首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The objective of this study was to determine the levels of major phytotoxic metals―including cadmium (Cd), copper (Cu), nickel (Ni), and zinc (Zn)―in agricultural soils of Western Macedonia, Greece. We also wanted to determine the possible relationships among elements and between soil properties and elemental concentrations. Surface soil samples, n = 570, were collected and analyzed. The results of the elemental analysis showed that the mean metal concentrations were consistent with reported typical concentrations found in Greek agricultural soils in the cases of Zn and Cu. Cd exhibited lower and Ni higher mean concentrations than the typical levels reported in the literature. Metal concentrations in the majority of the examined samples (>69%) were found to be higher than the respective critical plant-deficiency levels. However, only 0.4% and 0.2% of the analyzed soil samples, respectively, exhibited Cd and Ni concentrations higher than the levels that cause plant toxicity, as referenced by other investigators. These results suggest that the soils studied can be considered as unpolluted with respect to the examined food-chain metal contaminants. However, the levels of the metal concentrations in some of the soil samples, and the low correlation of the metals with soil properties, suggest an anthropogenic rather that lithogenic origin.  相似文献   

2.
At four estuarine sites on the coast of Galicia (northwestern Spain), all of which were affected by the Prestige oil spill, soil samples were taken from polluted and unpolluted areas and their petroleum hydrocarbon contents, heavy metal contents, and other chemical and physical characteristics were measured. Oil pollution altered both chemical and physical soil properties, aggregating soil particles in plaques, lowering porosity, and increasing resistance to penetration and hydrophobicity. The chromium, nickel, copper, iron, lead, and vanadium contents of polluted soils were between 2 and 2500 times higher than those of their unpolluted counterparts and the background concentrations in Galician coastal sediments. In the cases of Cr, Cu, Ni, Pb, and V, their origin in the polluting oil was corroborated by the high correlation (r >/= 0.74) between the concentrations of these metals and the total petroleum hydrocarbon (TPH) content of the polluted soils. Soil redox potentials ranged from -19 to -114 mV in polluted soils and 112 to 164 mV in unpolluted soils, and were negatively correlated with TPH content (p < 0.01). The low values in the polluted soils explain why the soluble fractions of their total heavy metal contents were very small (generally less than 3%, and in many cases undetectable).  相似文献   

3.
High nitrate (NO3-N) concentrations in Iowa rivers have been linked to areas of intensive row crop production, but they have not been experimentally linked to specific management practices used during row crop production. This study demonstrates how the late-spring test for soil NO3-N and the end-of-season test for cornstalk NO3-N can be used to measure N sufficiency levels across many fields and how the results can be used to evaluate management practices within a watershed. More than 3200 soil and cornstalk samples were collected over a 12-yr period from fields planted to corn (Zea mays L.) and already fertilized by farmers using their normal practices. Results showed that early-season rainfall and associated N losses were major factors affecting N concentrations in soils and cornstalks. Evidence for NO3-N movement from fields to rivers was provided by an inverse relationship between annual means for NO3-N concentrations in soils and rivers. Because these losses can be avoided by delaying N applications, the practice of applying N several weeks or months before plants grow was linked to inefficient use of fertilizer and manure N by crops. Results of the study demonstrate how aggregate analyses of soil and cornstalk samples collected across many farms and years make it possible to identify the major factors affecting N management outcomes and, therefore, N management practices that are likely to produce the best outcomes within a watershed or region. This approach seems to have unique potential to interrelate the management practices of farmers, the efficiency of N fertilization, and NO3-N concentrations in rivers.  相似文献   

