首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Simultaneous reduction of SO2 and NO by catalyzed reaction with carbon monoxide at space rates approaching 104 vol/vol/hr has been shown. The reaction of sulfur dioxide with carbon monoxide results in the formation of carbon dioxide and elemental sulfur. Nitric oxide reacts with carbon monoxide to form carbon dioxide and molecular nitrogen. Metals supported on alumina appear to be the preferred catalysts. Among the effective metals are copper, silver, and palladium. A side reaction of carbon monoxide with elemental sulfur to form carbonyl sulfide requires that the initial amount of carbon monoxide be stoichio-metric for the amount of sulfur dioxide plus nitric oxide present. A furnace employing this method would have to be operated at low excess air, near stoichiometric fuel/air, or possibly slightly on the rich side.  相似文献   

2.
During August, 1982 and January and February, 1983, General Motors Research Laboratories operated air monitoring sites on the Atlantic Coast near Lewes, Delaware and 1250 km to the east on the southwest coast of Bermuda. The overall purpose of this project was to study the transformations of the principal acid precipitation precursors, NO x and SO x species, as they transport under conditions not complicated by emissions from local sources. In this paper, the measurements of gas and particulate species from Lewes are described and the composition and sources of sulfate aerosol, which is the most important haze-producing species, are investigated.

On the average, the total suspended particulate (TSP) concentration was 27.9 μg/m3 while the PM10 (mass of particles with a diameter less than or equal to 10 μm) concentration was 22.0 μg/m3 or 79 percent of the TSP. The PM10 consisted of 6.1 μg/m3 of coarse particles (CPM, diameter = 2.5 ? 10μm) and 15.9 μg/m3 of fine particles (FPM, diameter < 2.5 μm).

On a mass basis the most important constituents of the fine particulate fraction were sulfate compounds, 50 percent, and organic compounds, 30 percent. The mean light extinction coefficient corresponds to a visual range of 18-20 km. Most of the extinction can be attributed to the sulfate (60 percent) and organic carbon (13 percent). Particle size measurements show that the mass median aerodynamic diameter for both species is 0.43 μm. This is a typical size for a hydrated sulfate aerosol. For carbon, however, this is a larger size than previously reported and results in a more efficient light scattering aerosol. Principal component analyses indicate that coal combustion emissions from the midwestern U.S. are the most significant source of sulfate in Lewes during the summer and winter.  相似文献   

3.
Abstract

Emissions of sulfur trioxide (SO3) are a key component of plume opacity and acid deposition. Consequently, these emissions need to be low enough to not cause opacity violations and acid deposition. Generally, a small fraction of sulfur (S) in coal is converted to SO3 in coal-fired combustion devices such as electric utility boilers. The emissions of SO3 from such a boiler depend on coal S content, combustion conditions, flue gas characteristics, and air pollution devices being used. It is well known that the catalyst used in the selective catalytic reduction (SCR) technology for nitrogen oxides control oxidizes a small fraction of sulfur dioxide in the flue gas to SO3. The extent of this oxidation depends on the catalyst formulation and SCR operating conditions. Gas-phase SO3 and sulfuric acid, on being quenched in plant equipment (e.g., air preheater and wet scrubber), result in fine acidic mist, which can cause increased plume opacity and undesirable emissions. Recently, such effects have been observed at plants firing high-S coal and equipped with SCR systems and wet scrubbers. This paper investigates the factors that affect acidic mist production in coal-fired electric utility boilers and discusses approaches for mitigating emission of this mist.  相似文献   

4.
This paper presents initial measurement data on the emission of volatile, reduced sulfur-containing gases from flue gas desulfurization (FGD) storage ponds. Several different types of FGD stored sludges were studied including lime, limestone, and mixtures of fly ash and lime or limestone residues, some of which had been chemically stabilized. The volatile sulfur gas emissions were cryogenically concentrated and determined by wall-coated, open-tubular capillary column gas chromatography using a flame photometric detector. Hydrogen sulfide, carbonyl sulfide, dimethyl sulfide, carbon disulfide, and an unusual, unidentified sulfur-containing compound were found in the gaseous pond flux. Benzene, toluene, and α-pinene were also identified by gas chromatography-single ion monitoring mass spectrometry. The total reduced sulfur gas emission from a 100 acre pond approximated 2.0 kg day?1 (as sulfur).  相似文献   

