, HCHO3 CH3CHO (to represent other aldehvdes), CH3O2H (to represent organic peroxides), CH3C(O)O2H, HCOOH (to represent organic acids), NH3, CH3C(O)O2NO2 and HNO2. Other factors considered include surface temperature, stomata1 response to environmental parameters, the wetting of surfaces by dew and rain, and the covering of surfaces by snow. Surface emission of gases and variations of uptake characteristics by individual plant species within the landuse types are not considered explicitly.  相似文献   

8.
A mass transfer approach is used in developing a practical mathematical model of gaseous pollutant uptake by leaves in which a series of resistances is summed across a concentration difference. The body of information presented in this paper is directed to plant pathologists or physiologists in the field of vegetal-pollutant effects and to people interested in the natural removal of air pollutants by vegetation. Correlations are given to calculate the aerodynamic and the stomatal resistances to uptake, while both a qualitative investigation and quantitative estimates are made of the mesophyllic resistance. The factors which control the aerodynamic resistance, ra, are leaf size and wind speed, while the leaf physiology is the determinant of the stomatal resistance, rs . It is noted that the chemical reaction rate and pollutant diffusivity in the mesophyll control the mesophyllic resistance, rm, though the overall gas phase mesophyllic resistance, Hrm, is strongly a function of pollutant solubility in water. Finally, the overall model is compared to earlier experimental work on vegetal uptake of SO2.  相似文献   

9.
This paper describes the development of a detailed dry deposition model for routine computation of dry deposition velocities of SO2, O3, HNO3 and fine particle SO42− across much of North America. Four different dry deposition/surface exchange sub-models have been combined with the current Canadian weather forecast model (Global Environmental Multiscale model) with a 3 h time resolution and a horizontal spatial resolution of 35 km. The present model uses the US Geological Survey North American Land Cover Characteristics data to obtain fourteen different land use and five seasonal categories. The four sub-models used are a multi-layer model for gaseous species over taller canopy land-use types, a big-leaf model for gaseous species over lower canopies (including bare soil and water) and for HNO3 under all surface types and, two different models for SO42−, one for tall canopies and the other for short canopies. All necessary parameters for each sub-model, chemical species, land-use and seasonal categories have been selected from available data libraries or from the values reported in the literature. The purpose for developing this model (referred to as the Routine Deposition Model (RDM)), when coupled with air concentration data, is to provide estimates of seasonal dry deposition, which can be combined with wet deposition to produce total deposition estimates. Model theory is discussed in this paper and model sensitivity tests and results will be presented in a companion paper.  相似文献   

10.
A combined transport/chemistry model which simulates the regional distribution of SO2 and sulfate within the lower troposphere is described. The mathematical analysis is based on the coupled three-dimensional advection-diffusion equations for SO2 and sulfate, and incorporates chemical transformations as well as the physical phenomena of dry deposition at the surface. The analysis also considers spatial variations in topography and spatial and temporal variations in both the mixing layer heights and the wind field. Based on the results from a series of numerical experiments, the dynamic model employs a Galerkin method for the numerical solution of the partial differential equations.A SO2 photochemical oxidation mechanism is incorporated into the transport model. The SO2 photochemical oxidation rate is based on a set of 27 reactions used to estimate the hydroxyl and peroxyl radical concentrations. The kinetic mechanism has been tested in simulations of smog chamber studies and yields realistic concentrations and conversion rates in model simulations of both urban and natural tropospheres.Other major facets treated in the formulation of the model include the interpretation and use of data available on dry deposition and the development of procedures to calculate meteorological model inputs (e.g., eddy diffusivities, dry deposition velocities, the three components of wind velocity, etc.) from routinely measured meteorological data. Simulations using the analysis are presented in a companion paper.  相似文献   

11.
This paper describes a Lagrangian model for simulating long-range air pollution transport over eastern North America. One version (denoted ENAMAP-2S) uses emissions inventories and standard daily weather reports to compute the airborne concentrations of SO2 and sulfate, and their deposition on the earth's surface. A separate version of the model (ENAMAP-2N) applies to oxides of nitrogen. These versions of the ENAMAP model include the influences of smoothed terrain on the winds, and divide the atmospheric boundary layer into three parts, allowing pollutant emissions to be divided among the layers. Vertical mixing is controlled by diffusion coefficients computed from wind shear, stability, and knowledge of the mixing depth. The transformation and wet and dry deposition rates are based on recently published values.The models have been used to compute monthly average values of concentrations and depositions for January and August 1977. Typical examples are shown. The sensitivity of the output fields of ENAMAP-2S to values selected for input parameters (e.g. transformation rate of SO2 to sulfate and deposition rates) has been studied; and based on present information, optimum values of the parameters are given. The model results include geographical patterns of pollutant concentration and deposition, and interregional exchange tables that show how much of the pollution in a certain region was emitted locally and how much originated in other specified areas. The simulated monthly airborne concentrations of SO2 and sulfate are generally within a factor of 2 of measured values.  相似文献   

