首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent pilot-scale testing cosponsored by the Electric Power Research Institute (EPRI) and the Gas Research Institute (GRI) indicates that reburning can reduce NOx emissions by 40-60 percent in cyclone boilers when pulverized coal (PC), oil, or natural gas is used as the reburn fuel. The pilot tests, performed at the Babcock and Wilcox (B&W) Alliance Research Center using a six million Btu/h cyclone-fired pilot-scale furnace, were designed to confirm and expand upon the conclusions of an earlier B&W feasibility study. That study predicted reburning could reduce NOx by 50 percent in most cyclone boilers now in operation.  相似文献   

2.
Abstract

Recent regulations have required reductions in emissions of nitrogen oxides (NOx) from electric utility boilers. To comply with these regulatory requirements, it is increasingly important to implement state-of-the-art NOx control technologies on coal-fired utility boilers. This paper reviews NOx control options for these boilers. It discusses the established commercial primary and secondary control technologies and examines what is being done to use them more effectively. Furthermore, the paper discusses recent developments in NOx controls. The popular primary control technologies in use in the United States are low-NOx burners and overfire air. Data reflect that average NOx reductions for specific primary controls have ranged from 35% to 63% from 1995 emissions levels. The secondary NOx control technologies applied on U.S. coal-fired utility boilers include reburning, selective noncatalytic reduction (SNCR), and selective catalytic reduction (SCR). Thirty-six U.S. coal-fired utility boilers have installed SNCR, and reported NOx reductions achieved at these applications ranged from 15% to 66%. Recently, SCR has been installed at >150 U.S. coal-fired utility boilers. Data on the performance of 20 SCR systems operating in the United States with low-NOx emissions reflect that in 2003, these units achieved NOx emission rates between 0.04 and 0.07 lb/106 Btu.  相似文献   

3.
4.
The importance of fuels combustion was brought into sharp focus recently in a report on air pollution to the United States Senate in which it was stated, “These processes replace usable air with potentially harmful pollutants, and the capability of the atmosphere to disperse and dilute these pollutants—especially in urban areas where people, vehicles, and industries congregate in even greater numbers—is strictly limited.”1 The overwhelming burden of emissions of sulfur compounds, as well as nitrogen compounds and particulate matter in the U. S. today, originates from the burning of coal and fuel oil in stationary combustion sources. Thus, combustion has a large influence on the quality of the atmosphere in most urban areas. The air pollution effects of these contaminants are many and varied and all are objectionable and undesirable. Without a doubt, the most serious air pollution problem in the nation today is that created by the combustion of fossil fuels.  相似文献   

5.
This paper presents a detailed review and critical evaluation of current technologies as applied to fine particulate emissions from coal-fired utility boilers. Quantitative assessments of the capabilities of both conventional and novel air pollution control devices to meet three different performance standards—the present New Source Performance Standard (NSPS) of 0.03 Ib particulate/MBtu heat input, and standards of 0.05 and 0.1 Ib particulate/MBtu are included. Each of the three conventional devices (electrostatic precipitator, fabric filter baghouse, and wet scrubber) is compared and rated with respect to eight different performance categories. This information can be used to determine the relative effectiveness and attractiveness of these three control devices. Novel devices are compared and rated in the same manner, the conclusions from which may provide the research administrator with a guide for the selection of those novel devices which offer the best potential for commercialization.

The major conclusions of the investigation are: (1) The use of conventional scrubbers for fine particulate control on coal-fired utility boilers may no longer be feasible at the new NSPS of 0.03 Ib/MBtu. (2) At the old NSPS (0.1 Ib/MBtu) conventional electrostatic precipitators and baghouses were often competitive. For the new stricter standard, however, the baghouse generally is the more attractive alternative. (3) Novel devices appear to offer almost no hope for this particular application (at a commercial level) between now and 1985 and only little hope before 1990.  相似文献   

6.
The IAPCS model, developed by U.S. EPA’s Air and Energy Engineering Research Laboratory and made available to the public through the National Technical Information Service, can be used by utility companies, architectural and engineering companies, and regulatory agencies at all levels of government to evaluate commercially available technologies for control of SO2, NOx, and particulate matter emissions from coal-fired utility boilers with respect to performance and cost. The model is considered to be a useful tool to compare alternative control strategies to be used by utilities to comply with the requirements of the CAA, and to evaluate the sensitivity of control costs with respect to many of the significant variables affecting costs.

