首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The microscope as it has been and is now applied to air pollution work is discussed. A summary of the most common particulate sampling equipment is presented and distinctions as to the area of usage (suspended, or settled particulates) are made in each instance. Actual cases are discussed in which the polarizing microscope was used to determine identities and source of particulate pollutants. Particles from such sources as power plants, feed mills, and combustion sources are discussed and photomicrographs of known samples and unknown particles causing complaints are presented and compared as part of the discussion. References are given which deal with sampling equipment and microscopic analysis of various particulates.  相似文献   

2.
An experimental investigation on waste combustion characteristics of a mass burn incinerator is conducted in this study. Three different charging modes, including operator manipulation, periodic feeding, and temperature control, are taken into consideration. The results indicate that the burning characteristics in the combustion chambers are closely related to the operating modes. For the operator manipulation where the wastes are sent into the incinerator in two short periods, the entire temperature distribution of the primary combustion chamber can be partitioned into two parts, thereby yielding waste group combustion. Temperature oscillations in both the primary and secondary combustion chambers are characterized for the periodic feeding. However, because of the shorter charging period and smaller amount of waste, the burning interaction between the two chambers is initially weak and becomes notable in the final stage. When temperature control is performed, the burning oscillation of the primary combustion chamber is further amplified so the combustion interaction is drastic. These exhibitions are mainly caused by the competition between endothermic and exothermic reactions. The instantaneous heat exchange efficiency of the cyclone heat recovery system (CHRS) installed in the incineration system is also evaluated to obtain details of energy recovery behaviors. As a result, the efficiency tends to decrease linearly with increasing temperature of hot flue gas. This arises from the fact that heat loss from the gas to the environment is increased when the temperature of the former is higher, even though the temperature gradient across the cyclone is enlarged.  相似文献   

3.
In the past few years, many combustion tests were conducted in full scale operating incinerators. Those test data indicate that certain issues need to be re-evaluated, and point out certain research areas for improved incineration system performance. The issues include incinerability ranking and its relationship with operating temperature; significance of CO monitoring; and significance of products of incomplete combustion emission. The research areas for improvement include waste feed control; oxygen control; expert system; hydrogen halide conversion; submicron particulate formation; and improved air pollution control devices.  相似文献   

4.
In a recent study, the pH of commonly used Salmonella pre-enrichment media became acidic (pH 4.0 to 5.0) when feed or feed ingredients were incubated for 24 h. Acidic conditions have been reported to injure or kill Salmonella. In this study, cultures of four known feed isolates (S. montevideo, S. senftenberg, S. tennessee, and S. schwarzengrund) and four important processing plant isolates (S. typhimurium, S. enteritidis, S. infantis, and S. heidelberg) were grown on meat and bone meal and later subjected to desiccation and heat exposure to stress the microorganism. The impact of stress on the isolates ability to survive in acidic conditions ranging from pH 4.0 to 7.0 was compared to the non-stressed isolate. Cell injury was determined on xylose lysine tergitol 4 (XLT4) and cell death determined on nutrient agar (NA). When measured by cell death in non-stressed Salmonella, S. typhimurium was the most acid tolerant and S. heidelberg was the most acid sensitive whereas in stressed Salmonella, S. senftenberg was the most acid tolerant and S. tennessee was the most acid sensitive. The pH required to cause cell injury varied among isolates. With some isolates, the pH required for 50% cell death and 50% cell injury was similar. In other isolates, cell injury occurred at a more neutral pH. These findings suggest that the pH of pre-enrichment media may influence the recovery and bias the serotype of Salmonella recovered from feed during pre-enrichment.  相似文献   

5.
The European Economic Community (EEC) has proposed strict limits on emissions of dioxins and furans from hazardous waste incinerators. The proposed limit is 0.1 ng/Nm3, expressed as the 2,3,7,8 TCDD toxic equivalent of 17 specific dioxin and furan congeners. These limits will potentially redefine technology selection and design for combustion, energy recovery, and air pollution control. The EPA has a different approach for controlling emissions of products of incomplete combustion (PICs) and reformation products such as dioxins and furans. Rather than limiting these contaminants individually and quantitatively, EPA proposes controlling them by assuring good combustion as measured by stack emissions of carbon monoxide (CO) and total hydrocarbons (THC).