4.
For heavy metal-contaminated agricultural land, low-cost, plant-based phytoextraction measures can be a key element for a new land management strategy. When agents are applied into the soil, the solubility of heavy metals and their subsequent accumulation by plants can be increased, and, therefore, phytoextraction enhanced. An overview is given of the state of the art of enhancing heavy metal solubility in soils, increasing the heavy metal accumulation of several high-biomass-yielding and metal-tolerant plants, and the effect of these measures on the risk of heavy metal leaching. Several organic as well as inorganic agents can effectively and specifically increase solubility and, therefore, accumulation of heavy metals by several plant species. Crops like willow (Salix viminalis L.), Indian mustard [Brassica juncea (L.) Czern.], corn (Zea mays L.), and sunflower (Helianthus annuus L.) show high tolerance to heavy metals and are, therefore, to a certain extent able to use the surpluses that originate from soil manipulation. More than 100-fold increases of lead concentrations in the biomass of crops were reported, when ethylenediaminetetraacetic acid (EDTA) was applied to contaminated soils. Uranium concentrations could be strongly increased when citric acid was applied. Cadmium and zinc concentrations could be enhanced by inorganic agents like elemental sulfur or ammonium sulfate. However, leaching of heavy metals due to increased mobility in soils cannot be excluded. Thus, implementation on the field scale must consider measures to minimize leaching. So, the application of more than 1 g EDTA kg(-1) becomes inefficient as lead concentration in crops is not enhanced and leaching rate increases. Moreover, for large-scale applications, agricultural measures as placement of agents, dosage splitting, the kind and amount of agents applied, and the soil properties are important factors governing plant growth, heavy metal concentrations, and leaching rates. Effective prevention of leaching, breeding of new plant material, and use of the contaminated biomass (e.g., as biofuels) will be crucial for the acceptance and the economic breakthrough of enhanced phytoextraction.  相似文献   

5.
The decontamination of soils and wastes polluted with heavy metals presents one of the most intractable problems for soil clean-up. Present technology relies upon metal extraction or immobilization processes, both of which are expensive and which remove all biological activity in the soil during decontamination. They may only be appropriate for small areas of valuable redevelopment land. In this paper the use of metal-accumulating plants is explored for the removal of metals from superficially-contaminated soils such as those resulting from the long-term application to land of metal-contaminated sewage sludges. Green remediation employs plants native to metalliferous soils with a capacity to bioaccumulate metals such as zinc and nickel to concentrations greater than 2% in the aerial plant dry matter (hyperaccumulators). Growing such plants under intensive crop conditions and harvesting the dry matter is proposed as a possible method of metal removal and for ‘polishing’ contaminated agricultural soils down to metal concentrations below statutory limits. Not only are the biological activity and physical structure of soils maintained but the technique is potentially cheap, visually unobtrusive and offers the possibility of biorecovery of metals. The limitations of the process are reviewed and the future requirements for the development of efficient phytoremediators are outlined.  相似文献   

6.
One of the potential environmental effects of the recent rapid increase in the global agricultural area cultivated with transgenic crops is a change in soil microbially mediated processes and functions. Among the many essential functions of soil biota are soil organic matter decomposition, nutrient mineralization and immobilization, oxidation-reduction reactions, biological N fixation, and solubilization. However, relatively little research has examined the direct and indirect effects of transgenic crops and their management on microbially mediated nutrient transformations in soils. The objectives of this paper are to review the available literature related to the environmental effects of transgenic crops and their management on soil microbially mediated nutrient transformations, and to consider soil properties and climatic factors that may affect the impact of transgenic crops on these processes. Targeted genetic traits for improved plant nutrition include greater plant tolerance to low Fe availability in alkaline soils, enhanced acquisition of soil inorganic and organic P, and increased assimilation of soil N. Among the potential direct effects of transgenic crops and their management are changes in soil microbial activity due to differences in the amount and composition of root exudates, changes in microbial functions resulting from gene transfer from the transgenic crop, and alteration in microbial populations because of the effects of management practices for transgenic crops, such as pesticide applications, tillage, and application of inorganic and organic fertilizer sources. Possible indirect effects of transgenic crops, including changes in the fate of transgenic crop residues and alterations in land use and rates of soil erosion, deserve further study. Despite widespread public concern, no conclusive evidence has yet been presented that currently released transgenic crops, including both herbicide and pest resistant crops, are causing significant direct effects on stimulating or suppressing soil nutrient transformations in field environments. Further consideration of the effects of a wide range of soil properties, including the amount of clay and its mineralogy, pH, soil structure, and soil organic matter, and variations in climatic conditions, under which transgenic crops may be grown, is needed in evaluating the impact of transgenic crops on soil nutrient transformations. Future environmental evaluation of the impact of the diverse transgenic crops under development could lead to an improved understanding of soil biological functions and processes.  相似文献   

