首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
ABSTRACT

This paper reports results of studies using a biotrickling filter with blast-furnace slag packings (sizes = 2–4 cm and specific surface area = 120 m2/m3) for treatment of ethylether in air stream. Effects of volumetric loading, superficial gas velocity, empty bed gas retention time, recirculation liquid flow rate, and biofilm renewal on the ethylether removal efficiency and elimination capacity were tested. Results indicate that ethylether removal efficiencies of more than 95% were obtained with an empty bed retention time (EBRT) of 113 sec and loadings of lower than 70 g/m3/hr. At an EBRT of 57 sec, removal efficiencies of more than 90% could only be obtained with loadings of lower than 35 g/m3/hr. The maximum elimination capacities were 71 and 45 g/m3/hr for EBRT = 113 and 57 sec, respectively. The maximum ethylether elimination capacities were 71 and 96 g/m3/hr, respectively, before and after the renewal at EBRT = 113 sec. With an EBRT of 113 sec and a loading of lower than 38 g/m3/hr, the removal efficiency was nearly independent of the superficial liquid recirculation velocity in the range of 3.6 to 9.6 m3/m2/hr. From data regression, simplified mass-transfer limited, and reaction- and mass-transfer limited models correlating the contaminant concentration and the packing height were proposed and verified. The former model is applicable for cases of low influent contaminant concentrations or loadings, and the latter is applicable for cases of higher ones. Finally, CO2 conversion efficiencies of approximately 90% for the influent ethylether were obtained. The value is comparable to data reported from other related studies.  相似文献   

2.
Abstract

Two biofilters were operated to treat a waste gas stream intended to simulate off-gases generated during the manufacture of reformulated paint. The model waste gas stream consisted of a five-component solvent mixture containing acetone (450 ppmv), methyl ethyl ketone (12 ppmv), toluene (29 ppmv), ethylbenzene (10 ppmv), and p-xylene (10 ppmv). The two biofilters, identical in construction and packed with a polyurethane foam support medium, were inoculated with an enrichment culture derived from compost and then subjected to different loading conditions during the startup phase of operation. One biofilter was subjected to intermittent loading conditions with contaminants supplied only 8 hr/day to simulate loading conditions expected at facilities where manufacturing operations are discontinuous. The other biofilter was subjected to continuous contaminant loading during the initial start period, and then was switched to intermittent loading conditions. Experimental results demonstrate that both startup strategies can ultimately achieve high contaminant removal efficiency (>99%) at a target contaminant mass loading rate of 80.3 g m?3 hr?1 and an empty bed residence time of 59 sec. The biofilter subjected to intermittent loading conditions at startup, however, took considerably longer to reach high performance. In both biofilters, ketone components (acetone and methyl ethyl ketone) were more rapidly degraded than aromatic hydrocarbons (toluene, ethylbenzene, and p-xylene). Scanning electron microscopy and plate count data revealed that fungi, as well as bacteria, populated the biofilters.  相似文献   

3.
Abstract

An activated sludge aeration tank (40 × 40 × 300 cm, width × length × height) with a set of 2-mm orifice air spargers was used to treat gas-borne volatile organic compounds (VOCs; toluene, p-xylene, and dichloromethane) in air streams. The effects of liquid depth (Z), aeration intensity (G/A), the overall mass-transfer rate of oxygen in clean water (K L a O2 ), the Henry’s law constant of the tested VOC (H), and the influent gaseous VOC concentration (C 0) on the efficiency of removal of VOCs were examined and compared with a literature-cited model. Results show that the measured VOC removal efficiencies and those predicted by the model were comparable at a G/A of 3.75–11.25 m3/m2·hr and C 0 of ~1000–6000 mg/m3. Experimental data also indicated that the designed gas treatment reactor with K L a O2 = 5–15 hr?1 could achieve >85% removal of VOCs with H = 0.24–0.25 at an aerated liquid depth of 1 m and >95% removal of dichloromethane with H = 0.13 at a 1-m liquid depth.  相似文献   