To illustrate the use of the model for site-specific studies, the authors used the model to estimate control costs for SO2 and NOx control at Detroit Edison’s Monroe plant and two hypothetical plants under consideration and at three plants operated by New York State Electric and Gas Corporation. The economic and technical assumptions used to drive the model were those proposed by the utilities if cited, and if not cited, the model default values were used. The economic format and methodologies for costs cited in the Electric Power Research Institute’s Technical Assessment Guide are used in the IAPCS model. Depending on the specific conditions and assumptions for the cases evaluated, SO2 control costs ranged from $417 to $3,159 per ton of SO2 removed, and NOx control costs ranged from $461 to $3,537 per ton of NOx removed or reduced.  相似文献   

7.
ABSTRACT

Under the Clean Air Act Amendments of 1990, the U.S. Environmental Protection Agency (EPA) determined that regulation of mercury emissions from coal-fired power plants is appropriate and necessary. To aid in this determination, preliminary estimates of the performance and cost of powdered activated carbon (PAC) injection-based mercury control technologies were developed. This paper presents these estimates and develops projections of costs for future applications.

Cost estimates were developed using PAC to achieve a minimum of 80% mercury removal at plants using electrostatic precipitators and a minimum of 90% removal at plants using fabric filters. These estimates ranged from 0.305 to 3.783 mills/kWh. However, the higher costs were associated with a minority of plants using hot-side electrostatic precipitators (HESPs). If these costs are excluded, the estimates range from 0.305 to 1.915 mills/kWh. Cost projections developed using a composite lime-PAC sorbent for mercury removal ranged from 0.183 to 2.270 mills/kWh, with the higher costs being associated with a minority of plants that used HESPs.  相似文献   

8.
ABSTRACT

Tire-derived fuel (TDF) was tested in a small-scale (44 kW or 150,000 Btu/hr) combustor to determine its feasibility as a fuel for use in reburning for control of nitrogen oxide (NO). TDF was gravity-fed into upward flowing combustion gases from a primary natural gas flame doped with ammonia to simulate a high NO combustion process. Emissions of NO, oxygen, carbon dioxide, carbon monoxide, and particulate matter were measured. The tests varied the nominal primary NO level from 600 to 1,200 ppm and the primary stoichiometry from 1.1 to 1.2, and used both natural gas and TDF as reburn fuels. The reburn injection rate was varied to achieve 8–20% of the total heat input from the reburn fuel. NO emissions reductions ranged between 20 and 63% when using TDF, depending upon the rate of TDF injection, primary NO, and primary stoichiometry. NO emission reductions when using natural gas as the reburn fuel were consistently higher than those when using TDF. While additional work remains to optimize the process and evaluate costs, TDF has been shown to have the potential to be a technically viable reburning fuel.  相似文献   

9.
龚文兵 《污染防治技术》2003,16(Z1):169-170
介绍了旋流喷雾花岗岩除尘装置的结构性能和特点,及其具有在中小锅炉上使用的广阔前景.  相似文献   

10.
This paper documents operation of reverse air fabric filters on Baltimore Gas and Electric’s C. P. Crane Units 1 and 2 cyclone boilers. Beginning immediately after startup, tubesheet pressure drop increased to high levels. Following stabilization with sonic horns and spare reverse air fans, an investigation was mounted. Diagnostic tools included both laboratory and slipstream pilot baghouses to determine cause and evaluate candidate methods of reducing pressure drop. Fundamental ash properties determined through laboratory pilot testing were in conformance with predictions. Alternate fabrics and coatings did not eliminate the problem. The root cause of the problem was that the amount of variable cake, i.e. that ash removed during cleaning, plays an important role in the dynamics of bag cleaning. These dynamics were absent in the C. P. Crane filters. Confirmation was obtained in the full scale baghouse through modification of the variable cake weight using ash reinfection. Finally, offsetting pressure drop and power consumption reductions have been obtained to achieve satisfactory operation of the baghouses.  相似文献   

