首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the mid-1800s, the agricultural chemist Justus von Liebig demonstrated strong positive relationships between soil nutrient supplies and the growth yields of terrestrial plants, and it has since been found that freshwater and marine plants are equally responsive to nutrient inputs. Anthropogenic inputs of nutrients to the Earth's surface and atmosphere have increased greatly during the past two centuries. This nutrient enrichment, or eutrophication, can lead to highly undesirable changes in ecosystem structure and function, however. In this paper we briefly review the process, the impacts, and the potential management of cultural eutrophication in freshwater, marine, and terrestrial ecosystems. We present two brief case studies (one freshwater and one marine) demonstrating that nutrient loading restriction is the essential cornerstone of aquatic eutrophication control. In addition, we present results of a preliminary statistical analysis that is consistent with the hypothesis that anthropogenic emissions of oxidized nitrogen could be influencing atmospheric levels of carbon dioxide via nitrogen stimulation of global primary production.  相似文献   

2.
An in-situ experiment was performed to quantify the impacts of copper sulfate on plankton structure and carbon dynamics. Plankton were exposed to 140 microg litre(-1) copper in quadruplicate mesocosms. Community structure was monitored for 14 days by microscopical counts and compared with untreated controls. Carbon dynamics were assessed by tracer studies using (14)C bicarbonate and (14)C glucose, to follow the fate of carbon in the algal- and bacterial-based pathways, respectively. Copper reduced the dry-weight biomass of zooplankton, ciliates, flagellates, and autotrophic phytoplankton. Bacterial biomass was increased by an order of magnitude relative to the controls. The bacterial response was most likely due to reduced grazing pressure and/or nutrient release from dying plankton. Copper reduced the effectiveness of the food web in transporting carbon to the surviving zooplankton. Bacterial-based pathways were more greatly affected than algal-based pathways, because zooplankton in the copper treatment were macro-grazers (cyclopoids), which cannot utilize bacteria.  相似文献   

3.
Tong Y  Lin G  Ke X  Liu F  Zhu G  Gao G  Shen J 《Chemosphere》2005,60(1):85-92
In order to investigate the role of the microbial community in aquatic ecology and nutrient transformations in the development of eutrophication in large shallow freshwater lakes along Yangtze River, the microbial community in the depth-related sediment in Lake Chaohu and Lake Longganhu were compared. Lake Chaohu is one of the three most polluted lakes in China. However, the neighboring Lake Longganhu, a mesotrophic lake, is relatively pristine. The total phosphorous (TP) and total nitrogen (TN) concentration in water was detected at 0.193 mgl(-1) and 3.035 mgl(-1) for Lake Chaohu, 0.051 mgl(-1) and 0.774 mgl(-1) for Lake Longganhu, respectively. The population of the microorganisms with various ecological nutrient transforming functions (e.g. phosphate solubilizing, denitrifying and cellulose decomposing) and a batch of environmental parameters concerning the nutrient accumulating and transforming (e.g. total organic carbon, total nitrogen, and total phosphorous concentrations) were assayed in the depth-related sediment samples from several defined points in both lakes. The sediment samples from Lake Chaohu showed higher density of actinomycetes (P<0.05) and phosphate-solubilizing bacteria (P<0.001) and less profusion of denitrifying bacteria (P<0.05) and cellulolytic microbes (P<0.001), compared with those of Lake Longganhu. The data suggested that the current microbial community in the sediment of Lake Chaohu is in favor of sustaining or further accelerating the process of the lake eutrophication. A possible positive feedback loop which consists of sustained growth of microorganisms and gradual decline of lake eutrophic status is worth further discussing.  相似文献   

4.
Cyanobacterial blooms represent a serious threat to the aquatic environment. Among other effects, biochemical markers have been studied in aquatic vertebrates after exposures to toxic cyanobacteria. Some parameters such as protein phosphatases may serve as selective markers of exposure to microcystins, but under natural conditions, fish are exposed to complex mixtures, which affect the overall biomarker response. This review aims to provide a critical summary of biomarker responses in aquatic vertebrates (mostly fish) to toxic cyanobacteria with a special focus on detoxification and oxidative stress. Detoxification biomarkers such as glutathione (GSH) and glutathione-S-transferase (GST) showed very high variability with poor general trends. Often, stimulations and/or inhibitions and/or no effects at GSH or GST have been reported, even within a single study, depending on many variables, including time, dose, tissue, species, etc. Most of the oxidative stress biomarkers (e.g., superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase) provided more consistent responses, but only lipid peroxidation (LPO) seemed to fulfill the criteria needed for biomarkers, i.e., a sufficiently long half-life and systematic response. Indeed, reviewed papers demonstrated that toxic cyanobacteria systematically elevate levels of LPO, which indicates the important role of oxidative damage in cyanobacterial toxicity. In summary, the measurement of biochemical changes under laboratory conditions may provide information on the mode of toxic action. However, comparison of different studies is very difficult, and the practical use of detoxification or oxidative stress biomarkers as diagnostic tools or early warnings of cyanobacterial toxicity is questionable.  相似文献   

