首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The removal of SO2 with atomization of a slaked lime slurry and supplemental injection of gaseous NH3 were tested in a conventional spray dryer/baghouse system for SO2 concentrations of 2000 ppm and 3000 ppm and a 30° F approach to saturation. Results at 3000 ppm of SO2 showed an average SO2 removal efficiency of 90.3 percent at a combined stoichiometric ratio of 0.95-1.10 and an average overall sorbent utilization of 91.6 percent. The overall molal ratio of NH3/SO2 reaction was found to be 2:1 under the test conditions Particle size analyses, and EP toxicity tests were conducted on the products of the reactions.  相似文献   

2.
The United Power Association’s dry FGD system at Stanton, North Dakota was the first utility-operated lime spray dryer to be put into service in the United States. At 60 MW in size, it utilizes a single spray dryer vessel with three rotary atomizers and a ten-compartment fabric filter. It is currently operating at better than expected efficiency and Is meeting state and federal air quality requirements. Start-up and operation have shown that certain areas of design and operating conditions are critical to reliable operation. Flue gas, slurry, and water distribution and mixing must be carefully controlled if reliable, long term operation is to be achieved. Likewise, water chemistry Is Important in the reagent preparation equipment. Start-up of the system was accomplished In a step-wise fashion to bring the baghouse on line first, followed by the spray dryer. The spray dryer was operated at gradually lower outlet temperatures until design conditions were met. Measures taken since start-up to ensure reliable operation, and operation over an eighteen month period are discussed. Both particulate and SO2 emission performance are evaluated.  相似文献   

3.
Previous workers have shown that simultaneous SO2/NOX removal can be obtained in a dry scrubbing system with Ca(OH)2 promoted by an additive such as NaOH, and that fly ash and product recycle improve the reactivity of the solids toward SO2. To test SO2/NOX removal with fly ash and product recycle, bench-scale experiments with a packed bed reactor were performed at bag filter conditions. The most reactive solid for NOX removal was prepared by slurrying Ca(OH)2 with fly ash, CaSO3, and NaOH. The best conditions for NOX removal were the greatest temperature (125°C) and greatest concentrations of SO2 (1500 ppm) and O2 (20 percent). At the best conditions, NOX removed in 1 hour was 3-4 moles per 100 moles Ca(OH)2, compared to 5-10 moles SO2 removed per 100 moles Ca(OH)2. The best SO2 removal was obtained at the highest relative humidities/lowest temperatures (55% RH/ 65°C) with solids prepared by slurrying Ca(OH)2 with fly ash and NaOH. At these conditions, SO2 removed In 1 hour was 60-80 moles per 100 moles Ca(OH)2, compared to 0.5 to 1 moles NOX removed per 100 moles Ca(OH)2.  相似文献   

4.
In a land- and sea-breeze situation, effects of dry deposition on the dynamics of the concentrations of chemically reacting air pollutants are investigated using a transport/transformation/removal model with diurnally varying deposition velocities modeled in terms of the aerodynamic, surface, and residual resistances. The results show that the diurnally varying flows and eddy diffusivities, which are characteristic of the landand sea-breeze system, transfer the effects of dry deposition on the concentrations quickly to the upper layer over the land and sea surfaces. The dry deposition effect on one species can be transmitted to others through the network of chemical reactions, e.g. inclusion of dry deposition into the simulation resulted in the increase of hydrocarbon concentrations. It is also predicted that the dry deposition processes could remove a considerable part of emitted NOx, and SO2 from the local circulations, e.g. for 2 days about 40% of the emitted NOx was removed by the dry deposition of NO, NO2, HNO3 and PAN and in the case of SO2, 25 % by that of SO2 and SO42−.  相似文献   