Dioxins and furans are combustion by-products and emission control relies mainly on control of the combustion process. These compounds can also be reformed from certain precursor compounds and elements in lower temperature regions of the system downstream of the combustion process. Air pollution control technologies have demonstrated the ability to remove dioxins and furans as contaminants on fine particulate.

This paper will discuss the two regulatory approaches, the mechanisms for the formation and reformation of dioxins and furans, and the technologies available to control emissions.  相似文献   

6.
A mathematical model has been developed to study the thermal and chemical processes occurring In a municipal solid waste mass combustor. Treating the solids feed as a mixture of pseudo-components, the model determines the Interrelationships between the solids feed rate, grate travel rate and length, amounts and distributions of primary and secondary air, extent of solids burn out, and the bed and flame temperatures. The model Incorporates the kinetics of pyrolysis of solids and simulates heat and mass transfer within the bed.

The temperature and mass flow profiles generated show that much of the grate Is taken up by the heatup and burnout zones. The heatup zone can be reduced by distributing the primary air to maintain minimal air flow In that region, thereby permitting rapid heatup. Increasing the solids feed rate and adjusting the air flow distributions can reduce the length of the burnout zone. The computer program, available on both PCs and mainframe, can be used for different MSW Incinerator dimensions and feed parameters to Investigate the effects of the control variables and optimize the desired output characteristics, e.g., maximize solids throughput.  相似文献   

7.
利用热泵系统回收城市污水中的热能,既开发了一种清洁能源,同时又降低了城市废热的排放,保护了环境.通过对以水源热泵为中心设备的污水热能回收与利用实验装置冬季供暖工况的实验研究,考察了热泵机组在以污水(模拟)为热源时的工作性能,测得热泵机组性能系数为2.61.  相似文献   

8.
利用热泵系统回收城市污水中的热能,既开发了一种清洁能源,同时又降低了城市废热的排放,保护了环境。通过对以水源热泵为中心设备的污水热能回收与利用实验装置冬季供暖工况的实验研究,考察了热泵机组在以污水(模拟)为热源时的工作性能,测得热泵机组性能系数为2.61。  相似文献   

9.
Currently available information suggests a substantial environmental impact from residential wood combustion emissions. Air pollution from this source is widespread and increasing. Current ambient measurements, surveys, and model predictions indicate winter respirable (<2 μm) emissions from residential wood combustion can easily exceed all other sources. Both the chemical potency and deliverability of the emissions from this source are of concern. The emissions are almost entirely in the inhalable size range and contain toxic and priority pollutants, carcinogens, co-carcinogens, cilia toxic, mucus coagulating agents, and other respiratory irritants such as phenols, aldehydes, etc. This source is contributing substantially to the nonattainment of current particulate, carbon monoxide, and hydrocarbon ambient air quality standards and will almost certainly have a significant impact on potential future standards such as inhalable particulates, visibility, and other chemically specific standards. Emission from this growing source is likely to require additional expenditures by industry for air pollution control equipment in nonattainment areas.  相似文献   