5.
Environmental Science and Pollution Research - This paper reviews the current state-of-the-art, limitations, critical issues, and new directions in freshwater plant ecotoxicology. We selected...  相似文献   

6.
A review of the scientific literature on pesticide residues in freshwater and marine zooplankton indicates that despite the great number of pesticides in current use, only residues of the persistent organochlorine insecticides, many of which have been restricted or removed from general use in North America, have been determined. Much of this information is outdated. In addition, with the exception of the Great Lakes on which limited information is available, reports on residues in freshwater zooplankton are rare. Information on residues of the newer, less persistent but heavily used pesticides is lacking. As an alternative to field sampling and chemical analysis of endemic populations of zooplankton, scientists have modeled the bioaccumulation of pesticides in zooplankton using either laboratory microcosms or mathematical equations. However, the extent and importance of trophic transfer to higher food levels through this intermediary group of organisms is still controversial. In addition, the relationship between accumulation of pesticides and toxicity to zooplankton remains unresolved.  相似文献   

7.
8.
BACKGROUND: Triggered by the requirement of Water Framework Directive for a good ecological status for European river systems till 2015 and by still existing lacks in tools for cause identification of insufficient ecological status MODELKEY (http:// www.modelkey.org), an Integrated Project with 26 partners from 14 European countries, was started in 2005. MODELKEY is the acronym for 'Models for assessing and forecasting the impact of environmental key pollutants on freshwater and marine ecosystems and biodiversity'. The project is funded by the European Commission within the Sixth Framework Programme. OBJECTIVES: MODELKEY comprises a multidisciplinary approach aiming at developing interlinked tools for an enhanced understanding of cause-effect-relationships between insufficient ecological status and environmental pollution as causative factor and for the assessment and forecasting of the risks of key pollutants on fresh water and marine ecosystems at a river basin and adjacent marine environment scale. New modelling tools for risk assessment including generic exposure assessment models, mechanistic models of toxic effects in simplified food chains, integrated diagnostic effect models based on community patterns, predictive component effect models applying artificial neural networks and GIS-based analysis of integrated risk indexes will be developed and linked to a user-friendly decision support system for the prioritisation of risks, contamination sources and contaminated sites. APPROACH: Modelling will be closely interlinked with extensive laboratory and field investigations. Early warning strategies on the basis of sub-lethal effects in vitro and in vivo are provided and combined with fractionation and analytical tools for effect-directed analysis of key toxicants. Integrated assessment of exposure and effects on biofilms, invertebrate and fish communities linking chemical analysis in water, sediment and biota with in vitro, in vivo and community level effect analysis is designed to provide data and conceptual understanding for risk arising from key toxicants in aquatic ecosystems and will be used for verification of various modelling approaches. CONCLUSION AND PERSPECTIVE: The developed tools will be verified in case studies representing European key areas including Mediterranean, Western and Central European river basins. An end-user-directed decision support system will be provided for cost-effective tool selection and appropriate risk and site prioritisation.  相似文献   

9.
10.
Environmental Science and Pollution Research - Metal toxicity can largely affect the growth and yield of numerous plant species. Plants have developed specific mechanisms to withstand the varying...  相似文献   

11.
12.
Medina MH  Correa JA  Barata C 《Chemosphere》2007,67(11):2105-2114
Polluting events can change community structure and ecosystem functioning. Selection of genetically inherited tolerance on exposed populations, here referred as micro-evolution due to pollution, has been recognized as one of the causes of these changes. However, there is a gap between studies addressing this process and those assessing effects at higher levels of biological organization. In this review we attempt to address these evolutionary considerations into the ecological risk assessment (ERA) of polluting events and to trigger the discussion about the consequences of this process for the ecosystem response to toxic stress. We provide clear evidence that pollution drives micro-evolutionary processes in several species. When this process occurs, populations inhabiting environments that become polluted may persist. However, due to the existence of ecological costs derived from the loss of genetic variability, negative pleiotropy with fitness traits and/or from physiological alterations, micro-evolution due to pollution may alter different properties of the affected populations. Despite the existence of empirical evidence showing that safety margins currently applied in the ERA process may account for pollution-induced genetic changes in tolerance, information regarding long-term ecological consequences at higher levels of biological organization due to ecological costs is not explicitly considered in these procedures. In relation to this, we present four testable hypotheses considering that micro-evolution due to pollution acts upon the variability of functional response traits of the exposed populations and generates changes on their functional effect traits, therefore, modifying the way species exploit their ecological niches and participate in the overall ecosystem functioning.  相似文献   

13.