7.
针对目前土壤-农作物镉污染问题,以浙江省40个县(市、区)主要优势农产品产区为研究对象,在粮食、油菜、蔬菜种植地以及茶园和果园土壤中共采集898个单元土壤样品及相对应的五大类农作物,并对其镉含量进行分析评价;同时采用富集系数比较不同农作物对土壤重金属镉的吸收差异。结果表明,研究区产地土壤和农作物的镉含量存在一定程度超标,土壤超标率为10.69%,农作物超标率为4.57%。不同农作物对土壤镉的富集系数差异较大,变化范围在0.002~0.257之间。土壤-农作物镉含量的相关性并不显著。  相似文献   

8.
Soil concentrations and degradation rates of methyl isothio-cyanate (MITC), chloropicrin (CP), 1,3-dichloropropene (1,3-D), and dimethyl disulfide (DMDS) were determined under fumigant application scenarios representative of commercial raised bed, plastic mulched vegetable production systems. Five days after application, 1,3-D, MITC, and CP were detected at concentrations up to 3.52, 0.72, and 2.45 μg cm, respectively, in the soil atmosphere when applications were made in uniformly compacted soils with a water content >200% of field capacity and covered by a virtually impermeable or metalized film. By contrast, DMDS, MITC, and CP concentrations in the soil atmosphere were 0.81, 0.02, and 0.05 μg cm, respectively, 5 d after application in soil containing undecomposed plant residue, numerous large (>3 mm) clods, and water content below field capacity and covered by low-density polyethylene. Ranked in order of impact on the persistence of fumigants in soil were soil water content (moisture), soil tilth (the physical condition of soil as related to its fitness as a planting bed), the type of plastic film used to cover fumigated beds, and soil texture. Fumigants were readily detected 13 d after application when applied in uniformly compacted soils with water contents >200% of capacity and covered by a virtually impermeable or metalized film. By contrast, 1,3-D and MITC had dissipated 5 d after application in soils with numerous large (>3 mm) clods and water contents below field capacity that were covered by low-density polyethylene. Soil degradation of CP, DMDS, and MITC were primarily attributed to biological mechanisms, whereas degradation of 1,3-D was attributed principally to abiotic factors. This study demonstrates improved soil retention of agricultural fumigants in application scenarios representative of good agricultural practices.  相似文献   

9.
Lead (Pb) contamination of the environment is an important human health problem. Children are vulnerable to Pb toxicity; it causes damage to the central nervous system and, in some extreme cases, can cause death. Lead is widespread, especially in the urban environment, and is present in the atmosphere, soil, water and food. Pb tends to accumulate in surface soil because of its low solubility, mobility, and relative freedom from microbial degradation of this element in the soil. Lead is present in soil as a result to weathering and other pedogenic processes acting on the soil parent material; or from pollution arising caused by the anthropogenic activities; such as mining, smelting and waste disposal; or through the adoption of the unsafe and unethical agricultural practices such as using of sewage sludge, and waste water in production of vegetable crops or cultivation of vegetables near highways and industry regions. Lead concentrations are generally higher in the leafy vegetables than the other vegetables. Factors affecting lead uptake included its concentration in the soil, soil pH, soil type, organic matter content, plant species, and unsafe agriculture practices. Generally, as Pb concentration increased; dry matter yields of roots, stems and leaves as well as total yield decreased. The mechanism of growth inhibition by lead involve: a decrease in number of dividing cells, a reduction on chlorophyll synthesis, induced water stress to plants, and decreased NO 3 - uptake, reduced nitrate and nitrite reductase activity, a direct effect of lead on protein synthesis, a decrease on the uptake and concentration of nutrients in plants. The strategies to minimize Pb hazard can be represented in: (a) Phytoremediation, through natural plants are able to bio-accumulate Pb in their above–ground parts, which are then harvested for removal such as, using Indian Mustard (Brassica juncea), Ragweed (Ambrosia artemisiifolia), Hemp Dogbane (Apocynum cannabium), or Poplar trees, which sequester lead in its biomass. (b) Good and ethical agricultural practices such as cultivation of vegetables crops as far from busy streets or highways and industry regions as well as nonuse of sewage sludge and waste water in cultivated soils. (c) Increasing the absorptive capacity of the soil by adding organic matter and humic acid. (d) Growing vegetable crops and cultivars with a low potential to accumulate lead, especially in soils exposed to atmospheric pollution. (e) Washing of leafy vegetables by water containing 1 % vinegar or peeling roots, tubers, and some fruits of vegetables before consumption may be an important factor in reducing the lead concentration.  相似文献   