10.
Conflicting goals affecting solid waste management are explored in this paper to find the best implementation of resource recovery with a small-scale waste-to-energy process. Recycling paper and plastic material often leaves a shortage of thermal energy to support incineration that forces operators to supplement the process with auxiliary fuels. Although there are considerable profits to be made from material recovery, the increase of fuel usage causes conflict given that it is cost prohibitive. A series of trials performed on a small-scale 1.5-t/day incineration plant with a cyclone heat recovery system found that material recycling can impede performance. Experimental results are expressed as empirical regression formulas with regard to combustion temperature, energy transfer, and heat recovery. Process optimization is possible if the waste moisture content remains <30%. To test the robustness of the optimization analysis, a series of sensitivity analyses clarify the extent of material recycling needed with regard to plastic, paper, and metal. The experiments also test whether the moisture in the waste would decrease when recycling paper because of its exceptional capacity to absorb moisture. Results show that recycling paper is strongly recommended when the moisture content is >20%, whereas plastic recycling is not necessary at that moisture condition. Notably, plastic recovery reduces the heat needed to vaporize the water content of the solid waste, thus it is recommended only when the moisture content is <10%. For above-normal incineration temperatures, plastic recycling is encouraged, because it removes excess energy. Metal is confirmed as an overall priority in material recycling regardless of the moisture content of the incoming waste.  相似文献   

11.
Abstract

The continuous emission monitoring system (CEMS) can monitor flue gas emissions continuously and instantaneously. However, it has the disadvantages of enormous cost, easily producing errors in sampling periods of bad weather, lagging response in variable ambient environments, and missing data in daily zero and span tests and maintenance. The concept of a predictive emission monitoring system (PEMS) is to use the operating parameters of combustion equipment through thermodynamic or statistical methods to construct a mathematic model that can predict emissions by a computer program. The goal of this study is to set up a PEMS in a gas-fired combined cycle power generation unit at the Hsinta station of Taiwan Power Co. The emissions to be monitored include nitrogen oxides (NOx) and oxygen (O2) in flue gas. The major variables of the predictive model were determined based on the combustion theory. The data of these variables then were analyzed to establish a regression model. From the regression results, the influences of these variables are discussed and the predicted values are compared with the CEMS data for accuracy. In addition, according to the cost information, the capital and operation and maintenance costs for a PEMS can be much lower than those for a CEMS.  相似文献   

12.
The aim of this study is improving currently applied methodology for spatial disaggregation, as well as mapping air emission inventories by taking into account the auxiliary spatial data on population density. District heating infrastructure occurring in more populated areas changes distinctly the spatial distribution of estimated air emission; however, it does not change the initial estimate. That means the total, disaggregated value is constant. Considered sources of domestic combustion are located in the central part of the Silesian Metropolis, in the southern part of Poland. A large part of this area is strongly urbanized and supplied with heat (hot water) from the district heating system. Data on population density help to determine the area within which the dwellers use heat energy and hot water supplied by the heating infrastructure, apart from heating with small domestic boilers and stoves. This causes the domestic combustion’s emission impact within the distinguished area to be significantly lower in comparison to the official guidelines on air emission inventories. The important differences in spatial air emissions distributions calculated using a top-down approach are found for strongly urbanized areas supplied partly with heat and hot water from the district heating network. This fact should be taken into account when preparing detailed, high-resolution emission inventories for air regional and local quality modeling.

Implications: The spatial issues connected with elaboration of the high-resolution emission inventories are presented for the example of the populated area of the Silesian Metropolis (Poland). Spatial distribution of the population density is used to determine the area supplied with heat and hot water from the district heating system. It changes distinctly the spatial distribution of the air emission from small residential combustion sources.  相似文献   


13.
Abstract

Conflicting goals affecting solid waste management are explored in this paper to find the best implementation of resource recovery with a small-scale waste-to-energy process. Recycling paper and plastic material often leaves a shortage of thermal energy to support incineration that forces operators to supplement the process with auxiliary fuels. Although there are considerable profits to be made from material recovery, the increase of fuel usage causes conflict given that it is cost prohibitive. A series of trials performed on a small-scale 1.5-t/day incineration plant with a cyclone heat recovery system found that material recycling can impede performance. Experimental results are expressed as empirical regression formulas with regard to combustion temperature, energy transfer, and heat recovery. Process optimization is possible if the waste moisture content remains <30%. To test the robustness of the optimization analysis, a series of sensitivity analyses clarify the extent of material recycling needed with regard to plastic, paper, and metal. The experiments also test whether the moisture in the waste would decrease when recycling paper because of its exceptional capacity to absorb moisture. Results show that recycling paper is strongly recommended when the moisture content is >20%, whereas plastic recycling is not necessary at that moisture condition. Notably, plastic recovery reduces the heat needed to vaporize the water content of the solid waste, thus it is recommended only when the moisture content is <10%. For above-normal incineration temperatures, plastic recycling is encouraged, because it removes excess energy. Metal is confirmed as an overall priority in material recycling regardless of the moisture content of the incoming waste.  相似文献   