Purpose

The main goals of this study were to investigate (1) the behavior of microbial communities in response to low-dose bioavailable anthracene addition in lightly contaminated sediment from Bizerte Lagoon and (2) the effects of bioremediation treatments on microbial biomass, activity, and community structure.

Methods

Sediment microcosms amended with 1 ppm anthracene were incubated in triplicate during 30 days. Biostimulation (addition of nitrogen and phosphorus fertilizer) and bioaugmentation (inoculation of a hydrocarbonoclastic bacterium) were used as bioremediation treatments. Bacterial biomass was estimated using flow cytometry. Sediment oxygen consumption was measured with oxygen microelectrodes. Bacterial community structure was assessed by molecular fingerprints (terminal restriction fragment length polymorphism; T-RFLP) analysis.

Results

Anthracene contamination resulted in a significant reduction of bacterial abundance with an impact on cell integrity. Concomitantly, sediment oxygen consumption was strongly inhibited. Correspondence analysis on T-RFLP data indicated that bacterial community structures from anthracene-contaminated microcosms were different from that of the control. Interestingly, the changes observed in microbial biomass, structure, and activities as a result of anthracene contamination were not alleviated even with the use of biostimulation and combination of biostimulation and bioaugmentation strategy for anthracene bioremediation. Nevertheless, both treatment methods resulted in different community structures relative to the contaminated and control microcosms with the appearance of distinct populations.

Conclusion

Anthracene spiking severely affected microbial communities, suggesting dominance of nontolerant populations in this lightly-contaminated sediment. Although biostimulation and/or bioaugmentation treatments did not alleviate the anthracene toxic effects, the changes observed in microbial population and structure suggest that the proposed treatments might be promising to promote bacterial growth. Further works are still required to propose a more efficient strategy to stimulate biodegradation that takes into account the complex interactions between species for resource access.  相似文献   

14.

Introduction  

In order to identify a potential surrogate of planktonic ciliate communities for marine bioassessments and evaluating biological conservations, the different taxonomic/numerical resolutions and taxa as surrogates were studied in Jiaozhou Bay, northern China during a 1-year cycle (June 2007–May 2008).  相似文献   

15.

Microplastics are small-size plastic piece scales (particles <?5 mm) in sediments and waters which interact with environment and organisms by various means. Microplastics are becoming a universal ecological concern since they may be a source of hazardous chemicals to marine organisms and environments. Recent research suggests microplastics could enable the transfer of hydrophobic aquatic pollutants or chemical additives to biota. Even though microplastic presence and interactions are recently being detected in marine and freshwater systems, the fate of microplastics is still very poorly understood. This literature review is a summary of the sources and transport of microplastics, their interactions with toxic chemicals and the methodologies for chemical quantification and characterization of microplastics. The environmental outcome and impact of microplastics in wastewater treatment plants were assessed as well as the trends and update on microplastic research in the South African aquatic ecosystem.

  相似文献   

16.
In this study, we compared the sensitivity of freshwater and marine organisms to two structurally similar substances, acrylic acid and methacrylic acid. Reported acute toxicity data (L(E)C50-values) for freshwater organisms range from 0.1 to 222 mg/l and 85 to >130 mg/l for acrylic acid and methacrylic acid, respectively. The large variation in toxicity data for acrylic acid is due to a specific toxicity to certain species of freshwater microalgae, with algae EC50-values being two to three orders of magnitude lower than L(E)C50-values reported for fish and invertebrates. To evaluate the sensitivity of marine organisms, ecotoxicity data was generated for ten species of microalgae, one invertebrate species and one fish species. For methacrylic acid, we found a marine acute toxicity that ranged from 110 to >1260 mg/l, which is comparable to reported data on freshwater organisms. In strong contrast, the resulting L(E)C50-values for acrylic acid ranged from 50 to >1000 mg/l, and there was no specific sensitivity of marine algae when compared to marine invertebrates and fish. For acrylic acid, therefore, use of the available freshwater toxicity data for an effects assessment for the marine environment is likely to overestimate the hazard and risk from this substance. Overall, the results of the study suggest that ecotoxicity data generated on freshwater species may not always be appropriate for the effects assessments of organic chemicals in the marine environment, thus emphasising the importance of using ecologically relevant data to assess environmental risk.  相似文献   