10.
文中首先阐述了重金属污染土壤的途径与特点。介绍了当前几类主要的重金属污染土壤修复方法:物理化学方法、植物修复法、微生物修复法、动物修复法等的技术要点,详述了各自的技术特点及机理,并对它们的修复效能、环境友好性等进行了比较。从土壤的特性出发,区分出了3种典型的遭受重金属污染的土壤:农业土壤、城市土壤、矿区土壤,并从国内外最新的重金属污染修复实践中选取了适合各自土壤类型的修复方法进行了重金属污染土壤的治理探讨。最后,对土壤重金属污染修复技术的发展进行了展望。  相似文献   

11.
The importance of agricultural practices to greenhouse gas mitigation is examined worldwide. However, there is no consensus on soil organic carbon (SOC) content and CO emissions as affected by soil management practices and their relationships with soil texture. No-till (NT) agriculture often results in soil C gain, though, not always. Soil net CO exchange rate (NCER) and environmental factors (SOC, soil temperature [T], and water content [W]), as affected by soil type (loam and sandy loam), tillage (conventional, reduced, and NT), and fertilization, were quantified in long-term field experiments in Lithuania. Soil tillage and fertilization affected total CO flux (heterotrophic and autotrophic) through effect on soil SOC sequestration, water, and temperature regime. After 11 yr of different tillage and fertilization management, SOC content was 23% more in loam than in sandy loam. Long-term NT contributed to 7 to 27% more SOC sequestration on loam and to 29 to 33% more on sandy loam compared with reduced tillage (RT) or conventional tillage (CT). Soil water content in loam was 7% more than in sandy loam. Soil gravimetric water content, averaged across measurement dates and fertilization treatments, was significantly less in NT than CT and RT in both soils. Soil organic carbon content and water storage capacity of the loam and sandy loam soils exerted different influences on NCER. The NCER from the sandy loam soil was 13% greater than that from the loam. In addition, NCER was 4 to 9% less with NT than with CT and RT systems on both loam and sandy loam soils. Application of mineral NPK fertilizers promoted significantly greater NCER from loam but suppressed NCER by 15% from sandy loam.  相似文献   

12.
Soil pollution with Cd is an environmental problem common in the world, and it is necessary to establish what Cd concentrations in soil could be dangerous to its fertility from toxicity effects and the risk of transference of this element to plants and other organisms of the food chain. In this study, we assessed Cd toxicity on soil microorganisms and plants in two semiarid soils (uncultivated and cultivated). Soil ATP content, dehydrogenase activity, and plant growth were measured in the two soils spiked with concentrations ranging from 3 to 8000 mg Cd/kg soil and incubated for 3 h, 20 days, and 60 days. The Cd concentrations that produced 5%; 10%;, and 50%; inhibition of each of the two soil microbiological parameter studied (ecological dose, ED, values) were calculated using two different mathematical models. Also, the effect of Cd concentration on plant growth of ryegrass (Lolium perenne, L.) was studied in the two soils. The Cd ED values calculated for soil dehydrogenase activity and ATP content were higher in the agricultural soils than in the bare soil. For ATP inhibition, higher ED values were calculated than for dehydrogenase activity inhibition. The average yields of ryegrass were reduced from 5.03 to 3.56 g in abandoned soil and from 4.21 to 1.15 g in agricultural soil with increasing concentrations of Cd in the soil. Plant growth was totally inhibited in abandoned and agricultural soils at Cd concentrations above 2000 and 5000 mg/kg soil, respectively. There was a positive correlation between the concentration of Cd in the plants and the total or DTPA-extractable concentrations of Cd in the soil.  相似文献   