5.
Fenton氧化法同时脱硫脱硝的实验研究   总被引:1,自引:0,他引:1  
应用Fenton液相氧化吸收法进行同时脱硫脱硝实验。首先,利用单因素实验,分别考察了H2O2浓度、Fe2+投加量、初始pH值、UV照射和温度对脱硫脱硝的影响。结果表明,SO2和NO去除率随着H2O2浓度和Fe2+投加量的增大而提高;初始pH对SO2和NO的去除有较大影响;UV能促进SO2和NO的净化;温度对脱硫效率影响不大,但对NO的去除有显著作用,适当升温可以提高脱硝效率。随后,考察了SO2对NO去除率的影响。通过单独脱硝和同时脱硫脱硝的对比实验发现,SO2的加入对NO的去除有一定的促进作用,Fenton法可同时获得起始约80%的脱硝效率和98%以上的脱硫效率。  相似文献   

6.
The following report discusses current bench- and pilot-plant advances in preparation of ADVAnced siliCATE (ADVACATE) calcium silicate sorbents for flue gas desulfurization. It also discusses current bench- and pilot-plant advances in sorbent preparation. Fly ash was ground in a laboratory scale grinder prior to slurring in order to decrease the slurring time needed for the sorbent to be reactive with SO2. Reactivity of ADVACATE sorbents with SO2 in the bench-scale reactor correlated with their surface area.

ADVACATE sorbents produced with ground fly ash were evaluated in the 50 cfm (85 m3/h) pilot plant providing 2 s duct residence time. ADVACATE sorbent was produced by slurrying ground fly ash (median particle size of 4.3 µm) with Ca(OH)2 at the weight ratio of 3:1 at 90°C (194°F) for 3hto yield solids with 30 weight percent of initial free moisture. When this sorbent was injected into the duct with 1500 ppm SO2 and at 11°C (20°F) approach to saturation, the measured SO2 removal was approximately 60percent at a Ca/S stoichiometric ratio of 2. Previously, when ADVACATE sorbent was produced at 90°C (194°F) and at the same fly-ash-to-Ca(OH)2 weight ratio using unground fly ash, removal under the same conditions in the duct was approximately 50 percent following 12 h slurring. The report presents the results of pilot-scale recycle tests at the recycle ratio of 2. Finally, the report discusses future U.S. Environmental Protection Agency plans for commercialization of ADVACATE.  相似文献   

7.
The active soda process1 was applied for desulfurlzatlon of flue gases emitted by a plant burning heavy fuel oil In a rotary drum drier for stone aggregate. The flue gas capacity of the plant was about 6,7 m3/s at normal conditions. The SO2 concentration varied between 400– 500 ppm. The solid, dry and fine-grained NaHCO3 of good quality was fed directly into the hot gas stream at the outlet of the rotary drier In two variants—with and without grinding. The mean particle size was 0.180 m-3 or 0.070 m-3, respectively. The achieved desulfurizatlon degree was shown to be directly dependent on the flue gas temperature and on the grinding effect, as well as on the normalized stoichiometric ratio. The highest achieved desulfurization degree amounted up to 74 percent. During the design of the desulfurization process no pilot plant installations and tests were necessary, and for the final process no special chemical reactor was used.  相似文献   

8.
Minnesota Power currently has in commercial operation a 500 MW gas cleaning system consisting of a venturi particulate scrubber, integrated with a spray tower SO2 absorber. The system was designed to achieve 99.7% particulate removal and 90% SO2 removal based upon burning a 2.8 % sulfur coal.

Initially the concept of using a venturi for wet particulate collection was selected based upon a significant cost saving of $25 million compared to dry particulate collection devices. Subsequently, the Interaction of particulate collection with SO2 removal provided additional operating cost benefits. Prior to start-up of the commercial system, a pilot plant was used to evaluate various modes of operation. Results showed that alkali contained in the fly ash removed with the venturi was sufficient to meet the alkali requirement for SO2 removal.

Clay Boswell Station Unit No. 4 was started up during March 1980. Since initial start-up the system has exhibited almost 100% availability. EPA compliance testing has confirmed that the system Is meeting its emission standards. The unit is operating with fly ash as the only source of alkali. Since commercial operation started, no external alkali has been purchased.

