首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the requirements of the 1990 Clean Air Act Amendments (CAA) is that 1-h ozone nonattainment areas that are classified severe or higher category are required to operate a network of photochemical assessment monitors (PAMS) to provide hourly measurements of volatile organic compounds (VOCs) comprising of Carbon number <12 (C2–C12), along with carbonyl measurements at 3-h intervals during the summer ozone season. Often collocated with PAMS are 24-h-integrated canister and cartridge-based measurements of selected air toxic compounds, thereby providing an opportunity for inter-comparison and validation of both sets of data. In this study, we report such a comparison and estimates of trend for benzene, m-, p- and o-xylene, toluene, ethylbenzene, 1,2,4-trimethylbenzene, formaldehyde and acetaldehyde at Bronx, NY. The analysis shows that hourly PAMS and 24-h-integrated air toxics are in good agreement with each other exhibiting similar trends and that the PAMS with the higher temporal resolution offers information on excursions of the toxic compounds that would be quite useful in assessment of acute health effects. These findings were also found to be applicable to other locations such as South De Kalb, GA; Gary, IN and Lynn, MA.  相似文献   

2.
Background concentrations of 18 air toxics for North America   总被引:1,自引:0,他引:1  
The U.S. Clean Air Act identifies 188 hazardous air pollutants (HAPs), or "air toxics," associated with adverse human health effects. Of these air toxics, 18 were targeted as the most important in a 10-City Pilot Study conducted in 2001 and 2002 as part of the National Air Toxics Trend Sites Program. In the present analysis, measurements available from monitoring networks in North America were used to estimate boundary layer background concentrations and trends of these 18 HAPs. The background concentrations reported in this study are as much as 85% lower than those reported in recent studies of HAP concentrations. Background concentrations of some volatile organic compounds were analyzed for trends at the 95% confidence level; only carbon tetrachloride (CCI4) and tetrachloroethylene decreased significantly in recent years. Remote background concentrations were compared with the one-in-a-million (i.e., 10(6)) cancer benchmarks to determine the possible causes of health risk in rural and remote areas; benzene, chloroform, formaldehyde, and chromium (Cr) fine particulate were higher than cancer benchmark values. In addition, remote background concentrations were found to contribute between 5% and 99% of median urban concentrations.  相似文献   

3.
High time-resolved (HTR) measurements can provide significant insight into sources and exposures of air pollution. In this study, an automated instrument was developed and deployed to measure hourly concentrations of 18 gas-phase organic air toxics and 6 volatile organic compounds (VOCs) at three sites in and around Pittsburgh, Pennsylvania. The sites represent different source regimes: a site with substantial mobile-source emissions; a residential site adjacent to a heavily industrialized zone; and an urban background site. Despite the close proximity of the sites (less than 13 km apart), the temporal characteristic of outdoor concentrations varied widely. Most of the compounds measured were characterized by short periods of elevated concentrations or plume events, but the duration, magnitude and composition of these events varied from site to site. The HTR data underscored the strong role of emissions from local sources on exposure to most air toxics. Plume events contributed more than 50% of the study average concentrations for all pollutants except chloroform, 1,2-dichloroethane, and carbon tetrachloride. Wind directional dependence of air toxic concentrations revealed that emissions from large industrial facilities affected concentrations at all of the sites. Diurnal patterns and weekend/weekday variations indicated the effects of the mixing layer, point source emissions patterns, and mobile source air toxics (MSATs) on concentrations. Concentrations of many air toxics were temporally correlated, especially MSATs, indicating that they are likely co-emitted. It was also shown that correlations of the HTR data were greater than lower time resolution data (24-h measurements). This difference was most pronounced for the chlorinated pollutants. The stronger correlations in HTR measurements underscore their value for source apportionment studies.  相似文献   

4.
The objectives of this study were: (1) to quantify the errors associated with saturation air quality monitoring in estimating the long-term (i.e., annual and 5 yr) mean at a given site from four 2-week measurements, once per season; and (2) to develop a sampling strategy to guide the deployment of mobile air quality facilities for characterizing intraurban gradients of air pollutants, that is, to determine how often a given location should be visited to obtain relatively accurate estimates of the mean air pollutant concentrations. Computer simulations were conducted by randomly sampling ambient monitoring data collected in six Canadian cities at a variety of settings (e.g., population-based sites, near-roadway sites). The 5-yr (1998-2002) dataset consisted of hourly measurements of nitric oxide (NO), nitrogen dioxide (NO2), oxides of nitrogen (NOx), sulfur dioxide (SO2), coarse particulate matter (PM10), fine particulate matter (PM2.5), and CO. The strategy of randomly selecting one 2-week measurement per season to determine the annual or long-term average concentration yields estimates within 30% of the true value 95% of the time for NO2, PM10 and NOx. Larger errors, up to 50%, are expected for NO, SO2, PM2.5, and CO. Combining concentrations from 85 random 1-hr visits per season provides annual and 5-yr average estimates within 30% of the true value with good confidence. Overall, the magnitude of error in the estimates was strongly correlated with the variability of the pollutant. A better estimation can be expected for pollutants known to be less temporally variable and/or over geographic areas where concentrations are less variable. By using multiple sites located in different settings, the relationships determined for estimation error versus number of measurement periods used to determine long-term average are expected to realistically portray the true distribution. Thus, the results should be a good indication of the potential errors one could expect in a variety of different cities, particularly in more northern latitudes.  相似文献   

