首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Air pollution has become one main environmental concern because of its known impact on human health. Aiming to inform the population about the air they are breathing, several air quality modelling systems have been developed and tested allowing the assessment and forecast of air pollution ambient levels in many countries. However, every day, an individual is exposed to different concentrations of atmospheric pollutants as he/she moves from and to different outdoor and indoor places (the so-called microenvironments). Therefore, a more efficient way to prevent the population from the health risks caused by air pollution should be based on exposure rather than air concentrations estimations. The objective of the present study is to develop a methodology to forecast the human exposure of the Portuguese population based on the air quality forecasting system available and validated for Portugal since 2005. Besides that, a long-term evaluation of human exposure estimates aims to be obtained using one-year of this forecasting system application. Additionally, a hypothetical 50% emission reduction scenario has been designed and studied as a contribution to study emission reduction strategies impact on human exposure.To estimate the population exposure the forecasting results of the air quality modelling system MM5-CHIMERE have been combined with the population spatial distribution over Portugal and their time-activity patterns, i.e. the fraction of the day time spent in specific indoor and outdoor places. The population characterization concerning age, work, type of occupation and related time spent was obtained from national census and available enquiries performed by the National Institute of Statistics. A daily exposure estimation module has been developed gathering all these data and considering empirical indoor/outdoor relations from literature to calculate the indoor concentrations in each one of the microenvironments considered, namely home, office/school, and other indoors (leisure activities like shopping areas, gym, theatre/cinema and restaurants). The results show how this developed modelling system can be useful to anticipate air pollution episodes and to estimate their effects on human health on a long-term basis. The two metropolitan areas of Porto and Lisbon are identified as the most critical ones in terms of air pollution effects on human health over Portugal in a long-term as well as in a short-term perspective. The coexistence of high concentration values and high population density is the key factor for these stressed areas. Regarding the 50% emission reduction scenario, the model results are significantly different for both pollutants: there is a small overall reduction in the individual exposure values of PM10 (<10 μg m?3 h), but for O3, in contrast, there is an extended area where exposure values increase with emission reduction. This detailed knowledge is a prerequisite for the development of effective policies to reduce the foreseen adverse impact of air pollution on human health and to act on time.  相似文献   

2.
Oxygenated additives in gasoline are designed to decrease the ozone-forming hydrocarbons and total air toxics, yet they can increase the emissions of aldehydes and thus increase human exposure to these toxic compounds. This paper describes a study conducted to characterize targeted aldehydes in microenvironments in Sacramento, CA, and Milwaukee, WI, and to improve our understanding of the impact of the urban environment on human exposure to air toxics. Data were obtained from microenvironmental concentration measurements, integrated, 24-h personal measurements, indoor and outdoor pollutant monitors at the participants' residences, from ambient pollutant monitors at fixed-site locations in each city, and from real-time diaries and questionnaires completed by the technicians and participants. As part of this study, a model to predict personal exposures based on individual time/activity data was developed for comparison to measured concentrations. Predicted concentrations were generally within 25% of the measured concentrations. The microenvironments that people encounter daily provide for widely varying exposures to aldehydes. The activities that occur in those microenvironments can modulate the aldehyde concentrations dramatically, especially for environments such as “indoor at home.” By considering personal activity, location (microenvironment), duration in the microenvironment, and a knowledge of the general concentrations of aldehydes in the various microenvironments, a simple model can do a reasonably good job of predicting the time-averaged personal exposures to aldehydes, even in the absence of monitoring data. Although concentrations of aldehydes measured indoors at the participants' homes tracked well with personal exposure, there were instances where personal exposures and indoor concentrations differed significantly. Key to the ability to predict exposure based on time/activity data is the quality and completeness of the microenvironmental characterizations for the chemicals of interest. Consistent with many earlier studies, personal exposures are difficult to predict using data from regional outdoor monitors.  相似文献   

3.
To investigate the potential public health impact of ambient air pollution under various energy scenarios in Shanghai, we estimated the air pollution exposure level of the general population under various planned energy scenarios, and assessed the potential public health impact using the concentration–response functions derived from available epidemiologic studies. The results show that ambient air pollution in relation to various energy scenarios could have significant impact on the health status of Shanghai residents. Compared with base case scenario, implementation of various energy scenarios could prevent 608–5144 and 1189–10,462 PM10-related avoidable deaths (mid-value) in 2010 and 2020, respectively; and it could also decrease substantial cases of relevant diseases. These findings illustrate that an effective energy and environmental policy will play an active role in reduction of air pollutant emissions, improvement of air quality, and public health.  相似文献   