5.
6.
Federal new source performance standards to control air emissions of sulfur dioxide from new industrial boilers were proposed by EPA on June 19, 1986. These standards would require boiler owners to reduce SO2 emissions by 90 percent and meet an emission limit of 1.2 lb/MM Btu of heat input for coal-fired boilers and 0.8 lb/MM Btu for oil-fired boilers. In developing these standards, several regulatory options were considered, from standards that could be met by firing low sulfur fuels to standards that would necessitate flue gas treatment. The environmental, economic, and cost impacts of each option were analyzed. National impacts were estimated by a computer model that projects the population of new boilers over the 5-year period following proposal, predicts the compliance strategy that will be used to comply with the particular option (always assuming that the lowest cost method of compliance will be selected), and estimates the resulting emission reductions and costs. Impacts on specific industries and on model boilers were also analyzed. This paper focuses on these analyses and their results. The Agency's conclusions from these analyses, which led to the decision to establish percent reduction standards, are provided, and the proposed SO2 standards are summarized. The proposed standards also include an emission limit for particulate matter from oil-fired boilers (0.1 lb/MM Btu). However, this article focuses only on the SO2 standards.  相似文献   

7.
ABSTRACT

Project MOHAVE was initiated in 1992 to examine the role of emissions from the 1580 MW coal-fired MOHAVE Power Project (MPP) on haze at the Grand Canyon National Park (GCNP), located about 130 km north-northeast of the power plant. Statistical relationships were analyzed between summertime ambient concentrations of a gaseous perfluorocarbon tracer released from MPP and ambient SO2, particulate sulfur, and light scattering to evaluate whether MPP's emissions could be transported to the GCNP and then impact haze levels there. Spatial analyses indicated that particulate sulfur levels were strongly correlated across the monitoring network, regardless of whether the monitoring stations were upwind or downwind of MPP. This indicates that particulate sulfur levels in this region were influenced by distant regional emission sources. A significant particulate sulfur contribution from a point source such as MPP would result in a non-uniform pattern downwind. There was no suggestion of this in the data.

Furthermore, correlations between the MPP tracer and ambient particulate sulfur and light scattering at locations in the park were virtually zero for averaging times ranging from 24 hr to 1 hr. Hour-by-hour MPP tracer levels and light scattering were individually examined, and still no positive correlations were detected. Finally, agreement between tracer and particulate sulfur did not improve as a function of meteorological regime, implying that, even during cloudy monsoon days when more rapid conversion of SO2 to par-ticulate sulfur would be expected, there was no evidence for downwind particulate sulfur impacts. Despite the fact that MPP was a large source of SO2 and tracer, neither time series nor correlation analyses were able to detect any meaningful relationship between MPP's SO2 and tracer emission “signals” to particulate sulfur or light scattering.  相似文献   

8.
Data are presented for the first systematic measurements of biogenic sulfur gas flux from the major soil orders within the eastern and southeastern United States. Sulfur flux samples were collected and analyzed on-site during the fall of 1977, spring and summer of 1978 and summer of 1979. A total of 27 sampling locales in 17 states were examined. Eight additional sites were visited in 1980.

At some locales, two to four soils were examined, providing an even broader sampling of the soil orders. Three of the locales were revisited two or three times during the course of the study to establish the influence of seasonal climatology upon the measured emission rates and chemical composition of the sulfur flux mixtures.

The sulfur gas enhancement of sulfur-free sweep air passing through dynamic emission flux chambers placed over selected sampling areas was determined by combined cryogenic enrichment sampling and wall-coated, open tubular, capillary column, cryogenic gas chromatography (WCOT/GC) using a sulfur selective, flame photometric detector (FPD).

Sulfur gas mixtures varied with soil order, ambient temperature, insolation, soil moisture, cultivation, and vegetative cover. Statistical analyses indicated strong temperature and soil order relationships for sulfur emissions from soils.

Fluxes ranged from 0.001 g to 1940 g of total sulfur as S/m2/yr. The calculated mean annual sulfur flux, weighted by soil order, was 0.03 g S/m2/yr for the study land area, or 110,872 metric tons (mT). The estimated annual average sulfur flux increased from 65 mT per 6400 km2 for the land grids in the northernmost east-west grid tier to an average 1800 mT for the land grids in the southern Florida grid tiers.

This systematic sampling of major soils provides a much broader data base for estimating biogenic sulfur flux than previously reported for isolated intertidal sites, and presents the first sulfur flux estimates for inland soils which make up approximately 93% of the land of the eastern United States.  相似文献   

9.
The body of information presented in this paper is directed to plant scientists who are concerned with factors which modify the susceptibility of plants to air pollutants.

Tobacco and tomato plants grown in sand-solution culture with varying levels of nitrogen or sulfur were exposed to injurious levels of sulfur dioxide. Plants of both species which were deficient in either nutrient exhibited decreased susceptibility to the gas compared with plants grown at optimal levels of each nutrient. Foliage of these plants was also found to have increased stomatal resistance as measured by a porometer and decreased total sulfur accumulations. Plants grown at optimum levels of each nutrient showed increased susceptibility over that of the deficient plants. Stomatal resistance was lower and sulfur accumulation was greater than in the deficient plants. At the supra-optimal nitrogen and sulfur levels, there were differences in susceptibility. Over-abundant nitrogen appeared to decrease susceptibility whereas over-supplies of sulfur increased it.

