首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The yields of eleven commercially grown soybean cultivars were compared in ethylenediurea (EDU)-treated and non-treated field plots in New Brunswick, New Jersey, over a 4 year period. No statistically significant difference between treatments was found for any cultivar; the inference being ambient ozone did not adversely affect soybean yield. Succeeding field experiments supported this interpretation of the data. 'Sanilac' white bean, a legume known to be more sensitive to O(3) than soybean, was found to produce a significantly greater yield in EDU-treated than non-treated plots, unlike a companion planting of 'Williams 82' soybean which did not exhibit the differential response. The results indicated that the specific EDU protocol used in the soybean experiments is capable of detecting an ozone effect in a legume. Moreover, in a concurrent greenhouse experiment the yield of EDU-treated Sanilac white bean was not significantly different from non-treated plants in the absence of ozone pollution. In a dose-response field experiment during a year of unusually high O(3) pollution, yield of 'Williams 82' increased slightly with each EDU increment up to 500 ppm and decreased at 1000 ppm. The difference between non-treated and EDU-treated plants, however, was not statistically significant. There was no evidence to suggest that the EDU concentration (500 ppm) used in previous soybean experiments reduced seed yield. Fortuitously, the tolerance of commercially-grown soybean to ambient ozone is at least partially conditioned by the practce of not irrigating the crop. The New Jersey results are in agreement with reports from Maryland, Georgia and Tennessee in which an adverse impact of ambient O(3) was not found in soybean, but contrary to a current predictive model.  相似文献   

2.
A single 12 h ozone exposure peaking at 0.20 ppm proved phytotoxic to greenhouse-grown 'Cutler 71' soybeans at each growth stage tested from V5 to R6. Visible injury occurred within 40 h on the unifoliodate leaves and middle-aged and older trifoliolates while the younger leaves were free from toxicity symptoms. In some instances visible injury was accompanied by a decrease in chlorophyll and an increase in leaf diffusive resistance. Although nitrogen fixation was not significantly altered except at early pod formation (R3), and nitrate reductase activity was significantly reduced only if the ozone exposure occurred at the time of maximal enzyme activity (V5), nitrogen content of the leaves was reduced by ozone treatment. Shoot dry weight was not affected 40 h after ozone treatment, but root dry weight was significantly reduced. Plants grown with supplemental NO(3)(-) were more sensitive to ozone than those dependent on fixed nitrogen. At plant maturity, there was no evidence of an ozone effect on shoot, root, or seed dry weight, NO(3)(-) -grown plants showed a significant increase in growth and yield over N(2)(-) plants; but no ozone effect was observed, despite the increased foliar sensitivity. Multiple ozone exposures at growth stages V3, R1 and R3 exacerbated the effects noted with a single episode and also reduced nitrogenase activity (reflected in specific and total nodule activity) and shoot and root dry weight. At plant maturity, there was again no evidence of a significant effect of multiple ozone treatment on shoot dry weight or seed yield although root weight remained low. The results would tend to support the hypothesis that older leaves of soybean do not make a significant contribution to seed yield. Although they may be injured by ozone during the reproductive phases of growth, seed yield may not be affected if the younger O(3)-tolerant leaves remain functional.  相似文献   

3.
The interactive effects of ozone and water stress on the yield of soybean (Glycine max (L.) Merr. 'Davis') were addressed with a growth model of soybean. Two simulations were conducted, using the data from the exposures of soybean to ozone in open-top chambers under two soil moisture regimes, and the results of the simulations were compared. In the original simulation, soil moisture content was calculated based on a water budget using the actual precipitation and irrigation data. In the modified simulation, the soil water content was given as input data. In this case, soil moisture content was maintained at the same level across the ozone treatments regardless of different water use by the plants. Both simulations included the effect of reduced ozone flux to the leaves due to water stress, whereas only the original simulation included the effect of mitigated water stress due to reduced water use by the plants under higher ozone concentration. The water stress reduced ozone impact on soybean yield in the original simulation on the basis of the ozone dosecrop yield response relationship, but not in the modified simulation. The ozone uptake rate was reduced by water stress in the original simulation, but the relationship between seasonal mean ozone uptake rate and relative yield still showed reduced impact of ozone due to water stress. These results indicated that the alleviation of water stress by ozone due to reduced plant water use in ozone-treated plots can be a contributing factor in the reduction of ozone impact by water stress. The above conclusion was partly confirmed by the actual data for soil water content, which was significantly lower in the lowest ozone treatment than in the higher ozone treatments. Further experimental and modelling studies are needed to elucidate the mechanism of the ozone X water stress interaction.  相似文献   