4.
ABSTRACT

This paper presents results obtained from a performance study on the biotreatment of 1,3-butadiene in an air stream using a reactor that consisted of a two-stage, in-series biotrickling filter connected with a three-stage, in-series biofilter. Slags and pig manure-based media were used as packing materials for the biotrickling filter and the biofilter, respectively. Experimental results indicated that, for the biotrickling filter portion, the butadiene elimination capacities were below 5 g/m3/hr for loadings of less than 25 g/m3/hr, and the butadiene removal efficiency was only around 17%. For the biofilter portion, the elimination capacities ranged from 10 to 107 g/m3/hr for loadings of less than 148 g/m3/hr. The average butadiene removal efficiency was 75–84% for superficial gas velocities of 53–142 m/hr and a loading range of 10–120 g/m3/hr. The elimination capacity approached a maximum of 108 g/m3/hr for a loading of 150 g/m3/hr. The elimination rates of butadiene in both the biotrickling filter and biofilter were mass-transfer controlled for influent butadiene concentrations below about 600 ppm for superficial gas velocities of 29–142 m/hr. The elimination capacity was significantly higher in the biofilter than in the biotrickling filter. This discrepancy may be attributed to the higher mass-transfer coefficient and gas-solid interfacial area offered for transferring the gaseous butadiene in the biofilter.  相似文献   

5.
Abstract

In this study, a two-bed electrically heated regenerative thermal oxidizer (RTO) was used to test the thermal destruction and oxides of nitrogen (NOx) formation characteristics in burning airstreams that contain either N, N-dimethylformamide or dimethylformamide (DMF) mixed with methyl ethyl ketone (MEK). The RTO contained two 0.152 m × 0.14 m × 1 m (L × W times] H) beds, both packed with gravel particles with an average diameter of approximately 0.0111 m and a height of up to 1 m with a void fraction of 0.42 in the packed section. The thermal recovery efficiency (TRE) and the gas pressure drop over the beds were also studied. Experimental results reveal that, with a valve shifting time (t s) of 1.5 min, a superficial gas velocity (U g) of 0.39 m/sec (evaluated at an influent air temperature of around 30 °C) and preset maximum destruction temperatures (T S) of 750–950 °C, no NOx was present in the effluent gas from the RTO when it was loaded with DMF-free air. When only DMF was present in the influent air, the average destruction efficiencies exceeded 96%, and increased with the influent DMF concentration from 300 to 750 mg/N?m3. The “NOx-N formation/DMF-N destruction” mass ratios were in the range 0.76–1.05, and decreased as the influent DMF concentration increased within the experimental range. When both DMF and MEK were present in the influent gas, the NOx formation ratio was almost the same and the DMF destruction efficiency increased with the influent MEK/DMF ratio from 150/300 to 4500/300 (mg/mg) and in the preset temperature range. The NOx formation ratios were in the range 0.75–0.96. The TRE decreased as U g increased but was invariant with T s. The Ergun equation was found to suffice in the estimation of the pressure drop when the gas flowed over the packing beds.  相似文献   

6.
ABSTRACT

Bioconversion of dimethylformamide (DMF) was studied using two sets of three-stages-in-series biofilters, one packed with inoculated pig manure and the other with coconut fiber compost-based media. The two media were different in carbon/nitrogen (C/N) ratio and specific area. Tests were made to compare effects of different C/N ratio and specific area on the performance of the filter and on the variation of physicochemical properties of the media for treating DMF. DMF concentration in the influent air stream was in the range of 100 to 4,500 mg/m3. The gas retention time (GRT) in the first stages of both filters was 19 to 76 sec. The volumetric loading of DMF (L) to the first stages of both filters was 3 to 97 g DMF-N/m3.h (15.6 to 506 g DMF/m3.h). Results indicated that DMF was successively hydrolyzed to ammonia and nitrified to nitrite and nitrate or incorporated into microbial cell. Inlet portions of the media subjected to high DMF or ammonia loading varied greatly in pH due to insufficient buffering capacity. The middle portions of the media subjected to moderate ammonia loading were suitable for nitrification. The coconut fiber compost media with a higher initial C/ N ratio and porosity favored the elimination of DMF. For the media, DMF-N removal efficiencies of larger than 90% were obtained with L < 50 g DMF-N/m3.h and GRT > 23 sec. The pig manure compost media with a lower initial C/N ratio favored the nitrification reaction; its maximum capacity was 8.58 g NO3 --N/m3.h.  相似文献   

7.
Nie  Wen  Guo  Lidian  Yu  Hai  Liu  Qiang  Hua  Yun  Xue  Qianqian  Sun  Ning 《Environmental science and pollution research international》2022,29(49):74097-74117