4.
The ongoing program Clean Air for Europe (CAFE) is an initiative from the EU Commission to establish a coordinated effort to reach better air quality in the EU. The focus is on particulate matter as it has been shown to have large impact on human health. CAFE requested that WHO make a review of the latest findings on air pollutants and health to facilitate assessments of the different air pollutants and their health effects. The WHO review project on health aspects of air pollution in Europe confirmed that exposure to particulate matter (PM), despite the lower levels we face today, still poses a significant risk to human health. Using the recommended uniform risk coefficients for health impact assessment of PM, regardless of sources, premature mortality related to long-range transported anthropogenic particles has been estimated to be about 3500 deaths per year for the Swedish population, corresponding to a reduction in life expectancy of up to about seven months. The influence of local sources is more difficult to estimate due to large uncertainties when linking available risk coefficients to exposure data, but the estimates indicate about 1800 deaths brought forward each year with a life expectancy reduction of about 2-3 months. However, some sectors of the population are exposed to quite high locally induced concentrations and are likely to suffer excessive reductions in life expectancy. Since the literature increasingly supports assumptions that combustion related particles are associated with higher relative risks, further studies may shift the focus for abatement strategies. CAFE sets out to establish a general cost effective abatement strategy for atmospheric particles. Our results, based on studies of background exposure, show that long-range transported sulfate rich particles dominate the health effects of PM in Sweden. The same results would be found for the whole of Scandinavia and many countries influenced by transboundary air pollution. However, several health studies, including epidemiological studies with a finer spatial resolution, indicate that engine exhaust particles are more damaging to health than other particles. These contradictory findings must be understood and source specific risk estimates have to be established by expert bodies, otherwise it will not be possible to find the most cost effective abatement strategy for Europe. We are not happy with today's situation where every strategy to reduce PM concentrations is estimated to have the same impact per unit change in the mass concentration. Obviously there is a striking need to introduce more specific exposure variables and a higher geographical resolution in epidemiology as well as in health impact assessments.  相似文献   

5.
ABSTRACT

This paper proposes that a fundamental principle for designing optimal strategies to attain new U.S. particulate matter (PM) standards be minimization of community and susceptible group exposure to, and inhaled dosage of, ambient PM. Properly done, such minimization maximizes human health risk reduction. To illustrate implementation of such a principle, an initial prototype model, PM Exposure (PMEX), is described that calculates PM exposure and inhaled dosage as figures-of-merit for control strategy optimization. The model accounts for age-occupation and susceptible group activity patterns, indoor-outdoor concentration differences, and geographical location. Modeling results are presented for a hypothetical example, apportioning inhaled dosage among different classes of sources, under alternative assumptions about the relative potency of different PM species categories. The results, while preliminary, demonstrate that conclusions about source class contribution based on inhaled dosage can be appreciably different than those based on ambient air measurements or emission inventories.  相似文献   

6.
The objective of this paper is to demonstrate an approach to characterize the spatial variability in ambient air concentrations using mobile platform measurements. This approach may be useful for air toxics assessments in Environmental Justice applications, epidemiological studies, and environmental health risk assessments. In this study, we developed and applied a method to characterize air toxics concentrations in urban areas using results of the recently conducted field study in Wilmington, DE. Mobile measurements were collected over a 4- x 4-km area of downtown Wilmington for three components: formaldehyde (representative of volatile organic compounds and also photochemically reactive pollutants), aerosol size distribution (representing fine particulate matter), and water-soluble hexavalent chromium (representative of toxic metals). These measurements were,used to construct spatial and temporal distributions of air toxics in the area that show a very strong temporal variability, both diurnally and seasonally. An analysis of spatial variability indicates that all pollutants varied significantly by location, which suggests potential impact of local sources. From the comparison with measurements at the central monitoring site, we conclude that formaldehyde and fine particulates show a positive correlation with temperature, which could also be the reason that photochemically generated formaldehyde and fine particulates over the study area correlate well with the fine particulate matter measured at the central site.  相似文献   