5.
The dispersion formulation incorporated in the U.S. Environmental Protection Agency's AERMOD regulatory dispersion model is used to estimate the contribution of traffic-generated emissions of select VOCs – benzene, 1,3-butadiene, toluene – to ambient air concentrations at downwind receptors ranging from 10-m to 100-m from the edge of a major highway in Raleigh, North Carolina. The contributions are computed using the following steps: 1) Evaluate dispersion model estimates with 10-min averaged NO data measured at 7 m and 17 m from the edge of the road during a field study conducted in August, 2006; this step determines the uncertainty in model estimates. 2) Use dispersion model estimates and their uncertainties, determined in step 1, to construct pseudo-observations. 3) Fit pseudo-observations to actual observations of VOC concentrations measured during five periods of the field study. This provides estimates of the contributions of traffic emissions to the VOC concentrations at the receptors located from 10 m to 100 m from the road. In addition, it provides estimates of emission factors and background concentrations of the VOCs, which are supported by independent estimates from motor vehicle emissions models and regional air quality measurements. The results presented in the paper demonstrate the suitability of the formulation in AERMOD for estimating concentrations associated with mobile source emissions near roadways. This paper also presents an evaluation of the key emissions and dispersion modeling inputs necessary for conducting assessments of local-scale impacts from traffic emissions.  相似文献   

6.
Measurements of 1-month concentrations of NO(2) and SO(2) were carried out in the period from May 1993 to April 1994 in 147 points in 30 major cities of Poland and in 31 points in rural areas. The measurement points were divided into five classes representing: centres of cities, residential areas, industrial areas, traffic locations and rural areas. Passive samplers were prepared in one laboratory, mailed to local laboratories for sampling and then returned for analysis. The same samplers were used for collecting both NO(2) and SO(2). Analyses for NO(2) absorbed as nitrite were made spectrophotometrically after reaction with Saltzman reagent. Sulphur dioxide was determined as sulphate with ion chromatography. The consistency of data allowed comparison of levels of air pollution in different cities and the production of maps of spatial distribution of NO(2) and SO(2) in rural areas of Poland.  相似文献   

7.
The Steam-Jet Aerosol Collector-long Pathlength Absorbance Spectroscopy (SJAC-LPAS), an on-line continuous instrument for mobile measurements of spatial distribution of water-soluble hexavalent and trivalent chromium in ambient aerosols, has been developed and is presented here. The system collects particles with the SJAC and analyzes the collected sample on-line using the diphenycarbazide (DPC) colorimetric method. By using a Teflon AF (Amorphous Fluoropolymer) liquid core wave guide, the limit of detection has been significantly improved, allowing on-line measurements at ambient concentrations. The limit of detection for Cr(VI) is 0.2 ng m−3. Water-soluble Cr(III) can also be measured by oxidizing it to Cr(VI) in a parallel line using hydrogen peroxide before the detection with the DPC method. The concentration of Cr(III) is then determined as the difference between the two lines (Cr(VI) and Cr(VI) plus Cr(III)). The instrument was specifically designed to be used on a mobile platform to study spatial distribution of the pollutant within a city on a scale of 100 m. Special attention was given to the time resolution and the stability of the instrument performance under driving conditions. The time resolution of the instrument is 15 s. At a typical driving speed of 30 km h−1 the instrument can detect variations in chromium concentration (“hot spots”) on the scale of about 150 m. The instrument has proven to operate reliably and capture temporal and spatial variability of Cr(VI) concentration during four mobile measurement campaigns in Wilmington, DE.  相似文献   

8.
Traditional regulatory methods for evaluating air toxics have several limitations. Two common methods rely either on self-reported industrial emissions from the Toxics Release Inventory or a single summary statistic such as the average or arithmetic mean. A novel statistical approach for detecting overall long term improvement in ambient air quality is demonstrated using measurements of the air toxic benzene evaluated over five years in Houston, Texas. Through trends of seven key statistical measures, long term improvements were detected at more monitors than would have been found using traditional methods while lack of improvement is highlighted at other monitors. This new approach includes analysis of high and low end concentrations, as well as central tendency, evaluated at specific air toxic human health risk thresholds.  相似文献   