The response of plants with deficient or optimal supplies of either nutrient might be explained by the effects of nutrition on stomatal activity and hence on ability to absorb SO2S from the atmosphere, mineral deficiency being known to increase stomatal resistance, and mineral sufficiency, to decrease stomatal resistance by virtue of increased efficiency of water use. The difference in response between plants overfertilized with respect to nitrogen or sulfur is explained by the fact that sulfur is both nutrient and phytotoxicant at the same time. Having already been oyersupplied with sulfur by absorption from the nutrient substrate, the high-sulfur plants were unable to withstand additional sulfur accumulation from the atmosphere and hence were more severely injured.

Increased carbohydrate accumulation in the nitrogen- and sulfur-deficient plants might play an additional role in protection from SO2-injury.  相似文献   

10.
The body of information of this paper is directed to those individuals charged with selecting a process to control atmospheric sulfur emissions from Claus plants serving refineries, gas processing installations, and chemical plants. The TGT process developed by the French Petroleum Institute (IFP) is an extension of the Claus reaction itself in the liquid phase. Mixed H2S and SO2 in tail gas from Claus units is fed to a packed tower in which a solution of proprietary catalyst in a high BP polyglycol circulates countercurrent to the gas flow. The mixed gases react with the catalyst to form a complex, which in turn reacts with more gases to produce elemental sulfur. Reaction temperature keeps the sulfur above its melting point. Product accumulates in the boot of the tower and is drawn off continuously through a seal leg.

The IFP TGT process is simple in design and units have simple construction, characterized by use of low carbon steel and the use of very few pieces of equipment. Of all processes used today to take effluent sulfur values down to 1000 ppm SO2 after incineration, the IFP TGT process requires the least capital investment and the lowest operating costs. Twenty-six full scale plants are operating or under design or construction: nine each in the U.S. and Japan, five in the U.S.S.R. and Poland, two in western Europe and one in Canada. Capacities of the Claus plants served range from 45 to 800 Lt/d sulfur.  相似文献   

11.
Abstract

In this paper, we examine the changes in ambient ozone concentrations simulated by the Community Multiscale Air Quality (CMAQ) model for summer 2002 under three different nitrogen oxides (NOx) emission scenarios. Two emission scenarios represent best estimates of 2002 and 2004 emissions; they allow assessment of the impact of the NOx emissions reductions imposed on the utility sector by the NOx State Implementation Plan (SIP) Call. The third scenario represents a hypothetical rendering of what NOx emissions would have been in 2002 if no emission controls had been imposed on the utility sector. Examination of the modeled median and 95th percentile daily maximum 8-hr average ozone concentrations reveals that median ozone levels estimated for the 2004 emission scenario were less than those modeled for 2002 in the region most affected by the NOx SIP Call. Comparison of the “no-control” with the “2002” scenario revealed that ozone concentrations would have been much higher in much of the eastern United States if the utility sector had not implemented NOx emission controls; exceptions occurred in the immediate vicinity of major point sources where increased NO titration tends to lower ozone levels.  相似文献   

12.
Abstract

Sulfur hexafluoride (SF6) is an important gas for plasma etching processes in the semiconductor industry. SF6 intensely absorbs infrared radiation and, consequently, aggravates global warming. This study investigates SF6 abatement by nonthermal plasma technologies under atmospheric pressure. Two kinds of nonthermal plasma processes—dielectric barrier discharge (DBD) and combined plasma catalysis (CPC)—were employed and evaluated. Experimental results indicated that as much as 91% of SF6 was removed with DBDs at 20 kV of applied voltage and 150 Hz of discharge frequency for the gas stream containing 300 ppm SF6, 12% oxygen (O2), and 40% argon (Ar), with nitrogen (N2) as the carrier gas. Four additives, including Ar, O2, ethylene (C2H4), and H2O(g), are effective in enhancing SF6 abatement in the range of conditions studied. DBD achieves a higher SF6 removal efficiency than does CPC at the same operation condition. But CPC achieves a higher electrical energy utilization compared with DBD. However, poisoning of catalysts by sulfur (S)-containing species needs further investigation. SF6 is mainly converted to SOF2,SO2F4, sulfur dioxide (SO2), oxygen difluoride (OF2), and fluoride (F2). They do not cause global warming and can be captured by either wet scrubbing or adsorption. This study indicates that DBD and CPC are feasible control technologies for reducing SF6 emissions.  相似文献   