During the excavation of high gas mine, gas and dust often exist at the same time. In order to ensure that the gas concentration remains within a safe range and minimize the risk of workers’ pneumoconiosis, we simulated the interaction mechanism of airflow, gas, and dust, explored the pollution law of gas and dust, and obtained the optimal purification distance (Lp) by the CFD method. The reliability of the numerical simulation was verified by field measurements. Firstly, the properties of the gas and dust affected the structure of the airflow field. At the same time, the change in the airflow field affected the concentration distributions of the gas and dust. During the diffusion process, some high-risk regions in which the gas or dust concentrations exceeded 0.80% or 200 mg/m3, respectively, were discovered. Moreover, we have found that the airflow velocity in the top region of the tunnel and at the intersection corner between the cutting face and tunnel wall was the main factor affecting the purification effects. When Lp = 5–8 m, the gas concentration remained below 0.50%. When Lp = 6 m, the dust concentration reached a minimum of 287.5 mg/m3. Therefore, the optimal purification distance was determined to be 6 m; in which case, the gas and dust concentrations decreased by 32.84% and 47.02%, respectively.

  相似文献   

8.

The influence of the presence of the so-called seed particles on the emission rate of Tris (1-chloroisopropyl) phosphate (TCIPP) from polyisocyanurate (PIR) insulation boards was investigated in this study. Two Field and Laboratory Emission Test cells (FLEC) were placed on the surface of the same PIR board and respectively supplied with clean air (reference FLEC) and air containing laboratory-generated soot particles (test FLEC). The behavior of the area-specific emission rates (SER A ) over a time period of 10 days was studied by measuring the total (gas?+?particles) concentrations of TCIPP at the exhaust of each FLEC. The estimated SER A of TCIPP from the PIR board at the quasi-static equilibrium were found to be 0.82 μg m?2 h?1 in the absence of seed particles, while the addition of soot particles led to SER A of 2.16 μg m?2 h?1. This indicates an increase of the SER A of TCIPP from the PIR board with a factor of 3 in the presence of soot particles. The TCIPP partition coefficient to soot particles at the quasi-static equilibrium was 0.022?±?0.012 m3 μg?1. In the next step, the influence of real-life particles on TCIPP emission rates was investigated by supplying the test FLEC with air from a professional kitchen where mainly frying and baking activities took place. Similar to the reference FLEC outcomes, SER A was also found to increase in this real-life experiment over a time period of 20 days by a factor 3 in the presence of particles generated during cooking activities. The median value of estimated particle–gas coefficient for this test was 0.062?±?0.037 m3 μg?1.

  相似文献   

9.
Biofiltration is a method of biological treatment belonging to cleaner technologies because it does not produce secondary air pollutants, but helps to integrate natural processes in microorganisms for decomposing volatile air pollutants and solving odor problems. The birch wood biochar has been chosen as a principal material for biofilter bed medium. The experiments were conducted at the temperatures of 24, 28, and 32 °C, while the concentration of acetone, xylene, and ammonium reached 300 mg/m3 and the flow rate was 100 m3/hr. Before passing through the stage of the experimental research into the packing material inside biofilters, microorganisms were introduced. Four strains of microorganisms (including micromycetes Aspergillus versicolor BF-4 and Cladosporium herbarum 7KA, as well as yeast Exophiala sp. BF1 and bacterium Bacillus subtilis B20) were selected. At the inlet loading rate of 120 g/m3/hr, the highest elimination capacity of xylene in the biochar-based biofilter with the inoculated medium was 103 g/m3/hr, whereas that of ammonia was 102 g/m3/hr and that of acetone was 97 g/m3/hr, respectively. The maximum removal efficiency reached 86%, 85%, and 81%, respectively. The temperature condition (though characterized by some rapid changes) can hardly have a considerable influence on the biological effect (i.e., microbiological activity) of biofiltration; however, it can cause the changes in physical properties (e.g., solubility) of the investigated compounds.