14.
Classical procedures for the microdetermination of fluoride in vegetation are extremely time consuming. They generally involve ashing, fusion with alkali, distillation, and finally fluoride estimation. Sample size requirements for such procedures are on the order of a gram or more, making the procedure useless for determining low fluoride concentrations in small samples. A procedure for micro-fluoride determination in vegetation is proposed which utilizes the oxygen flask combustion technique (Schoniger flask). The gaseous products of combustion are absorbed in 10.0 ml of 0.05N sodium hydroxide containing 1.00 µg of fluoride. The analysis of the fluoride is performed directly on the absorption solution after addition of a combination complexing-buffer solution, using a specific fluoride ion electrode. The sensitivity of the electrode is such that 0.2 µg of fluoride can be easily detected in this volume. Added oxidant was required in the combustion step for some vegetation samples to completely free the fluoride from its organic matrix. Comparisons with the standard Willard-Winter procedure gave excellent results. Combustion of sodium fluoride standards as well as submicrogram quantities of a fluoro-organic compound showed recoveries greater than 90%. The direct combustion, coupled with fluoride ion electrode determination, reduces analysis time drastically. A complete analysis can be performed in 1/2 hr, with a minimum amount of equipment.  相似文献   

15.
The pH of Salmonella pre-enrichment media can become acidic (pH 4.0–5.0) when feeds/ingredients are incubated for 24?h. Salmonella in feed that have been stressed by heat and desiccation exhibit different pH tolerances than non-stressed cultures. Acidic conditions can result in cell injury/death and affect biochemical pathways. In this study, eight serotypes of Salmonella were grown in sterile meat and bone meal that was subjected to desiccation and heat stress. Cultures of non-stressed and stressed isolates were subsequently exposed to acidic pH from 4.0 to 7.0 in 0.5?pH increments (3 replicates/pH increment) in citrate buffer. At 6 and 24?h, serial dilutions were plated in duplicate on XLT-4 (xylose lysine tergitol-4) agar. Four serotypes showed an impaired ability to decarboxylate lysine on XLT-4. This inability to decarboxylate lysine was dependent on isolate, stress status, and incubation time. When the isolates’ ability to decarboxylate lysine was examined using biochemical tests, cultures were found to be able to decarboxylate lysine with the exception of S. Infantis. This suggests that XLT-4 contains a biochemical stressor(s) which affects the rate of decarboxylation by these Salmonella. These results suggest that acidic conditions may influence the detection and confirmation of Salmonella in feed.  相似文献   