4.
Meta-analysis was conducted to quantitatively assess the effects of rising ozone concentrations ([O3]) on yield and yield components of major food crops: potato, barley, wheat, rice, bean and soybean in 406 experimental observations. Yield loss of the crops under current and future [O3] was expressed relative to the yield under base [O3] (≤26 ppb). With potato, current [O3] (31–50 ppb) reduced the yield by 5.3%, and it reduced the yield of barley, wheat and rice by 8.9%, 9.7% and 17.5%, respectively. In bean and soybean, the yield losses were 19.0% and 7.7%, respectively. Compared with yield loss at current [O3], future [O3] (51–75 ppb) drove a further 10% loss in yield of soybean, wheat and rice, and 20% loss in bean. Mass of individual grain, seed, or tuber was often the major cause of the yield loss at current and future [O3], whereas other yield components also contributed to the yield loss in some cases. No significant difference was found between the responses in crops grown in pots and those in the ground for any yield parameters. The ameliorating effect of elevated [CO2] was significant in the yields of wheat and potato, and the individual grain weight in wheat exposed to future [O3]. These findings confirm the rising [O3] as a threat to food security for the growing global population in this century.  相似文献   

5.
Plants of Bel-W3 and of seven commercial tobacco varieties (Nicotiana tabacum L.) were exposed to two relatively low ozone concentrations (90 or 135 ppb) for 20 consecutive days, for 8 h per day. Ozone caused necrotic and chlorotic spots, acceleration of leaf senescence, depression of photosynthetic mechanism, chlorophyll diminution and greater destruction of chl a than of chl b. The higher sensitivity of chl a was also confirmed by exposure of segments of leaves in test tubes to high ozone concentration (>1000 ppb) as well as by bubbling of ozone in extracts of chlorophyll in vitro. The quantum yield (QY) of photosynthesis was positively correlated with the chlorophyll content and negatively correlated with the visible injury and the chl b/a ratio.  相似文献   

6.
Modeling the effects of ozone on soybean growth and yield   总被引:1,自引:0,他引:1  
A simple mechanistic model was developed based on an existing growth model in order to address the mechanisms of the effects of ozone on growth and yield of soybean [Glycine max. (L.) Merr. 'Davis'] and interacting effects of other environmental stresses. The model simulates daily growth of soybean plants using environmental data including shortwave radiation, temperature, precipitation, irrigation and ozone concentration. Leaf growth, dry matter accumulation, water budget, nitrogen input and seed growth linked to senescence and abscission of leaves are described in the model. The effects of ozone are modeled as reduced photosynthate production and accelerated senescence. The model was applied to the open-top chamber experiments in which soybean plants were exposed to ozone under two levels of soil moisture regimes. After calibrating the model to the growth data and seed yield, goodness-of-fit of the model was tested. The model fitted well for top dry weight in the vegetative growth phase and also at maturity. The effect of ozone on seen yield was also described satisfactorily by the model. The simulation showed apparent interaction between the effect of ozone and soil moisture stress on the seed yield. The model revealed that further work is needed concerning the effect of ozone on the senescence process and the consequences of alteration of canopy microclimate by the open-top chambers.  相似文献   