Implications: The birch biochar can be successfully used in the biofiltration system for propagation of inoculated microorganisms, biodegrading acetone, xylene, and ammonia. At the inlet loading rate of 120 g/m3/hr, the highest elimination capacity of xylene was 103 g/m3/hr, that of ammonia was 102 g/m3/hr, and that of acetone was 97 g/m3/hr, respectively. The morphological structure of biochar can be affected by the aggressive air contaminants, causing the change in the medium specific surface area, which is one of the factors controlling the biofilter performance. Although biological effects in biofiltration are typically considered to be more important than physical effects, the former may be more important for compounds with high Henry’s Law coefficient values, and the biofilter design should thus provide conditions for better compound absorption.  相似文献   


10.
Formaldehyde (CH2O) emissions from particleboard underlayment have been measured in 0.17 and 0.2 m3 chambers at separate laboratories to test the comparability of small scale environmental chamber measurements under different ventilation and product loading conditions. Absolute CH2O calibration was established through intermethod comparison of different monitoring techniques against a CH2O generation apparatus. Interlaboratory precision was enhanced via co-calibration of each laboratory’s CH2O colorimetric analyzer against the same blank and bi-level generation source at the beginning and end of the study. The results show excellent intermethod and interlaboratory agreement in both the CH2O calibration and particleboard emissions testing. The CH2O emission rates of the test specimens demonstrate a Fick’s Law dependence on CH2O vapor concentration. Measured CH2O concentrations are described by a single-compartment, single emitter model, and are inversely proportional to the ratio [N/L (m/h)] of the air exchange rate [N(h-1)] and product loading [L(m-1)]. Comparison tests at varying N and L, but uniform N/L were performed; similar CH2O concentrations were measured for N and L levels selected from an indoor compartment model, and for fivefold larger N and L values, which are more convenient for small-scale chamber testing.  相似文献   

11.
Abstract

Four different biofilter packing materials (two porous ceramics, perlite, and open pore polyurethane foam) were compared for the removal of toluene vapors. The focus was on evaluating performance at relatively short gas retention time (13.5 and 27 sec). The reactors were initially operated as biotrickling filters with continuous feeding and trickling of a nutrient solution. After significant plugging of the biotrickling filter beds with biomass was observed, the operation mode was switched to biofiltration with only periodic supply of mineral nutrients. This resulted in stable conditions, which allowed detailed investigations over >6 months. The reactor packed with cattle bone Porcelite (CBP), a ceramic material containing some macronutrients and micronutrients, exhibited the highest performance. The critical load (i.e., load at which 95% removal occurred) was 29 g m?3 hr?1 at a gas retention time of 13.5 sec and 66 g m?3 hr?1 at a gas retention time of 27 sec. After the long-term experiment, the packing materials were taken from the reactors and examined. The reactors were divided into three sections, top, middle, and bottom, to determine whether spatial differentiation of biomass occurred. The assays included a double-staining technique to count total and live microorganisms and determination of moisture, protein, and dry weight contents. Microbial community analysis was also conducted by denaturing gradient gel electrophoresis. The results showed that most reactors had a significant fraction of inactive biomass. Comparatively, the CBP biofilter held significantly higher densities of active biomass, which may be the reason for the higher toluene removal performance. The analyses suggest that favorable material properties and the nutrients slowly released by the CBP provided better environmental conditions for the process culture.  相似文献   