12.
Measurements have been made of sulfur and nitrogen compounds in precipitation since 1980 and in air since 1981 in Ontario. This paper presents results of the atmospheric deposition measurement program to the end of 1985. As is to be expected from the distribution of emission sources, annual concentrations of SO42− andNO3 in precipitation, and of SO2,SO42− andNO3 in air are higher in southern Ontario than in northern Ontario. The corresponding distribution pattern for deposition is similar to that of concentration. A wet SO42− deposition rate of 20 kg ha1− y1−, a value considered critical for the acidification of sensitive water bodies, is exceeded in all of central and southern Ontario. On a province-wide basis, sulfur wet deposition is about four times higher than sulfur dry deposition. For nitrogen, wet and dry deposition are more comparable, though the former is still higher. The S- and N-species display different seasonal trends in concentration and deposition reflecting a dependence on meteorological factors, and on the associated chemical transformation rates. On the other hand, year to year variations are small.  相似文献   

13.
Numerical sensitivity tests and four months of complete model runs have been conducted for the Routine Deposition Model (RDM). The influence of individual model inputs on dry deposition velocity as a function of land-use category (LUC) and pollutant (SO2, O3, SO2−4 and HNO3) were examined over a realistic range of values for solar radiation, stability and wind speed. Spatial and temporal variations in RDM deposition velocity (Vd) during June – September 1996 time period generated using meteorological input from a mesoscale model run at 35 km resolution over north-eastern North America were also examined. Comparison of RDM Vd values to a variety of measurements of dry deposition velocities of SO2, O3, SO2−4 and NHO3 that have been reported in the literature demonstrated that RDM produces realistic results. Over northeastern NA RDM monthly averaged dry deposition velocities for SO2 vary from 0.2 to 3.0 cm s−1 with the highest deposition velocities over water surfaces. For O3, the monthly averaged dry deposition velocities are from 0.05 to 1.0 cm s−1 with the lowest values over water surfaces and the highest over forested areas. For HNO3, the monthly averaged dry deposition velocities have the range of 0.5 to 6 cm s−1, with the highest values for forested areas. For SO2−4, they range from 0.05–1.5 cm s−1, with the lowest values over water and the highest over forest. The monthly averaged dry deposition velocities for SO2 and O3 are higher in the growing season compared to the fall, but this behaviour is not apparent for HNO3 and sulphate. In the daytime, the hourly averaged dry deposition velocities for SO2, O3, SO2−4 and HNO3 are higher than that in the nighttime over most of the vegetated area. The diurnal variation is most evident for surfaces with large values for leaf area index (LAI), such as forests. Based on the results presented in this paper, it is concluded that RDM Vd values can be combined with measured air concentrations over hourly, daily or weekly periods to determine dry deposition amounts and with wet deposition measurements to provide seasonal estimates of total deposition and estimates of the relative importance of dry deposition.  相似文献   

14.
The dry deposition of sulphur, nitrogen and base cations to a spruce stand was estimated during a five year period using a surrogate surface resembling needles, throughfall and bulk deposition measurements. The deposition was calculated from the ratio between the deposition of an ion and sodium on the surrogate surface and the net throughfall of sodium to the forest. The dry deposition represented a large fraction of the total atmospheric input of base cations. For Na+, Mg2+, Ca2+, and K+ they were 66, 67, 53 and 42%, respectively. The internal circulation was 95% of non-marine net throughfall fro K+ and 76% for Ca2+. The dry deposition of SO2 to the canopies regulates the internal circulation of Ca2+. The dry deposition of SO2 to the canopies regulates the internal circulation of Ca2+. The dry depositions of ammonium and nitrate are close to the net throughfall of Kjeldahl-N and nitrate, respectively. The obtained deposition velocities are comparable to other studies. The calculated dry deposition of ammonium was compared to the net throughfall of ammonium at three nearby forest stands receiving different ammonium amounts on the soils. No correlation to nitrogen level was found, but most ammonium was lost and converted to organic nitrogen in the canopies of the wettest forest stand.  相似文献   