7.
Plants of soybean (Glycine max L.) were grown with and without the ozone protectant EDU (N-[2-(2-oxo-1-imidazolidinyl)ethyl]-n2 phenylurea) at a suburban site, a remote rural site and a rural roadside site around the city of Lahore, Pakistan. The development and yield of the plants was determined in two experiments--one immediately post-monsoon and one in the following spring (pre-monsoon). Concentrations of nitrogen dioxide and photochemical oxidants were measured at each site. The effect on yield of EDU at the suburban site (47 and 113% increase in seed weight per plant relative to the untreated plants in the post- and pre-monsoon experiments, respectively) was similar to the effects of filtration on yield on soybean in a parallel open-top chamber study at the same site (77% increase relative to plants subjected to unfiltered air for the pre-monsoon experiment). Effects of EDU on yield were greater at both rural sites than at the suburban site in both experiments, and greater in the spring experiment (182% at the remote rural site and 285% at the rural roadside site) than in the post-monsoon experiment (94% at the remote rural site and 170% at the rural roadside site); oxidant concentrations were also greater at the rural sites than at the suburban site, and greater in the spring experiment than the post-monsoon experiment. The results imply that ozone may be causing significant crop losses in rural areas around Lahore; however, the geographical extent of the problem, and the implications for peri-urban agriculture around other cities of south Asia are uncertain.  相似文献   

8.
The sensitivity to ozone of ten Bangladeshi wheat cultivars was tested by exposing plants to eight ozone exposure regimes (50, 60, 80, 100, 120, 135, 150, and 200 ppb for 14, 11, 8, 6, 5, 4, 3, and 1 days, respectively, for 8 h/day) in controlled environment chambers. Visible leaf injury, dry weight, chlorophyll, carotenoid content, leaf greenness (SPAD value), quantum yield of photosynthesis, and stomatal resistance were measured to evaluate response. Shoot biomass, total chlorophyll, leaf greenness, and carotenoid content were reduced in ozone-exposed plants. Based on the results of principal component analysis (PCA)-biplot analysis, the order of sensitivity to ozone was: Akbar?>>?Sufi?≥?Bijoy?≥?Shatabdi?>?Bari-26?≥?Gourab?>?Bari-25?≥?Prodip?≥?Sourav?>>?Kanchan. The most important parameters to discriminate cultivars with respect to ozone sensitivity were visible injury and chlorophyll b/a ratio, whereas quantum yield of photosynthesis was less important. Differences in stomatal resistance were not a significant factor in ozone response. Regression of cultivars’ PCA scores against year of release revealed no trend, suggesting that ozone tolerance was not incorporated during cultivar breeding.  相似文献   

9.
Abstract

The effects of carbendazim, captan, thiram, and mancozeb, on plant vitality, chlorophyll content, N uptake, protein content, nodulation, and seed yield in chickpea (Cicer arietinum) were assessed in a controlled environment. Seeds treated with fungicides at 1 and 1.5 g. a.i./kg seed had no significant adverse effect on plant vigor, seed yield, and N and protein contents. In contrast, fungicides applied at 2 g. a.i./kg of captan, thiram and mancozeb, significantly reduced the measured parameters. In general, the toxicity of fungicides in terms of seed yield increased in the following order: Control = carbendazim > thiram > captan > mancozeb. Total chlorophyll content in foliage declined consistently with fungicides dose rates and application days. Seeds treated with lower rates of fungicides significantly increased nodulation (nodule number per plant and its dry mass) and were compatible with chickpea inoculum used in this study. Although carbendazim at 2 g a.i./kg seed had no phytotoxic effect assessed under greenhouse conditions, it significantly reduced the chlorophyll content, nodulation (60 d) and N content in shoots.  相似文献   