13.
Achievement of air quality goals now more than ever requires careful consideration of alternative control strategies in view of national concerns with energy and the economy. Three strategies which might be used by coal-fired steam electric plants to achieve ambient air quality standards for sulfur dioxide have been compared, and the analysis shows that the desired objective can be achieved using the intermittent control strategy with substantially less impact on the environment, less consumption of energy, and at a much lower economic cost than using either stack gas scrubbing or low-sulfur coal.  相似文献   

14.
以实际监测数据为例,详细描述测量试样中的NOx含量不确定度评定方法,包括不确定度源的分析,A类标准不确定度评定、B类标准不确定度评定、合成标准不确定度和扩展不确定度等,对不确定度的分量作了详尽的分析和计算。  相似文献   

15.
A new procedure for determining nitrogen oxides in automobile exhaust has been developed. The new procedure was included in a Bureau of Mines comparative study that aimed at evaluating various widely used methods for determining NOx in auto exhaust. The methods included in the evaluation study follow: (1) Static oxidation in tank (ST method). The method involves oxidation of NO in residence with O2 in a stainless steel tank. (2) Bureau of Mines method (BM method). The method involves application of the ST procedure in exhaust samples from which the hydrocarbons have been removed by combustion over catalyst. (3) Chevron Research method (CR method), as described in the literature. (4) Phenoldisulfonic acid method (PDS method), as described in the literature. The principal objective of this study was to generate experimental evidence which would lead to defining an optimum procedure for converting NO, present in exhaust gas, into NO2; this conversion is desired so that the total of NO + NO2 can be determined quantitatively in the form of NO2. In pursuing this objective, the procedures prescribed by the foregoing methods were comparatively tested. The results indicated that all four methods are subject to error, the extent of which depends on the conditions employed. The BM method was superior from the standpoint of accuracy because it was less affected by interferences due to hydrocarbon-NO2 reactions.  相似文献   

16.
The role of particulate matter and oxides of sulfur in degradation of the atmospheric environment is discussed. The Federal Air Quality Criteria for these pollutants are analyzed for their conformance with the requirement of the Clean Air Act of 1967 that they reflect the latest scientific knowledge pertinent to the indication of their effects on health and welfare. Visibility reduction by suspended particulate matter is treated and the bases for the criteria issued in the documents “Air Quality Criteria for Particulate Matter” and “Air Quality Criteria for Sulfur Oxides” are examined. The reactions between particulate matter and gaseous pollutants are discussed, along with the Impact of particulate matter on modifications of weather processes. Local effects, such as precipitation, are considered. The relationship between pollution by particulate matter and cloud formation is discussed, as are persistence of fog and the observation that certain sources of particulate pollution are also sources of ice nuclei.  相似文献   

17.
Abstract

Supply curves were prepared for coal-fired power plants in the contiguous United States switching to Wyoming's Powder River Basin (PRB) low-sulfur coal. Up to 625 plants, representing ~44% of the nameplate capacity of all coal-fired plants, could switch. If all switched, more than $8.8 billion additional capital would be required and the cost of electricity would increase by up to $5.9 billion per year, depending on levels of plant derating. Coal switching would result in sulfur dioxide (SO2) emissions reduction of 4.5 million t/yr. Increase in cost of electricity would be in the range of 0.31-0.73 cents per kilowatt-hour. Average cost of S emissions reduction could be as high as $1298 per t of SO2. Up to 367 plants, or 59% of selected plants with 32% of 44% nameplate capacity, could have marginal cost in excess of $1000 per t of SO2. Up to 73 plants would appear to benefit from both a lowering of the annual cost and a lowering of SO2 emissions by switching to the PRB coal.  相似文献   

18.
The current literature on the role of sulfur dioxide in air pollution  相似文献   

19.
The catalytic reduction of oxides of nitrogen from leaded automobile exhaust has been demonstrated to be technically feasible. These studies made with copper-containing catalysts are based upon the reducing nature of exhaust caused by the carbon monoxide present. The reaction involves 2 CO + 2 NO → + N2 + CO2 + 178.5 Kcal.  相似文献   

20.
A steady state mesoscale model developed to predict primary SO2 concentrations from a single point source is presented. The model was validated with data from the Midwest Interstate Sulfur Transport and Transformation (MISTT) project, with root mean square errors of 9.69 μg m?3 and 0.42 μg m?3 for SO2 and SO4 respectively. Wet deposition (washout and rainout), eddy dispersivity, dry deposition of SO2 and mean wind speed were found to be the most important factors controlling sulfur dioxide and sulfate concentrations. Estimation of precipitation acidity was then carried out using scavenging theory. The greatest potential acidification occurred approximately 200 km from the source along plume centerllne, which indicates a rather local effect as opposed to a long distance effect. The cross-plume influence was up to 60 km in width at a distance of 400 km from the source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号