12.
Uptake of aromatic hydrocarbons (AH) by ice crystals during vapor deposit growth was investigated in a walk-in cold chamber at temperatures of 242, 251, and 260 K, respectively. Ice crystals were grown from ambient air in the presence of gaseous AH namely: benzene (C6H6), toluene (methylbenzene, C7H8), the C8H10 isomers ethylbenzene, o-, m-, p-xylene (dimethylbenzenes), the C9H12 isomers n-propylbenzene, 4-ethyltoluene, 1,3,5-trimethylbenzene (1,3,5-TMB), 1,2,4-trimethylbenzene (1,2,4-TMB), 1,2,3-trimethylbenzene (1,2,3-TMB), and the C10H14 compound tert.-butylbenzene. Gas-phase concentrations calculated at 295 K were 10.3–20.8 μg m−3. Uptake of AH was detected by analyzing vapor deposited ice with a very sensitive method composed of solid-phase micro-extraction (SPME), followed by gas chromatography/mass spectrometry (GC/MS).Ice crystal size was lower than 1 cm. At water vapor extents of 5.8, 6.0 and 8.1 g m−3, ice crystal shape changed with decreasing temperatures from a column at a temperature of 260 K, to a plate at 251 K, and to a dendrite at 242 K. Experimentally observed ice growth rates were between 3.3 and 13.3×10−3 g s−1 m−2 and decreased at lower temperatures and lower value of water vapor concentration. Predicted growth rates were mostly slightly higher.Benzene, toluene, ethylbenzene, and xylenes (BTEX) were not detected in ice above their detection limits (DLs) of 25 pg gice−1 (toluene, ethylbenzene, xylenes) and 125 pg gice−1 (benzene) over the entire temperature range. Median concentrations of n-propylbenzene, 4-ethyltoluene, 1,3,5-TMB, tert.-butylbenzene, 1,2,4-TMB, and 1,2,3-TMB were between 4 and 176 pg gice−1 at gas concentrations of 10.3–10.7 μg m−3 calculated at 295 K. Uptake coefficients (K) defined as the product of concentration of AH in ice and density of ice related to the product of their concentration in the gas phase and ice mass varied between 0.40 and 10.23. K increased with decreasing temperatures. Values of Gibbs energy (ΔG) were between −4.5 and 2.4 kJ mol−1 and decreased as temperatures were lowered. From the uptake experiments, the uptake enthalpy (ΔH) could be determined between −70.6 and −33.9 kJ mol−1. The uptake entropy (ΔS) was between −281.3 and −126.8 J mol−1 K−1. Values of ΔH and ΔS were rather similar for 4-ethlytoluene, 1,3,5-TMB and tert.-butylbenzene, whereas 1,2,3-TMB showed much higher values.  相似文献   

13.
We investigated the effect of leaf age on the response of net photosynthesis (A), stomatal conductance (gwv), foliar injury, and leaf nitrogen concentration (NL) to tropospheric ozone (O3) on Prunus serotina seedlings grown in open-plots (AA) and open-top chambers, supplied with either carbon-filtered or non-filtered air. We found significant variation in A, gwv, foliar injury, and NL (P < 0.05) among O3 treatments. Seedlings in AA showed the highest A and gwv due to relatively low vapor pressure deficit (VPD). Older leaves showed significantly lower A, gwv, NL, and higher foliar injury (P < 0.001) than younger leaves. Leaf age affected the response of A, gwv, and foliar injury to O3. Both VPD and NL had a strong influence on leaf gas exchange. Foliar O3-induced injury appeared when cumulative O3 uptake reached 8-12 mmol m−2, depending on soil water availability. The mechanistic assessment of O3-induced injury is a valuable approach for a biologically relevant O3 risk assessment for forest trees.  相似文献   

14.
The octanol–air partition coefficients (KOA) for PBB15, PBB26, PBB31, PBB49, PBB103 and PBB153 were determined as a function of temperature using a gas chromatographic retention time technique with 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (p,p′-DDT) as a reference substance. The internal energies of phase change from octanol to air (ΔOAU) were calculated for the six compounds and were in the range from 74 to 116 kJ mol−1. Simple regression equations of log KOA versus relative retention times (RRTs) on gas chromatography (GC), and log KOA versus molecular connectivity indexes (MCI) were obtained, for which the correlation coefficients (r2) were greater than 0.985 at 283.15 K and 298.15 K. Thus the KOA values of the remaining PBBs can be predicted by using their RRTs and MCI according to these relationships.  相似文献   

15.
A kinetic mechanism to predict secondary organic aerosol (SOA) formation from the photo-oxidation of toluene was developed. Aerosol phase chemistry that includes nucleation, gas–particle partitioning and particle-phase reactions as well as the gas-phase chemistry of toluene and its degradation products were represented. The mechanism was evaluated against experimental data obtained from the University of North Carolina (UNC) 270 m3 dual outdoor aerosol smog chamber facility. The model adequately simulates the decay of toluene, the nitric oxide (NO) to nitrogen dioxide (NO2) conversion and ozone formation. It also provides a reasonable prediction of SOA production under different conditions that range from 15 to 300 μg m−3. Speciation of simulated aerosol material shows that up to 70% of the aerosol mass comes from oligomers and polymers depending on initial reactant concentrations. The dominant particle-phase species predicted by the mechanism are glyoxal oligomers, ketene oligomers from the photolysis of the toluene OH reaction product 2-methyl-2,4-hexadienedial, organic nitrates, methyl nitro-phenol analogues, C7 organic peroxides, acylperoxy nitrates and for the low-concentration experiments, unsaturated hydroxy nitro acids.  相似文献   