10.
The work outlined in this paper had three objectives. The first was to explore the effects of ozone pollution on grain yield and quality of commercially-grown winter wheat cultivars. The second was to derive a stomatal ozone flux model for winter wheat and compare with those already developed for spring wheat. The third was to evaluate exposure- versus flux–response approaches from a risk assessment perspective, and explore the implications of genetic variation in modelled ozone flux.Fifteen winter wheat cultivars were grown in open-top chambers where they were exposed to four levels of ozone. During fumigation, stomatal conductance measurements were made over the lifespan of the flag leaf across a range of environmental conditions. Although significant intra-specific variation in ‘ozone sensitivity’ (in terms of impacts on yield) was identified, yield was inversely related (R2 = 0.63, P < 0.001) to the accumulated hourly averaged ozone exposure above 40 ppb during daylight hours (AOT40) across the dataset. The adverse effect of ozone on yield was principally due to a decline in seed weight. Algorithms defining the influence of environmental variables on stomatal uptake were subtly different from those currently in use, based on data for spring wheat, to map ozone impacts on pan-European cereal yield. Considerable intra-specific variation in phenological effects was identified. This meant that an ‘average behaviour’ had to be derived which reduced the predictive capability of the derived stomatal flux model (R2 = 0.49, P < 0.001, 15 cultivars included). Indeed, given the intra-specific variability encountered, the flux model that was derived from the full dataset was no better in predicting O3 impacts on wheat yield than was the AOT40 index. The study highlights the need to use ozone risk assessment tools appropriate to specific vegetation types when modelling and mapping ozone impacts at the regional level.  相似文献   

11.
Abstract

Field trials were conducted during the wet seasons of 1989, 1991, 1994 and 1995 to evaluate the effects of pre‐emergence and post‐emergence applications of four rates of imazaquin (0.00; 0.15; 0.30 and 0.45kg a.i/ha) on the growth, leaf chlorophyll types and grain yield of soybean c.v. SAMSOY 2. Imazaquin applications had no significant effect on the growth of soybean roots on most of the sampling dates, but pre‐and post‐emergence applications of imazaquin at 0.30 and 0.45kg a.i/ha reduced soybean root nodules at 5 and 7 weeks after planting (WAP). Soybean shoot growth was generally reduced at 5WAP by the pre‐emergence and at 7WAP by the higher rates (0.30 & 0.45kg a.i/ha) of post‐emergence application of imazaquin. Pre‐and post‐emergence applications of imazaquin showed a strong tendency to reduce the concentration of chlorophyll a and total chlorophyll at at 3 and 5WAP respectively. The concentrations of chlorophyll types in soybean leaves at 9WAP was generally comparable among most treatments especially in 1991. Whole plant fresh weight of soybean at 7WAP was reduced by all rates of post‐emergence application of imazaquin. However, there was no significant difference in the whole plant dry weight of soybean at 3 to 7 WAP in 1989 and at 3, 5 and 9WAP in 1991. In each trial, pre‐and post‐emergence applications of soybean significantly increased the grain yield of soybean compared with the control treatment. This study showed that, inhibition of soybean shoot growth and leaf chlorophyll concentration was transient and that soybean plants require about 6 weeks for complete recovery from imazaquin phytotoxicity.  相似文献   

12.
Ozone dose-crop loss conversion functions for alfalfa (Medicago sativa, L. var. Moapa 69) yield reduction and defoliation were developed using standardized field plots within an ambient O3 gradient in the South Coast Air Basin. Seasonal yields and defoliation values were tested with O3 dose, average daily maximum temperature, average daily minimum temperature, and average daily relative humidity in regression analyses to determine significant functional relationships. Only the ambient O3 dose variable was found to have a significant effect on alfalfa yield or defoliation (yield, r = –0.827, t-slope = 3.900**; defoliation, r = –0.890, t-slope = 5.190**). The ozone dose-crop loss conversion functions were calculated by converting the dose-response functions to dose-percent reduction functions.  相似文献   