16.
Particulate matter (PM) has been becoming the principal urban pollutant in many major cities in China, and even all over the world. It is reported that the coal combustion process is one of the main sources of PM in the atmosphere. Therefore, an investigation of formation and emission of fine primary PM in coal combustion was conducted. First, the sources and classification of coal-fired primary PM were discussed; then their formation pathways during the coal combustion process were analyzed in detail. Accordingly, the emission control methods for fine particles generated from coal-fired power plants were put forward, and were classified as precombustion control, in-combustion control, and postcombustion control. Precombustion control refers to the processes for improving the coal quality before combustion, such as coal type selection and coal preparation. In-combustion control means to take measures for adjusting the combustion conditions and injection of additives during the combustion process to abate the formation of PM. Postcombustion control is the way that the fine PM are aggregated into larger ones by some agglomeration approaches and subsequently are removed by dust removal devices, or some high-performance modifications of conventional particle emission control devices (PECDs) can be taken for capturing fine particles. Finally, some general management suggestions are given for reducing fine PM emission in coal-fired power plants.
ImplicationsThe analysis and discussions of coal properties and its combustion process are critical to recognizing the formation and emission of the fine primary PM in combustion. The measures of precombustion, in-combustion, and postcombustion control based on the analysis and discussions are favorable for abating the PM emission. Practically, some measures of implementation do need the support of national policies, even needing to sacrifice economy to gain environmental profit, but this is the very time to execute these, and high-performance PECDs, especially novel devices, should be used for removing fine PM in flue gas.  相似文献   

17.
To achieve the hygienic safety of food waste used as animal feed, a hydrothermal treatment process of 60–110 °C for 10–60 min was applied on the separated food waste from a university canteen. Based on the microbial analysis of raw waste, the inactivation of hygienic indicators of Staphylococcus aureus (SA), total coliform (TC), total aerobic plate counts (TPC), and molds and yeast (MY) were analyzed during the hydrothermal process. Results showed that indicators' concentrations were substantially reduced after hydrothermal treatment, with a greater reduction observed when the waste was treated with a higher temperature and pressure and a longer ramping time. The 110 °C hydrothermal treatment for 60 min was sufficient to disinfect food waste as animal feed from the viewpoint of hygienic safety. Results obtained so far indicate that hydrothermal treatment can significantly decrease microbial indicators' concentrations but does not lead to complete sterilization, because MY survived even after 60 min treatment at 110 °C. The information from the present study will contribute to the microbial risk control of food waste–amended animal feed, to cope with legislation on food or feed safety.

Implications: Reduction of microbial indicators at ramping time and holding time during the hydrothermal process showed that hydrothermal treatment is an effective method to achieve hygienic feed from food waste to a certain extent, but the conditions researched in this study were not enough for the complete sterilization of food waste, because of the different heat resistance of bacteria and spores.  相似文献   

18.
ABSTRACT

Glass manufacturing, like other process industries, is faced with air pollution compliance problems due to ever stricter emission limits. Several waste gas cleaning equipment options are available for air pollution control (APC) in glass plants, the most common arrangements being based on electrostatic precipitator (ESP) or fabric filter (FF) dust collectors and semi-wet or dry processes for acid gas removal. However, several counteracting aspects affect the choice of gas cleaning technologies, which are confirmed by the discrepancies encountered in actual suppliers' bids. In this paper, the main pollution control options are analyzed by carrying out a critical comparison under the cost-effectiveness point of view to select the lowest cost arrangement considering capital investment, operating expenses, and energy-saving revenues from heat recovery processes. The analysis is carried out with reference to a case study involving actual float glass production lines at Pilkington plants in Italy.  相似文献   

19.
Abstract

Combustion of spent vacuum residue hydrodesulfurization catalyst and incineration of paper sludge were carried out in thermo-gravimetric analyzer and an internally circulating fluidized-bed (ICFB) reactor. From the thermogravimetric analyzer-differential thermo-gravimetric curves, the pre-exponential factors and activation energies are determined at the divided temperature regions, and the thermo-gravimetric analysis patterns can be predicted by the kinetic equations. The effects of bed temperature, gas velocity in the draft tube and annulus, solid circulation rate, and waste feed rate on combustion efficiency of the wastes have been determined in an ICFB from the experiments and the model studies. The ICFB combustor exhibits uniform temperature distribution along the bed height with high combustion efficiency (>90%). The combustion efficiency increases with increasing reaction temperature, gas velocity in the annulus region, and solid circulation rate and decreases with increasing waste feed rate and gas velocity in the draft tube. The simulated data from the kinetic equation and the hydrodynamic models predict the experimental data reasonably well.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号