13.
The bioavailability of cobalt and its transfer from soil to vegetables and rice were investigated. Among 312 soils collected from vegetable and paddy fields in the suburban areas of some major cities of Fujian Province, southeast China, total soil Co ranged from 3.5 to 21.7 mg kg?1, indicating a slight accumulation compared with the background value of the province. DTPA extracted 0.1–8.5% of soil total Co. Total and DTPA-extractable Co correlated with soil pH, CEC, free Fe, total Mn, clay and silt content more significantly in paddy soils than in the soils from vegetable fields. The average Co concentrations in the edible parts of vegetables and rice were 15.4 μg kg?1 and 15.5 μg kg?1, respectively. The transfer factor (the ratio of plant Co to soil DTPA-extractable Co, TFDTPA) ranged from 0.003 to 0.126 with a median of 0.049. The TFDTPA decreased in the order of leafy vegetables > fruit vegetables > root vegetables > rice. The TFDTPA of all crops decreased with increasing DTPA-extractable Co. Increase in pH, CEC, organic matter, clay, silt, free iron and total Mn limited the soil-to-plant transfer of Co to varying degrees. The transfer of Co from the soils to the edible parts of the crops was lower than that of Zn, Cu and Cd, but higher than that of Pb in the same areas. The concentrations of Co in rice and vegetables in the study areas were considered to be safe for the local residents because of the slight anthropogenic input and the low transfer potential to the edible parts of Co from the soils.  相似文献   

14.
Reclamation of trace element polluted soils often requires the improvement of the soil quality by using appropriate organic amendments. Low quality compost from municipal solid waste has been tested for reclamation of soils, but these materials can provide high amounts of heavy metals. Therefore, a high-quality compost, with low levels of heavy metals, produced from the main by-product of the Spanish olive oil extraction industry ("alperujo") was evaluated for remediation of soils affected by a pyritic mine sludge. Two contaminated soils were selected from the same area: they were characterised by differing pH values (4.6 and 7.3) and total metal concentrations, which greatly affected the fractionation of the metals. Compost was applied to soil at two rates (equivalent to 48 and 72 Tm ha(-1)) and compared with an inorganic fertiliser treatment. Compost acted as an available nutrient source (C, N and P) and showed a low mineralisation rate, suggesting a slow release of nutrients and thus favouring long term soil fertility. In addition, the liming effect of the compost led to a significant reduction of toxicity for soil microorganisms in the acidic soil and immobilisation of soil heavy metals (especially Mn and Zn), resulting in a clear increase in both soil microbial biomass and nitrification. Such positive effects were clearly greater than those provoked by the mineral fertiliser even at the lowest compost application rate, which indicates that this type of compost can be very useful for bioremediation programmes (reclamation and revegetation of polluted soils) based on phytostabilisation strategies.  相似文献   