13.
CO(2) assimilation rate, stomatal conductance and chlorophyll content of current and previous years' needles of Norway spruce were measured in May 1988, 205 days after the cessation of ozone fumigation during the summer of 1987. Rates of assimilation were consistently higher for both needle year age classes for ozone fumigated trees in comparison to control trees, although only statistically significant for part of the day for current year's needles. A 26% and 48% stimulation, overall, in mean daily rates of assimilation for current and previous years' needles of ozone fumigated trees was observed. This was due to an enhanced apparent quantum yield and light saturated rate of assimilation of ozone fumigated trees. The temperature response regression of assimilation versus temperature was also greater, such that at any given temperature, assimilation was higher for ozone treated trees than control trees. Stomatal conductance was greater for ozone fumigated trees than the controls, but this was only marginally statistically significant. Moreover, there was a consistent increase in chlorophyll content in both year classes in ozone-treated trees. These results are discussed in relation to a possible long term effect of ozone fumigation upon the processes of conifer winter hardening and spring de-hardening.  相似文献   

14.
Ozone is a widely distributed phytotoxic air pollutant and is known to reduce the yield of several important agricultural crops in Spain. However, benomyl has been found to lessen the adverse impact of ozone on plants. We studied the effects of ozone and benomyl on chlorophyll a fluorescence, antioxidant enzymes, and lipid peroxidation in tomato (Lycopersicon esculentum Mill. cv. Tiny Tim) grown in open-top chambers in the field. Our results indicate that benomyl prevented the peroxidation of membrane lipids and increased protection of PSII from ozone. There was also a significant reduction in the activity of the antioxidant enzyme superoxide dismutase in ozone-exposed plants that had not been treated with benomyl. Comparing plants treated with benomyl to untreated plants we found that, on exposure to ozone, a greater fraction of light absorption energy was cycled through the photosynthetic system in benomyl-treated plants, as shown by the higher PSII-mediated electron flow and the higher fraction of open PSII reaction centers. The values analyzed in the fluorescence parameters and lipid peroxidation were similar for plants without benomyl grown in a charcoal-filtered environment and benomyl-treated plants exposed to ozone.  相似文献   

15.
The effects of carbendazim, captan, thiram, and mancozeb, on plant vitality, chlorophyll content, N uptake, protein content, nodulation, and seed yield in chickpea (Cicer arietinun) were assessed in a controlled environment. Seeds treated with fungicides at 1 and 1.5 g.a.i. kg seed had no significant adverse effect on plant vigor, seed yield, and N and protein contents. In contrast, fungicides applied at 2 g.a.i./kg of captan, thiram and mancozeb, significantly reduced the measured parameters. In general, the toxicity of fungicides in terms of seed yield increased in the following order: Control=carbendazim > thiram > captan > mancozeb. Total chlorophyll content in foliage declined consistently with fungicides dose rates and application days. Seeds treated with lower rates of fungicides significantly increased nodulation (nodule number per plant and its dry mass) and were compatible with chickpea inoculum used in this study. Although carbendazim at 2 g.a.i. kg seed had no phytotoxic effect assessed under greenhouse conditions, it significantly reduced the chlorophyll content, nodulation (60d) and N content in shoots.  相似文献   

16.
Stomatal ozone uptake, determined with the Jarvis' approach, was related to photosynthetic efficiency assessed by chlorophyll fluorescence and reflectance measurements in open-top chamber experiments on Phaseolus vulgaris. The effects of O3 exposure were also evaluated in terms of visible and microscopical leaf injury and plant productivity. Results showed that microscopical leaf symptoms, assessed as cell death and H2O2 accumulation, preceded by 3-4 days the appearance of visible symptoms. An effective dose of ozone stomatal flux for visible leaf damages was found around 1.33 mmol O3 m−2. Significant linear dose-response relationships were obtained between accumulated fluxes and optical indices (PRI, NDI, ΔF/Fm). The negative effects on photosynthesis reduced plant productivity, affecting the number of pods and seeds, but not seed weight. These results, besides contributing to the development of a flux-based ozone risk assessment for crops in Europe, highlight the potentiality of reflectance measurements for the early detection of ozone stress.  相似文献   