This paper will discuss the design details of the system and performance of the commercial system.  相似文献   

9.
High concentrations (>15 μm3 cm?3) of CaSO4, Ca(NO3)2 and (NH4)2SO4 were selected as surrogates of dry neutral, aqueous neutral and dry acidic inorganic seed aerosols, respectively, to study the effects of inorganic seeds on secondary organic aerosol (SOA) formation in irradiated m-xylene/NOx photooxidation systems. The results indicate that neither ozone formation nor SOA formation is significantly affected by the presence of neutral aerosols (both dry CaSO4 and aqueous Ca(NO3)2), even at elevated concentrations. The presence of high concentrations of (NH4)2SO4 aerosols (dry acidic) has no obvious effect on ozone formation, but it does enhance SOA generation and increase SOA yields. In addition, the effect of dry (NH4)2SO4 on SOA yield is found to be positively correlated with the (NH4)2SO4 surface concentration, and the effect is pronounced only when the surface concentration reaches a threshold value. Further, it is proposed that the SOA generation enhancement is achieved by particle-phase heterogeneous reactions induced and catalyzed by the acidity of dry (NH4)2SO4 seed aerosols.  相似文献   

10.
Abstract

Twenty-five MiniVol samplers were operated throughout the Mexico City metropolitan region from February 22 through March 22, 1997, to evaluate the variability of PM10 concentrations and composition. The highest PM10 concentrations were found in neighborhoods with unpaved or dirty roads, and elements related to crustal material were the main cause of differences from nearby (<200 m) monitors that were not adjacent to the roadbed. SO4 2?concentrations were homogeneous across the city. SO4 2?measured at the city boundaries was about two-thirds of the concentrations measured within the urbanized area, indicating that most SO4 2? is of regional origin. Elemental carbon (EC) and organic carbon (OC) concentrations were highly variable, with higher concentrations in areas that had high diesel traffic and older vehicles. Spatial correlations among PM10 concentrations were high, even though absolute concentrations were variable, indicating a common effect of meteorology on the concentration or dispersion of local emissions.  相似文献   

11.
This paper describes the evaluation of the performance of ESPs operating downstream of spray dryers in high- and medium-sulfur coal flue gas streams. Tests were conducted at the TV A10 MW Spray Dryer/ESP Pilot Plant and the EPRI High Sulfur Test Center. The results of the analysis of particle characteristics, spray dryer operating parameters, and ESP operating variables identify the occurrence of severe particle reentrainment due to the low resistivity (108 ohm-cm and lower) of the sorbent/flyash mixtures at low approach-tosaturation temperatures. The reentrainment has a significant impact on the collection efficiency of ESPs which could represent a fundamental limitation on their ability to adequately perform in this environment. Although this program has been focused on spray dryer applications, because of the similarities of the gas and particle characteristics produced from spray drying and other dry scrubbing processes, the results also have implications to duct slurry injection, dry sorbent injection with humidification, and processes involving furnace sorbent injection with humidification.

The performance characteristics of the ESPs are presented under both baseline and spray dryer conditions. The results are analyzed and the Southern Research Institute ESP Computer Model was used to evaluate the data. Special techniques for measuring particle resistivity at these conditions are described. A theoretical examination of particle reentrainment was undertaken which indicated that at low-resistivity levels the electrostatic forces reverse and tend to pull the particles off the plates with a force proportional to the square of the electric field. This repulsion of particles from the plates at spray dryer conditions was confirmed by laboratory experiments. Chloride content of the coal was found to be an important parameter effecting the performance of the ESP. Implications of the results of this evaluation relative to ESP upgrades are presented.  相似文献   