15.
Estimates of short-term, regional-scale spatial distributions of ozone (O3) and hydrogen peroxide (H2O2) dry deposition over the northeast U.S. are presented. Dry deposition fluxes to surfaces are computed using a regional tropospheric chemistry model with deposition velocities which vary with local meteorology, land type, insolation, seasonal factors and surface wetness. A compilation of O3 surface resistances is presented based on a survey of O3 dry deposition measurements. The surface resistance for H2O2 is assumed to be small under most conditions, causing H2O2 to dry deposit at a rate which is frequently limited by surface-layer turbulence. Regional patterns of dry deposition velocities for these oxidants over the northeast U.S. are computed using landuse data and meteorological information predicted using a mesoscale meteorology model. Domain-averaged O3 deposition velocities during a spring period reach a mid-day peak of 0.7–0.8 cm s−1 and drop to 0.1–0.2 cm s−1 at night. Domain-averaged H2O2 deposition velocities at a height of approximately 80 m are predicted to reach a mid-day peak of 1.6–2.0cm s−1, and fall to 0.6–0.9 cm s−1 at night. Time-averaged surface-layer H2O2 concentrations show a latitude dependence, with higher concentrations in the south. H2O2 concentrations are significantly reduced due to efficient wet removal and chemical destruction during the passage of a cyclonic frontal system. In contrast, O3 concentrations are predicted to rise during the passage of a frontal system due to efficient vertical exchange of midtropospheric air into the boundary layer during convective conditions, followed by synoptic-scale subsidence occurring in the high pressure airmass following a cyclone. Maximum O3 deposition during this 3-day springtime period occurs in polluted agricultural areas. In contrast, H2O2 dry deposition exhibits a latitude dependence with maximum 3-day accumulations occurring in the south. Domain-averaged mid-day deposition rates for O3 and H2O2 were 45–50 μmol m−2 h−1 and 4–5 μmol m−2 h−1. At night, deposition rates were approximately 5–10 μmol m−2 h−1 and 1.5–2.5 μmol m−2 h−1 for O3 and H2O2. These model results show that regional patterns of oxidant dry deposition are strongly influenced by oxidant concentrations, atmospheric stability, surface roughness and numerous other surface and meteorological factors. Each of these factors must be well-characterized before regional patterns of biological damage associated with oxidant dry deposition can be quantified.  相似文献   

16.
A mesoscale model of pollutant transport, transformation and deposition was used to perform a detailed analysis of acidic deposition to the states of New York and Ohio during a 3-day springtime deposition episode. This model can be used to assess the roles of wet and dry deposition to individual land types in the removal of pollutants from the atmosphere. Over two-thirds (67 %, Ohio; 78 %, New York) of the acidic deposition during this rainy period fell as wet deposition, primarily in the form of H2SO4. Dry deposition of SO2 accounted for 70–75 % of the total dry acidic deposition in both areas, and most of the remaining dry deposition occurred as HNO3. Over both deposition areas, particulate sulfate deposition accounted for <1 % of the total acid deposition. Due to the highly surface-specific nature of the dry deposition process, individual land types displayed unique patterns of pollutant uptake. Water surfaces absorbed primarily SO2, while rougher forested areas absorbed a larger proportion of HNO3 vapor. Urban areas, with their associated material surfaces, were found to absorb significantly less acid in the dry form, and during dry periods most of this deposition may occur as HNO3 vapor, although considerable uncertainty exists regarding the treatment of rainfall-wetted surfaces. These model results suggest that dry pollutant fluxes to individual surface types will show significant variability from any ‘averaged’ flux estimates over larger areas encompassing numerous land types.  相似文献   

17.
The aging processes of two representative natural aerosol, sea-salt and mineral aerosol, are investigated by using a box model equipped with a thermodynamic module (SCAPE). The model is shown to successfully describe the aging processes between the gas-phase anthropogenic pollutants (SO2, NOx, and NH3) and primary aerosol particles, including self-neutralization process/chlorine depletion in the sea-salt aerosol; formation/dissipation of carbonate and bicarbonate ions in the mineral aerosol; irreversible dynamic deposition of SO2 and H2SO4; and reversible thermodynamic distribution of inorganic volatile species. It is found that SO2 and H2SO4 tend to deposit onto the mode with the largest surface area, and that ammonia deposition is controlled by preceding SO2/H2SO4 deposition. During the SO2/H2SO4 deposition, chloride and carbonate are continuously released from the sea-salt and mineral dust particles, respectively. The findings by the model predictions are consistent with field and observational studies.  相似文献   