11.
12.
In September 1973, PEDCo-Environmental Specialists was awarded a study by the U. S. Environmental Protection Agency to evaluate the cost of controlling sulfur dioxide and particulate emissions from selected utility boilers. Since that time, PEDCo has conducted additional studies for the U. S. EPA, state and local control agencies, and private industry on the costs of control technology and the reliability of sulfur dioxide control systems. Current work includes determining the feasibility and environmental impact of converting selected utility boilers to coal-firing to conserve the nation’s gas and oil supplies. This paper presents an overview of the status and costs of flue gas desulfurization (FGD) systems, and the factors relating to the variability in costs. It is based in part upon work performed in developing detailed FGD cost estimating manuals for EPA.  相似文献   

13.
为实现低C/N比条件下曝气生物滤池的深度脱氮目的,同时为低碳源、低能耗、高效率的污水氮素去除提供技术理论参考,实验研究了低C/N比人工模拟污水曝气生物滤池中各种形式氮素的动态变化和去除效果。结果表明,在整个运行期间当曝气量调节为2 mL/min时,此时系统中溶解氧变化范围为0.49~1.02 mg/L,亚硝酸浓度在2.89~7.48 mg/L之间,该C/N比污水中亚硝酸盐的积累率可达50%以上。并且在该运行条件下氮素去除率保持在60%以上,可以实现较低C/N比条件下污染水体中氮素的去除。因此,该研究可为低C/N比污水短程深度脱氮创造条件,为C/N比较低的城市尾水深度脱氮提供依据。  相似文献   

14.
Gaseous wastes and particulate emissions are produced in the process of burning coal to produce electrical energy. In attempting to control these gaseous wastes, changes in the operation efficiency of boilers and secondary equipment are likely to result, and in addition liquid and solid waste streams are produced. The interrelationships among the various forms of wastes and the effects of air quality control on process efficiency are often overlooked in studies of environmental quality management.

The study was undertaken to evaluate the technical alternatives for handling gaseous and particulate emissions from coal-fired boilers and to determine the feasibility of meeting several standards simultaneously. The gaseous emissions of major importance in the combustion of coal are parti culates, oxides of sulfur, and oxides of nitrogen. Particulates can be controlled by a tradeoff among further preparation at the mine (for additional ash removal), type of boiler, use of dust control equipment and high stacks for dispersion of residual emissions, if ambient air standards are considered. Oxides of sulfur reduction depends currently on fuel substitution, limestone additives in the boiler and some form of contact process such as wet scrubbing, or the use of high stacks. Oxides of nitrogen control in coal fired boilers is restricted to small reductions by either changes in boiler operation, such as lower excess air levels, adsorption during wet scrubbing or by dispersion from high stacks.  相似文献   

15.
Increasing application of nitrogen fertilizers in the irrigated lands of the studied area is likely to create a blanket non-point source of nitrate. Groundwater contamination from fertilizers, in this context, has been reported as derived from N03, K+ and 180 composition of groundwater. The data suggest both point and non-point sources of groundwater pollution. Thirty-three percent of the groundwater samples showed nitrate contents exceeding the general acceptable limit of 20 p.p.m. and 15% of the samples crossed the maximum permissible limit of 45 p.p.m. High nitrate levels are associated with high δ18O values, clearly indicating that significant quantities of evaporated (isotopically enriched) irrigation water infiltrate along with fertilizer nitrate to the groundwater system. Different δ18O---N03 trends suggest isotopically distinct, non-point source origins which vary spatially and temporally, due to different degrees of evaporation/recharge and amounts of fertilizer applied. A scatter diagram of N03 vs K+ suggests a common source of these ions when the concentration is less than 40 p.p.m. The investigation indicates that a combination of isotope (180) and hydrochemical data can clearly characterize the impact of fertilizer on groundwater. Application of high nitrate, high potassium groundwater irrigation can minimize the requirement for inorganic fertilizers and bring down the cost of cultivation considerably, through appropriate management of fertilizer and water and modifications in agronomic practices and strategies on crops grown. Such practices will help protect groundwater from further degradation.  相似文献   

16.
More than 325 representatives of utilities, research organizations, vendors, engineering service firms, universities and regulatory agencies attended the EPRI workshop on NOx Controls for Utility Boilers in Cambridge, Massachusetts, July 7–9, 1992. The workshop featured more than 30 presentations on regulatory developments, low-NOx burner (LNB) retrofits for coal?, oil? and gas-fired units, overfire air and reburning retrofits, postcombustion NOx controls and LNB procurement issues.  相似文献   

17.