16.
本研究基于上向流曝气生物滤池污水处理系统,研究了该工艺不同气水比、不同水力停留时间、不同滤料高度层、反冲洗强度对污染物的处理效能的影响。结果表明,气水比为4∶1、水力停留时间2 h时,BAF出水中COD、NH+4-N和SS指标达到最佳;沿程污染物去除率随着滤料层高度的增加逐渐增大,当滤料高度大于1.6 m时趋于稳定,COD、NH+4-N和SS平均去除率分别达到80%、99%和80.3%。建议曝气生物滤池的反冲洗推荐程序为:先气冲(18 L/(m2·s)),单独气洗2~3 min;再气冲(18 L/(m2·s))加水冲(5 L/(m2·s)),联合反冲洗3~5 min;最后水冲(5 L/(m2·s)),漂洗5~8 min。  相似文献   

17.
Abstract

Airborne fine particles of PM2.5-10 and PM2.5 in Bangkok, Nonthaburi, and Ayutthaya were measured from December 22, 1998, to March 26, 1999, and from November 30, 1999, to December 2, 1999. Almost all the PM10 values in the high-polluted (H) area exceeded the Thailand National Ambient Air Quality Standards (NAAQS) of 120 μg/m3. The low-polluted (L) area showed low PM10 (34–74 μg/m3 in the daytime and 54–89 μg/m3 at night). PM2.5 in the H area varied between 82 and 143 μg/m3 in the daytime and between 45 and 146 μg/m3 at night. In the L area, PM2.5 was quite low both day and night and varied between 24 and 54 μg/m3, lower than the U.S. Environmental Protection Agency (EPA) standard (65 μg/m3). The personal exposure results showed a significantly higher proportion of PM2.5 to PM10 in the H area than in the L area (H = 0.80 ± 0.08 and L = 0.65 ± 0.04).

Roadside PM10 was measured simultaneously with the Thailand Pollution Control Department (PCD) monitoring station at the same site and at the intersections where police work. The result from dual simultaneous measurements of PM10 showed a good correlation (correlation coefficient: r = 0.93); however, PM levels near the roadside at the intersections were higher than the concentrations at the monitoring station. The relationship between ambient PM level and actual personal exposures was examined. Correlation coefficients between the general ambient outdoors and personal exposure levels were 0.92 for both PM2.5 and PM10.

Bangkok air quality data for 1997–2000, including 24-hr average PM10, NO2, SO2, and O3 from eight PCD monitoring stations, were analyzed and validated. The annual arithmetic mean PM10 of the PCD data at the roadside monitoring stations for the last 3 years decreased from 130 to 73 μg/m3, whereas the corresponding levels at the general monitoring stations decreased from 90 to 49 μg/m3. The proportion of days when the level of the 24-hr average PM10 exceeded the NAAQS was between 13 and 26% at roadside stations. PCD data showed PM10 was well correlated with NO2 but not with SO2, suggesting that automobile exhaust is the main source of the particulate air pollution. The results obtained from the simultaneous measurement of PM2.5 and PM10 indicate the potential environmental health hazard of fine particles. In conclusion, Bangkok traffic police were exposed to high levels of automobile-derived particulate air pollution.  相似文献   

18.
This paper reports results of studies using a biotrickling filter with blast-furnace slag packings (sizes = 2-4 cm and specific surface area = 120 m2/m3) for treatment of ethylether in air stream. Effects of volumetric loading, superficial gas velocity, empty bed gas retention time, recirculation liquid flow rate, and biofilm renewal on the ethylether removal efficiency and elimination capacity were tested. Results indicate that ethylether removal efficieincies of more than 95% were obtained with an empty bed retention time (EBRT) of 113 sec and loadings of lower than 70 g/m3/hr. At an EBRT of 57 sec, removal efficiencies of more than 90% could only be obtained with loadings of lower than 35 g/m3/hr. The maximum elimination capacities were 71 and 45 g/m3/hr for EBRT = 113 and 57 sec, respectively. The maximum ethylether elimination capacities were 71 and 96 g/m3/hr, respectively, before and after the renewal at EBRT = 113 sec. With an EBRT of 113 sec and a loading of lower than 38 g/m3/hr, the removal efficiency was nearly independent of the superficial liquid recirculation velocity in the range of 3.6 to 9.6 m3/m2/hr. From data regression, simplified masstransfer limited, and reaction- and mass-transfer limited models correlating the contaminant concentration and the packing height were proposed and verified. The former model is applicable for cases of low influent contaminant concentrations or loadings, and the latter is applicable for cases of higher ones. Finally, CO2 conversion efficiencies of approximately 90% for the influent ethylether were obtained. The value is comparable to data reported from other related studies.  相似文献   