12.
On the basis of the recently estimated emission inventory for East Asia with a resolution of 1×1°, the transport and chemical transformation of sulfur compounds over East Asia during the period of 22 February through 4 May 2001 was investigated by using the Models-3 Community Multi-scale Air Quality (CMAQ) modeling system with meteorological fields calculated by the regional atmospheric modeling system (RAMS). For evaluating the model performance simulated concentrations of sulfur dioxide (SO2) and aerosol sulfate (SO42−) were compared with the observations on the ground level at four remote sites in Japan and on board aircraft and vessel during the transport and chemical evolution over the Pacific and Asian Pacific regional aerosol characterization experiment field campaigns, and it was found that the model reproduces many of the important features in the observations, including horizontal and vertical gradients. The SO2 and SO42− concentrations show pronounced variations in time and space, with SO2 and SO42− behaving differently due to the interplay of chemical conversion, removal and transport processes. Analysis of model results shows that emission was the dominant term in regulating the SO2 spatial distribution, while conversion of SO2 to SO42− in the gas phase and the aqueous phase and wet removal were the primary factors that controlled SO42− amounts. The gas phase and the aqueous phase have the same importance in oxidizing SO2, and about 42% sulfur compounds (25% in SO2) emitted in the model domain was transported out, while about 57% (35% by wet removal processes) was deposited in the domain during the study period.  相似文献   

13.
A previously proposed technology incorporating TiO2 into common household fluorescent lighting was further tested for its Hg0 removal capability in a simulated flue-gas system. The flue gas is simulated by the addition of O2, SO2, HCl, NO, H2O, and Hg0, which are frequently found in combustion facilities such as waste incinerators and coal-fired power plants. In the O2 + N2 + Hg0 environment, a Hg0 removal efficiency (ηHg) greater than 95% was achieved. Despite the tendency for ηHg to decrease with increasing SO2 and HCl, no significant drop was observed at the tested level (SO2: 5–300 ppmv, HCl: 30–120 ppmv). In terms of NO and moisture, a significant negative effect on ηHg was observed for both factors. NO eliminated the OH radical on the TiO2 surface, whereas water vapor caused either the occupation of active sites available to Hg0 or the reduction of Hg0 by free electron. However, the negative effect of NO was minimized (ηHg > 90%) by increasing the residence time in the photochemical reactor. The moisture effect can be avoided by installing a water trap before the flue gas enters the Hg0 removal system.

Implications: This paper reports a novel technology for a removal of gas-phase elemental mercury (Hg0) from a simulated flue gas using TiO2-coated glass beads under a low-cost, easily maintainable household fluorescent light instead of ultraviolet (UV) light. In this study, the effects of individual chemical species (O2, SO2, HCl, NO, and water vapor) on the performance of the proposed technology for Hg0 removal are investigated. The result suggests that the proposed technology can be highly effective, even in real combustion environments such as waste incinerators and coal-fired power plants.  相似文献   

14.
Incineration flue gas contains polycyclic aromatic hydrocarbons (PAHs) and sulfur dioxide (SO2). The effects of SO2 concentration (0, 350, 750, and 1000 ppm), reaction temperature (160, 200, and 280 °C), and the type of activated carbon fibers (ACFs) on the removal of SO2 and PAHs by ACFs were examined in this study. A fluidized bed incinerator was used to simulate practical incineration flue gas. It was found that the presence of SO2 in the incineration flue gas could drastically decrease removal of PAHs because of competitive adsorption. The effect of rise in the reaction temperature from 160 to 280 °C on removal of PAHs was greater than that on SO2 removal at an SO2 concentration of 750 ppm. Among the three ACFs studied, ACF-B, with the highest microporous volume, highest O content, and the tightest structure, was the best adsorbent for removing SO2 and PAHs when these gases coexisted in the incineration flue gas.
ImplicationsSimultaneous adsorption of sulfur dioxide (SO2) and polycyclic aromatic hydrocarbons (PAHs) emitted from incineration flue gas onto activated carbon fibers (ACFs) meant to devise a new technique showed that the presence of SO2 in the incineration flue gas leads to a drastic decrease in removal of PAHs because of competitive adsorption. Reaction temperature had a greater influence on PAHs removal than on SO2 removal. ACF-B, with the highest microporous volume, highest O content, and tightest structure among the three studied ACFs, was found to be the best adsorbent for removing SO2 and PAHs.  相似文献   