Fungi are dominant ecological participants in the forest ecosystems, which play a major role in recycling organic matter and channeling nutrients across trophic levels. Fungal populations are shaped by plant communities and environmental parameters, and in turn, fungal communities also impact the forest ecosystem through intrinsic participation of different fungal guilds. Mycorrhizal fungi result in conservation and stability of forest ecosystem, while pathogenic fungi can bring change in forest ecosystem, by replacing the dominant plant species with new or exotic plant species. Saprotrophic fungi, being ecological regulators in the forest ecosystem, convert dead tree logs into reusable constituents and complete the ecological cycles of nitrogen and carbon. However, fungal communities have not been studied in-depth with respect to functional, spatiotemporal, or environmental parameters. Previously, fungal diversity and its role in shaping the forest ecosystem were studied by traditional and laborious cultural methods, which were unable to achieve real-time results and draw a conclusive picture of fungal communities. This review highlights the latest advances in biological methods such as next-generation sequencing and meta’omics for observing fungal diversity in the forest ecosystem, the role of different fungal groups in shaping forest ecosystem, forest productivity, and nutrient cycling at global scales.

  相似文献   

18.
在模拟原沉积物弱碱性及含水率的条件下,分别研究了2种高级氧化反应体系:H2O2辅助加入催化剂FeSO4或Fe2(SO4)3及Na2S2O8辅助加入催化剂FeSO4或CaO及热催化对污染滩涂沉积物中石油烃的去除效果及其影响因素。同时,还模拟研究了长江口潮汐作用对滩涂石油污染修复效果的影响。研究表明:H2O2与样品的质量投加比为0.05,FeSO4和Fe2(SO4)3与H2O2摩尔投加比均为0.1时,石油烃去除率分别达到48.9%和57.4%;Na2S2O8本身氧化能力较强,单一Na2S2O8与样品的质量比大于0.01时,石油烃去除率达到46%以上;而在Na2S2O8最佳投加比条件下,FeSO4、CaO与Na2S2O8摩尔比为0.05和0.9时,去除率分别达到60.4%和51.3%以上,同时最佳催化温度为50 ℃。潮汐作用对芬顿试剂氧化修复滩涂石油污染具有促进作用,而高浓度污染滩涂区域建议采用阻隔修复。  相似文献   

19.
20.
Batch experiments were conducted with different reaction systems to investigate how the treatment efficiency of integrated microbial-Fe0 processes is affected by the amount of Fe0 added. Abiotic experiments with hexavalent chromium and carbon tetrachloride mixtures corroborated that different pollutants could compete for reactive sites on the iron surface, which would hinder specific degradation rates when the available Fe0 surface area is relatively small (e.g., 11 m(2) l(-1)). In such cases, reductive precipitation of chromium could occlude reactive sites and significantly inhibit removal efficiency. Microbial participation in the cleanup process was also influenced by the amount of Fe0 added. Increasing the Fe0 dose (and thus the available surface area) had a stimulatory effect possibly due to a higher production of cathodic H2, which can be used as electron donor for reductive biotransformation of many pollutants. However, high Fe0 doses had an inhibitory effect due to a corrosion-induced increase in pH beyond the optimum range of the bacteria. This suggest that there may be a system-specific, optimum quantity of Fe0 that satisfies availability requirements to preclude contaminant competition for reactive sites and biological requirements for H2 production while minimizing inhibitory increases in pH. Results also confirmed extensive RDX mineralization in bioaugmented (but not in abiotic) Fe0 systems, and support the notion that permeable reactive iron barriers performance might be enhanced by the participation of some microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号