19.
A laboratory study was conducted to examine formation of secondary organic aerosols. A smog chamber system was developed for studying gas–aerosol interactions in a dynamic flow reactor. These experiments were conducted to investigate the fate of gas and aerosol phase compounds generated from hydrocarbon–nitrogen oxide (HC/NOx) mixtures irradiated in the presence of fine (<2.5 μm) particulate matter. The goal was to determine to what extent photochemical oxidation products of aromatic hydrocarbons contribute to secondary organic aerosol formation through uptake on pre-existing inorganic aerosols in the absence of liquid water films. Irradiations were conducted with toluene, p-xylene, and 1,3,5-trimethylbenzene in the presence of NOx and ammonium sulfate aerosol, with propylene added to enhance the production of radicals in the system. The secondary organic aerosol yields were determined by dividing the mass concentration of organic fraction of the aerosol collected on quartz filters by the mass concentration of the aromatic hydrocarbon removed by reaction. The mass concentration of the organic fraction was obtained by multiplying the measured organic carbon concentration by 2.0, a correction factor that takes into account the presence of hydrogen, nitrogen, and oxygen atoms in the organic species. The mass concentrations of ammonium, nitrate, and sulfate concentrations as well as the total mass of the aerosols were measured. A reasonable mass balance was found for each of the aerosols. The largest secondary organic aerosol yield of 1.59±0.40% was found for toluene at an organic aerosol concentration of 8.2 μm−3, followed by 1.09±0.27% for p-xylene at 6.4 μg m−3, and 0.41±0.10% for 1,3,5-trimethylbenzene at 2.0 μg m−3. In general, these results agree with those reported by Odum et al. and appear to be consistent with the gas–aerosol partitioning theory developed by Pankow. The presence of organic in the aerosol did not affect significantly the hygroscopic properties of the aerosol.  相似文献   

20.
The main research objective of this study is to enhance the removal of recalcitrant compounds that are not readily bioavailable due to limiting mass transfer rate between the liquid and gas phases. Four trickle-bed air biofilters (TBABs), loaded with pelletized diatomaceous earth support media, were run at an empty bed residence time (EBRT) of 120 sec. After an acclimation period at constant loading rate (LR) of n-hexane (13.2 g m?3 hr?1) and intermittent feeding of methanol, n-hexane influent LR was then increased in step-wise fashion to 47.7 g m?3 hr?1 for biofilters receiving acidic nutrients (pH 4), and to 36.3 g m?3 hr?1 for biofilters receiving nutrient at pH 7. The results have shown that for TBABs receiving nutrient at pH 4, greater elimination capacities were obtained as compared to TBABs working at pH 7. n-Hexane removal efficiency of more than 84% at LR up to 47.7 g m?3 hr?1 was obtained for pH 4 nutrient-fed biofilters, while for biofilters with nutrients fed at pH 7, the removal efficiency did not exceed 64% for n-hexane LR of 36.3 g m?3 hr?1. The microbial analysis revealed that no fungal community was detected in TBABs run at neutral pH. The fungi communities that were initially acclimating TBABs run at pH 4, namely, Aspergillus niger and Fusarium solani, were not detected at the end of the experiment, while Gibberella moniliformis (Fusarium verticillioides) genus became the dominant species. Gibberella moniliformis (Fusarium verticillioides) was present along all the biofilter media and sustained very high n-hexane elimination at steady-state condition.
Implications:With growing apprehension about sustainability and environmental protection, with limited resources available, and with the passage of the 1990 Amendments to the Clean Air Act, there is more need for using air pollution control techniques that are sound economically and proven environmentally friendly. Biofiltration systems, namely, trickle-bed air biofilters, were for decades recognized as efficient in treating air pollutants. Thus, the application of this technique over a wide industrial spectrum would certainly contribute to reduction of hazardous gas emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号