7.
Abstract

Concentrations of 38 gas-phase organic air toxics were measured over a 2-yr period at four different sites in and around Pittsburgh, PA, to investigate spatial variations in health risks from chronic exposure. The sites were chosen to represent different exposure regimes: a downtown site with substantial mobile source emissions; two residential sites adjacent to one of the most heavily industrialized zones in Pittsburgh; and a regional background site. Lifetime cancer risks and non-cancer hazard quotients were estimated using a traditional and interactive risk models. Although study average concentrations of specific air toxics varied by as a much as a factor of 26 between the sites, the additive cancer risks of the gas-phase organic air toxics varied by less than a factor of 2, ranging from 6.1 × 10-5 to 9.5 × 10-5. The modest variation in risks reflects the fact that two regionally distributed toxics, formalde-hyde and carbon tetrachloride (CCl4), contributed more than half of the cancer risk at all four sites. Benzene contributed substantial cancer risks at all sites, whereas trichloroethene and 1,4-dichlorobenzene only contributed substantial cancer risks at the downtown site. Only acrolein posed a non-cancer risk. Diesel particulate matter is estimated to pose a much greater cancer risk in Pittsburgh than other classes of air toxics including gas-phase organic, metals, polycyclic aromatic hydrocarbons, and coke oven emissions. Health risks of air toxics in Pittsburgh are comparable with those in other urban areas in the United States.  相似文献   

8.
Changes over recent decades in outdoor concentrations of air pollutants are well documented. However, the impacts of air pollution on an individual's health actually relate not to these outdoor concentrations but to their personal exposure in the different locations in which they spend time. Assessing how personal exposures differ from outdoor concentrations, and how they have changed over recent decades, is challenging. This review focuses on the exposure of children, since they are a particularly sensitive group. Much of children's time is spent indoors, and childhood exposure is closely related to concentrations in the home, at school, and in transport. For this reason, children's personal exposures to air pollutants differ significantly from both those of adults and from outdoor concentrations. They depend on a range of factors, including urbanisation, energy use, building design, travel patterns, and activity profiles; analysis of these factors can identify a wider range of policy measures to reduce children's exposure than direct emission control. There is a very large variation in personal exposure between individual children, caused by differences in building design, indoor and outdoor sources, and activity patterns. Identifying groups of children with high personal exposure, and their underlying causes, is particularly important in regions of the world where emissions are increasing, but there are limited resources for environmental and health protection. Although the science of personal exposure assessment, with the associated measurement and modelling techniques, has developed to maturity in North America and western Europe over the last 50 years, there is an urgent need to apply this science in other parts of the world where the effects of air pollution are now much more serious.  相似文献   

9.
High time-resolved (HTR) measurements can provide significant insight into sources and exposures of air pollution. In this study, an automated instrument was developed and deployed to measure hourly concentrations of 18 gas-phase organic air toxics and 6 volatile organic compounds (VOCs) at three sites in and around Pittsburgh, Pennsylvania. The sites represent different source regimes: a site with substantial mobile-source emissions; a residential site adjacent to a heavily industrialized zone; and an urban background site. Despite the close proximity of the sites (less than 13 km apart), the temporal characteristic of outdoor concentrations varied widely. Most of the compounds measured were characterized by short periods of elevated concentrations or plume events, but the duration, magnitude and composition of these events varied from site to site. The HTR data underscored the strong role of emissions from local sources on exposure to most air toxics. Plume events contributed more than 50% of the study average concentrations for all pollutants except chloroform, 1,2-dichloroethane, and carbon tetrachloride. Wind directional dependence of air toxic concentrations revealed that emissions from large industrial facilities affected concentrations at all of the sites. Diurnal patterns and weekend/weekday variations indicated the effects of the mixing layer, point source emissions patterns, and mobile source air toxics (MSATs) on concentrations. Concentrations of many air toxics were temporally correlated, especially MSATs, indicating that they are likely co-emitted. It was also shown that correlations of the HTR data were greater than lower time resolution data (24-h measurements). This difference was most pronounced for the chlorinated pollutants. The stronger correlations in HTR measurements underscore their value for source apportionment studies.  相似文献   