15.
A series of short-term laboratory experiments were conducted in which galvanized steel samples were exposed to sub-ppm levels of SO2. Dew was produced periodically on the test panels, and, at the end of some experiments, panels were sprayed with solutions of various pH levels. Both dew and rain rinse samples were analyzed for SO32−, SO42− and Zn.The laboratory results suggest that as a first approximation the damage to galvanized steel induced by the dry deposition of SO2 can be calculated by equating the dry SO2 flux to the Zn corrosion flux. SO2 will deposit onto a fresh dry surface until an amount similar to that of a monolayer has formed. Under wet conditions, the dry deposition flux is controlled by the gas-phase resistance of the atmosphere. Wet deposition of ammonium bisulphate induces corrosion which depends not only on the pH of the incident rain, but also on the exposure history of the samples.  相似文献   

16.
In this paper we report measurements of SO2-4 fluxes in throughfall and bulk deposition across an elevational transect from 800 to 1275 m on Slide Mountain in the Catskill Mountains of southeastern New York State. The net throughfall flux of SO2-4 (throughfall-bulk deposition), which we attribute to cloud and dry deposition, increased by roughly a factor of 13 across this elevational range. Part of the observed increase results from the year-round exposure of evergreen foliage at the high-elevation sites, compared to the lack of foliage in the dormant season in the deciduous canopies at low elevations. Comparison of the net throughfall flux with estimates of cloud deposition suggests that both cloud deposition and dry deposition increased with elevation. Dry deposition estimates from a nearby monitoring site fall within the measured range of net throughfall flux for SO2-4. The between-site variation in net throughfall flux was very high at the high-elevation sites, and less so at the lower sites, suggesting that studies of atmospheric deposition at high-elevations will be complicated by extreme spatial variability in deposition rates. Studies of atmospheric deposition in mountainous areas of the eastern U.S. have often emphasized cloud water deposition, but these results suggest that elevational increases in dry deposition may also be important.  相似文献   

17.
A series of experiments using bulk precipitation collectors of the type used in the UK precipitation chemistry network measured the amounts of NH4+, SO42− and other ions that could be washed from funnels (diameter 15 cm) exposed to a wide range of NH3 and SO2 concentrations over periods from hours to days. In dry conditions, the average deposition flux of NH3 was between 50 and 120 nmol NH4+ funnel−1 d−1 (0.1–0.3 kg N ha−1 yr−1), and was independent of the concentration of NH3. Dry deposition of NH3 to wet funnels at small NH3 concentrations was almost 5 times that to dry funnels under the same conditions (average 240 nmol funnel−1 d−1; 0.7 kg ha−1 yr−1), and increased with increasing NH3 concentrations. The amount of NH4+ ions remaining on the funnel surface was inversely proportional to the vapour pressure deficit during the experiment. This result was interpreted as a dependence on the duration of surface wetness, with greater deposition of NH4+ when evaporation rates of surface water were small.The amount of SO2 deposited on funnel surfaces was closely related to the amount of NH3 deposited, in both wet and dry conditions, but was not strongly correlated with the SO2 concentration. At low NH3 and SO2 concentrations the average deposition to dry funnels was 70 nmol SO42− funnel−1 d−1 (0.5 kg ha−1 yr−1), and to wet funnels was approximately 2.5 times larger. The results are interpreted in terms of the balance between the rate of evaporation of surface water, and the rate of oxidation of SO2, which leads to the ‘fixing’ of NH4+ ions on the surface as involatile salts.It is predicted that dry deposition of NH3 to funnel surfaces across the UK Secondary Network could account for as much as one-half of the measured bulk wet deposition at sites where wet deposition of NH4–N is small. The amount of dry deposition depends on how long and how often funnel surfaces are wetted by rain or dew, and on the air concentrations of NH3. These predictions are based on funnels being wetted only once per day. More frequent wetting would increase the contribution from dry deposition, and the consequent overestimate of wet deposition of NH4–N across the UK by using data obtained from bulk collectors. To some extent this overestimate may be offset by microbial degradation and loss of NH4–N in weekly bulk precipitation samples during collection and storage.  相似文献   