15.
An unsaturated-zone transport model was used to examine the transport and fate of metolachlor applied to an agricultural site in Maryland, USA. The study site was instrumented to collect data on soil-water content, soil-water potential, ground water levels, major ions, pesticides, and nutrients from the unsaturated zone during 2002-2004. The data set was enhanced with site-specific information describing weather, soils, and agricultural practices. The Root Zone Water Quality Model was used to simulate physical, chemical, and biological processes occurring in the unsaturated zone. Model calibration to bromide tracer concentrations indicated flow occurred through the soil matrix. Simulated recharge rates were within the measured range of values. The pesticide transport model was calibrated to the intensive data collection period (2002-2004), and the calibrated model was then used to simulate the period 1984 through 2004 to examine the impact of sustained agricultural management practices on the concentrations of metolachlor and its degradates at the study site. Simulation results indicated that metolachlor degrades rapidly in the root zone but that the degradates are transported to depth in measurable quantities. Simulations indicated that degradate transport is strongly related to the duration of sustained use of metolachlor and the extent of biodegradation.  相似文献   

16.
Phosphorus transport from agricultural soils contributes to eutrophication of fresh waters. Computer modeling can help identify agricultural areas with high potential P transport. Most models use a constant extraction coefficient (i.e., the slope of the linear regression between filterable reactive phosphorus [FRP] in runoff and soil P) to predict dissolved P release from soil to runoff, yet it is unclear how variations in soil properties, management practices, or hydrology affect extraction coefficients. We investigated published data from 17 studies that determined extraction coefficients using Mehlich-3 or Bray-1 soil P (mg kg(-1)), water-extractable soil P (mg kg(-1)), or soil P sorption saturation (%) as determined by ammonium oxalate extraction. Studies represented 31 soils with a variety of management conditions. Extraction coefficients from Mehlich-3 or Bray-1 soil P were not significantly different for 26 of 31 soils, with values ranging from 1.2 to 3.0. Extraction coefficients from water-extractable soil P were not significantly different for 17 of 20 soils, with values ranging from 6.0 to 18.3. The relationship between soil P sorption saturation and runoff FRP (microg L(-1)) was the same for all 10 soils investigated, exhibiting a split-line relationship where runoff FRP rapidly increased at P sorption saturation values greater than 12.5%. Overall, a single extraction coefficient (2.0 for Mehlich-3 P data, 11.2 for water-extractable P data, and a split-line relationship for P sorption saturation data) could be used in water quality models to approximate dissolved P release from soil to runoff for the majority of soil, hydrologic, or management conditions. A test for soil P sorption saturation may provide the most universal approximation, but only for noncalcareous soils.  相似文献   

17.
Concern over nonpoint source P losses from agricultural lands to surface waters in frigid climates has focused attention on the role of freezing and thawing on P loss from catch crops (cover crops). This study evaluated the effect of freezing and thawing on the fate of P in bare soils, soils mixed with dairy manure, and soils with an established catch crop of annual ryegrass (Lolium multiflorum L.). Experiments were conducted to evaluate changes in P runoff from packed soil boxes (100 by 20 by 5 cm) and P leaching from intact soil columns (30 cm deep). Before freezing and thawing, total P (TP) in runoff from catch-cropped soils was lower than from manured and bare soils due to lower erosion. Repeated freezing and thawing significantly increased water-extractable P (WEP) from catch crop biomass and resulted in significantly elevated concentrations of dissolved P in runoff (9.7 mg L(-1)) compared with manured (0.18 mg L(-1)) and bare soils (0.14 mg L(-1)). Catch crop WEP was strongly correlated with the number of freeze-thaw cycles. Freezing and thawing did not change the WEP of soils mixed with manures, nor were differences observed in subsurface losses of P between catch-cropped and bare soils before or after manure application. This study illustrates the trade-offs of establishing catch crops in frigid climates, which can enhance P uptake by biomass and reduce erosion potential but increase dissolved P runoff.  相似文献   