10.
Health risks from air pollutants are evaluated by comparing chronic (i.e., an average over 1 yr or greater) or acute (typically 1-hr) exposure estimates with chemical- and duration-specific reference values or standards. When estimating long-term pollutant concentrations via exposure modeling, facility-level annual average emission rates are readily available as model inputs for most air pollutants. In contrast, there are far fewer facility-level hour-by-hour emission rates available for many of these same pollutants. In this report, we first analyze hour-by-hour emission rates for total reduced sulfur (TRS) compounds from eight kraft pulp mill operations. This data set is used to demonstrate discrepancies between estimating exposure based on a single TRS emission rate that has been calculated as the mean of all operating hours of the year, as opposed to reported hourly emission rates. A similar analysis is then performed using reported hourly emission rates for sulfur dioxide (SO2) and oxides of nitrogen (NOx) from three power generating units from a U.S. power plant. Results demonstrate greater variability at kraft pulp mill operations, with ratios of reported hourly to average hourly TRS emissions ranging from less than 1 to greater than 160 during routine facility operations. Thus, if fluctuations in hourly emission rates are not accounted for, over- or underestimates of hourly exposure, and thus acute health risk, may occur. In addition to this analysis, we also demonstrate an additional challenge when assessing health risk based on hourly exposures: the lack of human health reference values based on 1-hr exposures.

Implications: Largely due to the lack of reported hourly emission rate data for many air pollutants, an hourly average emission rate (calculated from an annual emission rate) is often used when modeling the potential for acute health risk. We calculated ratios between reported hourly and hourly average emission rates from pulp and paper mills and a U.S. power plant to demonstrate that if not considered, hourly fluctuations in emissions could result in an over- or underestimation of exposure and risk. We also demonstrate the lack of 1-hr human health reference values meant to be protective of the general population, including children.  相似文献   


11.
Some preliminary analyses of data selected from three years of smoke shade and sulfur dioxide measurements from the forty air monitoring stations in New York City are presented. The purpose of these analyses is to investigate the spatial-temporal variation in concentration of these pollutants throughout the five boroughs of the city. Air pollution health effects studies in New York City have often used city-wide daily morbidity or mortality statistics and related them to air pollution levels obtained from a single monitoring station. The question of whether readings at one station in New York City can adequately represent the air pollution exposure for the population in the five boroughs is examined in this paper. Some samples of correlation matrices of daily pollution averages obtained from the forty air monitoring stations are presented to illustrate the day-to-day variation in pollution in various sections of New York City. It was found that interstation correlations are not high enough to justify the use of one central pollution measuring station as representative of a large metropolitan area. Sulfur dioxide correlates better between stations than smoke shade; this may reflect the different nature and spatial distribution of sources of the two pollutants. Close proximity of stations, or the fact that they were at similar heights above street or sea level did not necessarily lead to higher correlation coefficients.  相似文献   

12.
Average 21st century concentrations of urban air pollutants linked to cardiorespiratory disease are not declining, and commonly exceed legal limits. Even below such limits, health effects are being observed and may be related to transient daytime peaks in pollutant concentrations. With this in mind, we analyse >52,000 hourly urban background readings of PM10 and pollutant gases throughout 2007 at a European town with legal annual average concentrations of common pollutants, but with a documented air pollution-related cardiorespiratory health problem, and demonstrate the hourly variations in PM10, SO2, NOx, CO and O3. Back-trajectory analysis was applied to track the arrival of exotic PM10 intrusions, the main controls on air pollutants were identified, and the typical hourly pattern on ambient concentrations during 2007 was profiled. Emphasis was placed on “worst case” data (>90th percentile), when health effects are likely to be greatest. The data show marked daytime variations in pollutants result from rush-hour traffic-related pollution spikes, midday industrial SO2 maxima, and afternoon O3 peaks. African dust intrusions enhance PM10 levels at whatever hour, whereas European PM incursions produce pronounced evening peaks due to their transport direction (across an industrial traffic corridor). Transient peak profiling moves us closer to the reality of personal outdoor exposure to inhalable pollutants in a given urban area. We argue that such an approach to monitoring data potentially offers more to air pollution health effect studies than using only 24 h or annual averages.  相似文献   