18.
A steady state mesoscale model developed to predict primary SO2 concentrations from a single point source is presented. The model was validated with data from the Midwest Interstate Sulfur Transport and Transformation (MISTT) project, with root mean square errors of 9.69 μg m?3 and 0.42 μg m?3 for SO2 and SO4 respectively. Wet deposition (washout and rainout), eddy dispersivity, dry deposition of SO2 and mean wind speed were found to be the most important factors controlling sulfur dioxide and sulfate concentrations. Estimation of precipitation acidity was then carried out using scavenging theory. The greatest potential acidification occurred approximately 200 km from the source along plume centerllne, which indicates a rather local effect as opposed to a long distance effect. The cross-plume influence was up to 60 km in width at a distance of 400 km from the source.  相似文献   

19.
The utility and industrial sectors continue to come under pressure from both national and local regulatory groups to reduce sulfur dioxide emissions. With a trend in the utility industry for life extension, retrofit technologies are likely to play an important role in any SO2 emission reduction strategy. Potential retrofit technologies include, singly and in combination: coal switching or cleaning, wet or dry FGD, conversion to fluidized bed, and dry sorbent injection. The diversity within the utility industry in terms of unit size, unit age, fuel use, financial base, and geographic location dictates the need for a variety of technologies to address SO2 emission control. Dry injection processes involving the injection of dry powders into either the furnace or post-furnace region offer the potential for low capital cost retrofitable technologies. However, compared to wet FGD processes, the dry calcium based processes will likely have lower SO2 removal efficiencies and may pose more plant-wide integration issues that need to be addressed from both an applications and R&D perspective.

This paper provides a critical assessment of dry injection technologies, in two parts. Part 1 focuses on sorbent processes and science. An assessment of the different dry sorbent processes and the effect of process parameters is provided. Emphasis is placed on process limitations and potential avenues to enhance SO2 removal. Part 2 will deal with applications of the technology, addressing cost, scale-up, and integration issues.

Much of the data included in this paper was presented at the 1986 Joint Symposium on Dry SO2 and Simultaneous SO2/NOx Control Technologies, sponsored by the Electric Power Research Institute and the Environmental Protection Agency and held in June 1986. This paper provides both an overview and an evaluation of the technology, based largely on our analysis of the data and interpretations discussed at this symposium.  相似文献   

20.
ABSTRACT

At conditions typical of a bag filter exposed to a coal-fired flue gas that has been adiabatically cooled with water, calcium hydroxide and calcium silicate solids were exposed to a dilute, humidified gas stream of nitrogen dioxide (NO2) and sulfur dioxide (SO2) in a packed-bed reactor. A prior study found that NO2 reacted readily with surface water of alkaline and non-alkaline solids to produce nitrate, nitrite, and nitric oxide (NO). With SO2 present in the gas stream, NO2 also reacted with S(IV), a product of SO2 removal, on the exterior of an alkaline solid. The oxidation of S(IV) to S(VI) by oxygen reduced the availability of S(IV) and lowered removal of NO2. Subsequent acidification of the sorbent by the removal of NO2 and SO2 facilitated the production of NO. However, the conversion of nitrous acid to sulfur-nitrogen compounds reduced NO production and enhanced SO2 removal. A reactor model based on empirical and semi-empirical rate expressions predicted rates of SO2 removal, NO2 removal, and NO production by calcium silicate solids. Rate expressions from the reactor model were inserted into a second program, which predicted the removal of SO2 and NOx by a continuous process, such as the collection of alkaline solids in a baghouse. The continuous process model, depending upon inlet conditions, predicted 30-40% removal for NO and 50-90% removal for SO2. These x 2 results are relevant to dry scrubbing technology for combined SO2 and NOx removal that first oxidizes NO to NO2 by the addition of methanol into the flue duct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号