18.
Observations of annual wet deposition of sulfur made during 1980 at 62 stations in northeastern America are interpreted using a statistical long-range transport model. This work is meant to demonstrate the role of an empirical model in the analysis of observations. Our analysis points to the following conclusions:
  • 1.(1) The parameters that represent the conversion of SO2 to SO4 and the wet and dry removal of sulfur are insensitive to concentration levels,
  • 2.(2) the variation of the wet deposition field is closely related to the distribution of sulfur emissions and
  • 3.(3) observations demand efficient wet scavenging of SO2.
  相似文献   

19.
A series of experiments using bulk precipitation collectors of the type used in the UK precipitation chemistry network measured the amounts of NH4+, SO42− and other ions that could be washed from funnels (diameter 15 cm) exposed to a wide range of NH3 and SO2 concentrations over periods from hours to days. In dry conditions, the average deposition flux of NH3 was between 50 and 120 nmol NH4+ funnel−1 d−1 (0.1–0.3 kg N ha−1 yr−1), and was independent of the concentration of NH3. Dry deposition of NH3 to wet funnels at small NH3 concentrations was almost 5 times that to dry funnels under the same conditions (average 240 nmol funnel−1 d−1; 0.7 kg ha−1 yr−1), and increased with increasing NH3 concentrations. The amount of NH4+ ions remaining on the funnel surface was inversely proportional to the vapour pressure deficit during the experiment. This result was interpreted as a dependence on the duration of surface wetness, with greater deposition of NH4+ when evaporation rates of surface water were small.The amount of SO2 deposited on funnel surfaces was closely related to the amount of NH3 deposited, in both wet and dry conditions, but was not strongly correlated with the SO2 concentration. At low NH3 and SO2 concentrations the average deposition to dry funnels was 70 nmol SO42− funnel−1 d−1 (0.5 kg ha−1 yr−1), and to wet funnels was approximately 2.5 times larger. The results are interpreted in terms of the balance between the rate of evaporation of surface water, and the rate of oxidation of SO2, which leads to the ‘fixing’ of NH4+ ions on the surface as involatile salts.It is predicted that dry deposition of NH3 to funnel surfaces across the UK Secondary Network could account for as much as one-half of the measured bulk wet deposition at sites where wet deposition of NH4–N is small. The amount of dry deposition depends on how long and how often funnel surfaces are wetted by rain or dew, and on the air concentrations of NH3. These predictions are based on funnels being wetted only once per day. More frequent wetting would increase the contribution from dry deposition, and the consequent overestimate of wet deposition of NH4–N across the UK by using data obtained from bulk collectors. To some extent this overestimate may be offset by microbial degradation and loss of NH4–N in weekly bulk precipitation samples during collection and storage.  相似文献   

20.
A 60-m flux tower was built on a 2100 m mountain for the measurement of the air pollutant concentration and the evaluation of dry deposition velocity in Central Taiwan. The tower was constructed in an evergreen broadleaf forest, which is the dominant species of forest in the world. Multiple-level SO2 concentrations and meteorological variables at the site were measured from February to April 2008. The results showed that the mean dry deposition velocities of SO2 were 0.61 cm s?1 during daytime and 0.27 cm s?1 during nighttime. From the comparison of the monthly data, a tendency was observed that the dry deposition velocity increases with LAI and solar radiation. Furthermore, it was observed that the deposition velocity was larger over wet canopy than over dry canopy, and that higher deposition velocities in the wet season were mainly caused by non-stomatal uptake of wet canopy. Over wet canopy, the mean dry deposition velocities of SO2 were estimated to be 0.83 cm s?1 during daytime and 0.47 cm s?1 during nighttime; and 0.44 cm s?1 during daytime and 0.19 cm s?1 during nighttime over dry canopy. There is good agreement between the results of this study and those in other studies and the predictions of Zhang et al. (2003a). The medians (geometric means) of derived rc during daytime are 233 (266) m s?1 over dry canopy and 147 (146) m s?1 over wet canopy. It was found that solar radiation is the critical important meteorological variable determining stomatal resistance during daytime. For non-stomatal resistance, clear dependencies were observed on the friction velocity and relative humidity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号