13.
Assessment of the health risks resulting from exposure to ambient polycyclic aromatic hydrocarbons (PAHs) is limited by the lack of environmental exposure data among different subpopulations. To assess the exposure cancer risk of particulate carcinogenic polycyclic aromatic hydrocarbon pollution for the elderly, this study conducted a personal exposure measurement campaign for particulate PAHs in a community of Tianjin, a city in northern China. Personal exposure samples were collected from the elderly in non-heating (August–September, 2009) and heating periods (November–December, 2009), and 12 PAHs individuals were analyzed for risk estimation. Questionnaire and time-activity log were also recorded for each person. The probabilistic risk assessment model was integrated with Toxic Equivalent Factors (TEFs). Considering that the estimation of the applied dose for a given air pollutant is dependent on the inhalation rate, the inhalation rate from both EPA exposure factor book was applied to calculate the carcinogenic risk in this study. Monte Carlo simulation was used as a probabilistic risk assessment model, and risk simulation results indicated that the inhalation-ILCR values for both male and female subjects followed a lognormal distribution with a mean of 4.81?×?10?6 and 4.57?×?10?6, respectively. Furthermore, the 95 % probability lung cancer risks were greater than the USEPA acceptable level of 10?6 for both men and women through the inhalation route, revealing that exposure to PAHs posed an unacceptable potential cancer risk for the elderly in this study. As a result, some measures should be taken to reduce PAHs pollution and the exposure level to decrease the cancer risk for the general population, especially for the elderly.  相似文献   

14.
The body of information presented in this paper is directed to policy makers and administrators involved in the evaluation and assessment of damages caused by oxidant air pollution on human health and welfare and of possible benefits of control.

To provide a comparison of some of the benefits that can be obtained by reducing photochemical oxidant levels, estimated health costs were derived from data relating adverse health effects to hourly oxidant concentrations. Hourly oxidant or ozone concentrations were measured at approximately 400 monitoring stations scattered throughout the U.S. Most of these sites were located in major urban areas or in other areas where high oxidant concentrations prevailed. Estimates of populations at risk and per capita health costs were generated for those areas where oxidant data was available.

During the period 1971-1973, nearly two-thirds of the U.S. population resided in areas where the hourly primary standard for oxidants of 160 µg/m3 was exceeded. The total annual health cost attributable to oxidants was estimated to range from $120 to over $240 million in the U.S.  相似文献   

15.
Abstract

The Houston-Galveston metropolitan area has a relatively high density of point and mobile sources of air toxics, and determining and understanding the relationship between emissions and ambient air concentrations of air toxics is important for evaluating potential impacts on public health and formulating effective regulatory policies to control this impact, both in this region and elsewhere. However, conventional ambient air monitoring approaches are limited with regard to expense, siting limitations, and representative sampling necessary for adequate exposure assessment. The overall goal of this multiphase study is to evaluate the use of simple passive air samplers to determine temporal and spatial variability of the ambient air concentrations of selected volatile organic compounds (VOCs) in urban areas. Phase 1 of this study, reported here, was a field evaluation of 3M organic vapor monitors (OVMs) involving limited comparisons with commonly used active sampling methods, an assessment of sampler precision, a determination of optimal sampling duration, and an investigation of the utility of a simple modification of the commercial sampler. The results indicated that a sampling duration of 72 hr exhibited generally low bias relative to automated continuous gas chromatography measurements, good overall precision, and an acceptable number of measurements above detection limits. The modified sampler showed good correlation with the commercial sampler, with higher sampling rates, although lower than expected.  相似文献   

16.
Assessing the effects of air quality management strategies in urban areas is a major concern worldwide because of the large impacts on health caused by the exposure to air pollution. In this sense, this work analyses the changes in urban air quality due to the introduction of a maximum speed limit to 80 km h?1 on motorways in a large city by using a novel methodology combining traffic assimilation data and modelling systems implemented in a supercomputing facility. Albeit the methodology has been non-specifically developed and can be extrapolated to any large city or megacity, the case study of Barcelona is presented here. Hourly simulations take into account the entire year 2008 (when the 80 km h?1 limit has been introduced) vs. the traffic conditions for the year 2007. The data has been assimilated in an emission model, which considers hourly variable speeds and hourly traffic intensity in the affected area, taken from long-term measurement campaigns for the aforementioned years; it also permits to take into account the traffic congestion effect. Overall, the emissions are reduced up to 4%; however the local effects of this reduction achieve an important impact for the adjacent area to the roadways, reaching 11%. In this sense, the speed limitation effects assessed represent enhancements in air quality levels (5–7%) of primary pollutants over the area, directly improving the welfare of 1.35 million inhabitants (over 41% of the population of the Metropolitan Area) and affecting 3.29 million dwellers who are potentially benefited from this strategy for air quality management (reducing 0.6% the mortality rates in the area).  相似文献   