17.
Plants of Bel-W3 and of seven commercial tobacco varieties (Nicotiana tabacum L.) were exposed to two relatively low ozone concentrations (90 or 135 ppb) for 20 consecutive days, for 8 h per day. Ozone caused necrotic and chlorotic spots, acceleration of leaf senescence, depression of photosynthetic mechanism, chlorophyll diminution and greater destruction of chl a than of chl b. The higher sensitivity of chl a was also confirmed by exposure of segments of leaves in test tubes to high ozone concentration (>1000 ppb) as well as by bubbling of ozone in extracts of chlorophyll in vitro. The quantum yield (QY) of photosynthesis was positively correlated with the chlorophyll content and negatively correlated with the visible injury and the chl b/a ratio.  相似文献   

18.
Field trials were conducted during the wet seasons of 1989, 1991, 1994 and 1995 to evaluate the effects of pre-emergence and post-emergence applications of four rates of imazaquin (0.00; 0.15; 0.30 and 0.45kg a.i/ha) on the growth, leaf chlorophyll types and grain yield of soybean c.v. SAMSOY 2. Imazaquin applications had no significant effect on the growth of soybean roots on most of the sampling dates, but pre-and post-emergence applications of imazaquin at 0.30 and 0.45kg a.i/ha reduced soybean root nodules at 5 and 7 weeks after planting (WAP). Soybean shoot growth was generally reduced at 5WAP by the pre-emergence and at 7WAP by the higher rates (0.30 & 0.45kg a.i/ha) of post-emergence application of imazaquin. Pre-and post-emergence applications of imazaquin showed a strong tendency to reduce the concentration of chlorophyll a and total chlorophyll at 3 and 5WAP respectively. The concentrations of chlorophyll types in soybean leaves at 9WAP was generally comparable among most treatments especially in 1991. Whole plant fresh weight of soybean at 7WAP was reduced by all rates of post-emergence application of imazaquin. However, there was no significant difference in the whole plant dry weight of soybean at 3 to 7 WAP in 1989 and at 3, 5 and 9WAP in 1991. In each trial, pre-and post-emergence applications of soybean significantly increased the grain yield of soybean compared with the control treatment. This study showed that, inhibition of soybean shoot growth and leaf chlorophyll concentration was transient and that soybean plants require about 6 weeks for complete recovery from imazaquin phytotoxicity.  相似文献   

19.
Elevated concentrations of ground-level ozone (O3) are frequently measured over farmland regions in many parts of the world. While numerous experimental studies show that O3 can significantly decrease crop productivity, independent verifications of yield losses at current ambient O3 concentrations in rural locations are sparse. In this study, soybean crop yield data during a 5-year period over the Midwest of the United States were combined with ground and satellite O3 measurements to provide evidence that yield losses on the order of 10% could be estimated through the use of a multiple linear regression model. Yield loss trends based on both conventional ground-based instrumentation and satellite-derived tropospheric O3 measurements were statistically significant and were consistent with results obtained from open-top chamber experiments and an open-air experimental facility (SoyFACE, Soybean Free Air Concentration Enrichment) in central Illinois. Our analysis suggests that such losses are a relatively new phenomenon due to the increase in background tropospheric O3 levels over recent decades. Extrapolation of these findings supports previous studies that estimate the global economic loss to the farming community of more than $10 billion annually.  相似文献   

20.
Six potato cultivars were grown to maturity in field plots in New Brunswick, New Jersey, according to standard commercial practices over a 5-year period. One-half of the plots were given a periodic soil drench of an antioxidant (EDU) which has the capacity to protect foliage against ozone toxicity. Based upon visible foliar injury and total tuber yield, the cultivars Norland and Norchip proved significantly more sensitive to ambient ozone pollution than Green Mountain, Irish Cobbler, Belrus or Superior. When foliar injury was less than 20%, no impact on tuber yield was detected. However, when 75% of the foliage exhibited O(3) toxicity symptoms, tuber yield was reduced 25% and 31%, respectively, in 'Norland' and 'Norchip'. A review of results from studies in the US and Canada utilizing different assessment methodologies provides evidence that ambient ozone causes significant tuber yield reduction in sensitive white potato genotypes when foliar injury exceeds 20 to 40%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号