18.
Soil organic C (SOC) content can increase by managing land use practices in which the rates of organic C input exceed those of organic C mineralization. Understanding the changes in SOC content of Black soils (mainly Typic Halpudoll) in northeast China is necessary for sustainable using of soil resources there. We used the RothC model to estimate SOC levels of Black soils under monoculture cropping corn in a long-term fertilization trial at Gongzhuling, Jilin Province, China. The model outputs for the changes in SOC were compared with measured data in this long-term fertilization/manure trial. The sound performance of model in simulating SOC changes suggests that RothC is feasible with Black soils in the temperate climatic region of northeast China. The modeled and measured results indicated that the treatment without fertilizer/farmyard manure (FYM) addition led to a continuous decline in SOC during the study period and N and NPK fertilization were inadequate to maintain the SOC levels in the plow layer (upper 20 cm) unless FYM was added under the current conventional management associated with no above-ground crop residues returning into the soil. Soil organic carbon could follow the same path of decline if the same management practices are maintained. Model results indicate that returning above-ground crop residues to the soil from 2002 to 2022 would increase SOC by 26% for the treatment without fertilization addition, 40% for N treatment, 45% for NPK treatment, and 38% and 46% for N and NPK treatments with FYM addition, compared to the levels in the corresponding treatments in 2002. The simulation results suggest that the RothC model is a feasible tool to assess SOC trend under different management practices, and returning above-ground crop residues into the soil would lead to a remarkable increase in SOC of Black soils in the region.  相似文献   

19.
Changes in forest and agricultural land management practices have the potential to increase carbon (C) storage by terrestrial systems, thus offsetting C emissions to the atmosphere from energy production. This study assesses that potential for three terrestrial management practices within the state of Virginia, USA: afforestation of marginal agricultural lands; afforestation of riparian agricultural lands; and changing tillage practices for row crops; each was evaluated on a statewide basis and for seven regions within the state. Lands eligible for each practice were identified, and the C storage potential of each practice on those lands was estimated through a modeling procedure that utilized land-resource characteristics represented in Geographic Information System databases. Marginal agricultural lands’ afforestation was found to have the greatest potential (1.4 Tg C yr−1, on average, over the first 20 years) if applied on all eligible lands, followed by riparian afforestation (0.2 Tg C yr−1 over 20 years) and tillage conversion (0.1 Tg C yr−1 over 14 years). The regions with the largest potentials are the Ridge and Valley of western Virginia (due to extensive areas of steep, shallow soils) and in the Mid-Atlantic Coastal Plain in eastern Virginia (wet soils). Although widespread and rapid implementation of the three modeled practices could be expected to offset only about 3.4% of Virginia’s energy-related CO2 emissions over the following 20 years (equivalent to about 8.5% of a Kyoto Treaty–based target), they could contribute to achievement of C-management goals if implemented along with other mitigation measures.  相似文献   

20.
The effect of pH on metal accumulation in two Alyssum species   总被引:1,自引:0,他引:1  
Nickel phytoextraction using hyperaccumulator plants offers a potential for profit while decontaminating soils. Although soil pH is considered a key factor in metal uptake by crops, little is known about soil pH effects on metal uptake by hyperaccumulator plants. Two Ni and Co hyperaccumulators, Alyssum murale and A. corsicum, were grown in Quarry muck (Terric Haplohemist) and Welland (Typic Epiaquoll) soils contaminated by a Ni refinery in Port Colborne, Ontario, Canada, and in the serpentine Brockman soil (Typic Xerochrepts) from Oregon, USA. Soils were acidified and limed to cover pH from strongly acidic to mildly alkaline. Alyssum grown in both industrially contaminated soils exhibited increased Ni concentration in shoots as soil pH increased despite a decrease in water-soluble soil Ni, opposite to that seen with agricultural crop plants. A small decrease in Alyssum shoot Ni concentration as soil pH increased was observed in the serpentine soil. The highest fraction of total soil Ni was phytoextracted from Quarry muck (6.3%), followed by Welland (4.7%), and Brockman (0.84%). Maximum Ni phytoextraction was achieved at pH 7.3, 7.7, and 6.4 in the Quarry, Welland, and Brockman soils, respectively. Cobalt concentrations in shoots increased with soil pH increase in the Quarry muck, but decreased in the Welland soil. Plants extracted 1.71, 0.83, and 0.05% of the total soil Co from Welland, Quarry, and Brockman, respectively. The differences in uptake pattern of Ni and Co by Alyssum from different soils and pH were probably related to the differences in organic matter and iron contents of the soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号