17.
A new large-scale closed chamber fumigation system with cooling facilities is described for studying effects of low concentrations of SO(2), NO(2) and O(3) and low temperatures on woody species and herbaceous plants. The system is based on modified hemispherical greenhouses with a forced air ventilation system. This provides a chamber environment with low spatial variability of pollutant gas concentrations and rapid air circulation which allows exposure of plants at near ambient temperatures and relative humidity. Large capacity cooling units come into operation when ambient temperatures fall below 0 degrees C, and these allow chamber temperatures to be lowered by an additional 4 to 8 degrees C in experiments designed to test whether exposure to pollutants enhances the frost sensitivity of plants.  相似文献   

18.
Cheung KC  Zheng JS  Leung HM  Wong MH 《Chemosphere》2008,70(9):1707-1720
Concentrations of polybrominated diphenyl ethers (PBDEs) in market fish have not previously been reported in Hong Kong. Axial and ventral muscles from 10 each common species of freshwater and marine fish purchased from markets in Hong Kong were analyzed for 22 PBDEs. Among the 10 freshwater fish species, spotted snakehead (Channa maculate) contained the highest level of PBDEs in ventral muscle (130 ng g(-1) wet wt.). For marine fish, bigeye (Priacanthus macracanthus) showed significantly higher levels of PBDEs (60.7 ng g(-1)wet wt. in ventral tissue) than all other marine species. The levels of PBDEs in fish samples ranged from 0.53 to 130 ng g(-1)wetwt. The tetrabrominated congener BDE-47 and pentabrominated BDE-99 were the predominant congeners, which accounted for 27% and 30%, respectively, of the total PBDEs. Daily PBDE intake was calculated according to the different fish consumption rate for Hong Kong consumers, and the results ranged from 222 to 1198 ng day(-1) for marine fish and 403-2170 ng day(-1) for freshwater fish. The daily PBDE intake from fish reported here were higher than those reported from the United States (8.94-15.7 ng day(-1)) and Europe (14-23.1 ng day(-1)).  相似文献   

19.
Chloride concentrations in surface waters have increased significantly, a rise attributed to road salt use. In Canada, this may be a concern for endangered freshwater mussels, many with ranges limited to southern Ontario, Canada’s most road-dense region. The acute toxicity of NaCl was determined for glochidia, the mussel’s larval stage. The 24 h EC50s of four (including two Canadian endangered) species ranged from 113-1430 mg Cl L−1 (reconstituted water, 100 mg CaCO3 L−1). To determine how mussels would respond to a chloride pulse, natural river water (hardness 278-322 mg CaCO3 L−1) was augmented with salt. Lampsilis fasciola glochidia were significantly less sensitive to salt in natural water (EC50s 1265-1559 mg Cl L−1) than in reconstituted water (EC50 285 mg L−1). Chloride data from mussel habitats revealed chloride reaches levels acutely toxic to glochidia (1300 mg L−1). The increased salinization of freshwater could negatively impact freshwater mussels, including numerous species at risk.  相似文献   

20.
A new biophysical model (FORFLUX) is presented to study the simultaneous exchange of ozone, carbon dioxide, and water vapor between terrestrial ecosystems and the atmosphere. The model mechanistically couples all major processes controlling ecosystem flows trace gases and water implementing recent concepts in plant eco-physiology, micrometeorology, and soil hydrology. FORFLUX consists of four interconnected modules-a leaf photosynthesis model, a canopy flux model, a soil heat-, water- and CO2- transport model, and a snow pack model. Photosynthesis, water-vapor flux and ozone uptake at the leaf level are computed by the LEAFC3 sub-model. The canopy module scales leaf responses to a stand level by numerical integration of the LEAFC3model over canopy leaf area index (LAI). The integration takes into account (1) radiative transfer inside the canopy, (2) variation of foliage photosynthetic capacity with canopy depth, (3) wind speed attenuation throughout the canopy, and (4) rainfall interception by foliage elements. The soil module uses principles of the diffusion theory to predict temperature and moisture dynamics within the soil column, evaporation, and CO2 efflux from soil. The effect of soil heterogeneity on field-scale fluxes is simulated employing the Bresler-Dagan stochastic concept. The accumulation and melt of snow on the ground is predicted using an explicit energy balance approach. Ozone deposition is modeled as a sum of three fluxes- ozone uptake via plant stomata, deposition to non-transpiring plant surfaces, and ozone flux into the ground. All biophysical interactions are computed hourly while model projections are made at either hourly or daily time step. FORFLUX represents a comprehensive approach to studying ozone deposition and its link to carbon and water cycles in terrestrial ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号