17.
18.
Personal 48-hr exposures of 15 randomly selected participants as well as microenvironment concentrations in each participant's residence and workplace were measured for 16 carbonyl compounds during summer-fall 1997 as a part of the Air Pollution Exposure Distributions within Adult Urban Populations in Europe (EXPOLIS) study in Helsinki, Finland. When formaldehyde and acetaldehyde were excluded, geometric mean ambient air concentrations outside each participant's residence were less than 1 ppb for all target compounds. Geometric mean residential indoor concentrations of carbonyls were systematically higher than geometric mean personal exposures and indoor workplace concentrations. Additionally, residential indoor/outdoor ratios indicated substantial indoor sources for most target compounds. Carbonyls in residential indoor air correlated significantly, suggesting similar mechanisms of entry into indoor environments. Overall, this study demonstrated the important role of non-traffic-related emissions in the personal exposures of participants in Helsinki and that comprehensive apportionment of population risk to air toxics should include exposure concentrations derived from product emissions and chemical formation in indoor air.  相似文献   

19.
Background, Aim and Scope A series of severe air pollution episodes in Europe and North America prior to 1960 have focused scientific and regulatory attention on the adverse effects of air pollution on human health. As a consequence of significant reductions in ambient air pollution levels in the intervening years, scientists and public health officials have become more concerned with the potential health effects of exposure to routine concentrations of air pollution. Several recent time series studies conducted world-wide have found relatively low levels of air pollutants that are below national standards were associated with adverse effects on mortality and morbidity. This study examined the effects of ambient air pollution indicators on the daily rate of pediatric hospital admissions for asthma in the Oklahoma City Metropolitan area from 2001-2003. Results: Negative binomial regression analysis revealed significant relationships between the total number of hospitalizations per day and the one-hour maximum NO2 level, the proportion of susceptible children < 5 years old, and the ratio of temperature to humidity. Discussion: This study of the total number of children aged ≤ 14 years old experiencing hospitalizations on a daily basis in the Oklahoma City area from 2001-2003 underscores factors other than ambient air pollution, especially when concentrations are low, affect hospitalizations for pediatric asthma. For example, information related to indoor air quality, health care, family history, and exposure to environmental tobacco smoke and other irritants are not obtainable. Yet, those factors are risk drivers for asthma. Similarly, health privacy requirements prevented obtaining data on physiological factors specific to each child such as differentials in airways functional capacity or other impairments influenced asthma exacerbation. This makes calculating relative risk inappropriate. Conclusions: Although ambient air pollution concentrations and meteorological conditions influence pediatric asthma hospitalizations, they are not the major predictors in the Oklahoma City metropolitan area. This is consistent with other research that finds limited effects associated with low levels for concentrations of the criteria pollutants.  相似文献   

20.
In researching health effects of air pollution, pollutant levels from fixed-site monitors are commonly assigned to the subjects. However, these concentrations may not reflect the exposure these individuals actually experience. A previous study of ozone (O3) exposure and lung function among shoe-cleaners working in central Mexico City used fixed-site measurements from a monitoring station near the outdoor work sites as surrogates for personal exposure. The present study assesses the degree to which these estimates represented individual exposures. In 1996, personal O3 exposures of 39 shoe-cleaners working outdoors were measured using an active integrated personal sampler. Using mixed models, we assessed the relationship between measured personal O3 exposure and ambient O3 measurements from the fixed-site monitoring station. Ambient concentrations were approximately 50 parts per billion higher, on average, than personal exposures. The association between personal and ambient O3 was highly significant (mixed model slope p < 0.0001). The personal/ambient ratio was not constant, so use of the outdoor monitor would not be appropriate to rank O3 exposure and evaluate health effects between workers. However, the strong within-worker longitudinal association validates previous findings associating day-to-day changes in fixed-site O3 levels with adverse health effects among these shoe-cleaners and suggests fixed-site O3 monitors may adequately estimate exposure for other repeated-measure health studies of outdoor workers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号