9.
Average 21st century concentrations of urban air pollutants linked to cardiorespiratory disease are not declining, and commonly exceed legal limits. Even below such limits, health effects are being observed and may be related to transient daytime peaks in pollutant concentrations. With this in mind, we analyse >52,000 hourly urban background readings of PM10 and pollutant gases throughout 2007 at a European town with legal annual average concentrations of common pollutants, but with a documented air pollution-related cardiorespiratory health problem, and demonstrate the hourly variations in PM10, SO2, NOx, CO and O3. Back-trajectory analysis was applied to track the arrival of exotic PM10 intrusions, the main controls on air pollutants were identified, and the typical hourly pattern on ambient concentrations during 2007 was profiled. Emphasis was placed on “worst case” data (>90th percentile), when health effects are likely to be greatest. The data show marked daytime variations in pollutants result from rush-hour traffic-related pollution spikes, midday industrial SO2 maxima, and afternoon O3 peaks. African dust intrusions enhance PM10 levels at whatever hour, whereas European PM incursions produce pronounced evening peaks due to their transport direction (across an industrial traffic corridor). Transient peak profiling moves us closer to the reality of personal outdoor exposure to inhalable pollutants in a given urban area. We argue that such an approach to monitoring data potentially offers more to air pollution health effect studies than using only 24 h or annual averages.  相似文献   

10.
A study to try to better understand the interactions between various air contaminants and acute asthma exacerbations is described. The study evaluates temporal associations between a panel of air contaminants and acute asthmatic exacerbations as measured by emergency room visits for asthma in communities in the Bronx and Manhattan in New York City (NYC). In addition, ambient levels of various air pollutants in two NYC communities are being compared. Almost 2 years of daily data have been collected for most of the air contaminants to be investigated. The air contaminants measured include gaseous compounds (ozone, sulfur dioxide, nitrogen oxides, aldehydes, nitrous acid, nitric acid, hydrochloric acid and ammonia), particulate matter components (metals, elemental and organic carbon, sulfate, hydrogen ion, pollen, mold spores and particle mass and number).  相似文献   

11.
12.
13.
Ambient measurements of hazardous air pollutants (HAPs, air toxics) collected in the United States from 1990 to 2005 were analyzed for diurnal, seasonal, and/or annual variability and trends. Visual and statistical analyses were used to identify and quantify temporal variations in air toxics at national and regional levels. Sufficient data were available to analyze diurnal variability for 14 air toxics, seasonal variability for 24 air toxics, and annual trends for 26 air toxics. Four diurnal variation patterns were identified and labeled invariant, nighttime peak, morning peak, and daytime peak. Three distinct seasonal patterns were identified and labeled invariant, cool, and warm. Multiple air toxics showed consistent decreasing trends over three trend periods, 1990–2005, 1995–2005, and 2000–2005. Trends appeared to be relatively consistent within chemically similar pollutant groups. Hydrocarbons such as benzene, 1,3-butadiene, styrene, xylene, and toluene decreased by approximately 5% or more per year at more than half of all monitoring sites. Concentrations of carbonyl compounds such as formaldehyde, acetaldehyde, and propionaldehyde were equally likely to have increased or decreased at monitoring sites. Chlorinated volatile organic compounds (VOCs) such as tetrachloroethylene, dichloromethane, and methyl chloroform decreased at more than half of all monitoring sites, but decreases among these species were much more variable than among the hydrocarbons. Lead particles decreased in concentration at most monitoring sites, but trends in other metals were not consistent over time.  相似文献   

14.
The recent reduction in the lead content of petrol in the United Kingdom, following government legislation, has been used to investigate the relationship between lead in petrol and in outside air in urban environments. In parts of London and Manchester, the airborne lead concentration closely followed the petrol lead concentration, within a time resolution of about 1 month. These results indicate that, in these areas, the petrol lead content has a fairly direct and prompt effect on the urban air lead concentration, i.e. any environmental lead reservoirs in the pathway from petrol to air (and hence to man by inhalation) are not significant on this timescale. A small component of the airborne lead, apparently independent of the petrol lead, was also observed.  相似文献   

15.
More than half of the world's population lives in cities, and their populations are rapidly increasing. Information on vertical and diurnal characterizations of volatile organic compounds (VOCs) in urban areas with heavy ambient air pollution can help further understand the impact of ambient VOCs on the local urban environment. This study characterized vertical and diurnal variations in VOCs at 2, 13, 32, 58, and 111 m during four daily time periods (7:00 to 9:00 a.m., 12:00 to 2:00 p.m., 5:00 to 7:00 p.m., and 11:00 p.m. to 1:00 a.m.) at the upwind of a high-rise building in downtown, Kaohsiung City, Taiwan. The study used gas chromatography-mass spectrometry to analyze air samples collected by silica-coated canisters. The vertical distributions of ambient VOC profiles showed that VOCs tended to decrease at greater heights. However, VOC levels were found to be higher at 13 m than at ground level at midnight from 11:00 p.m. to 1:00 a.m. and higher at 32 than 13 m between 7:00 and 9:00 a.m. These observations suggest that vertical dispersion and dilution of airborne pollutants could be jointly affected by local meteorological conditions and the proximity of pollution sources. The maximum concentration of VOCs was recorded during the morning rush hours from 7:00 to 9:00 a.m., followed by rush hours from 5:00 to 7:00 p.m., hours from 12:00 to 2:00 p.m., and hours from 11:00 p.m. to 1:00 a.m., indicating that the most VOC compounds in urban air originate from traffic and transportation emissions. The benzene-toluene-ethyl benzene-xylene (BTEX) source analysis shows that BTEX at all heights were mostly associated with vehicle transportation activities on the ground.  相似文献   

16.
The United States Environmental Protection Agency issues periodic reports that describe air quality trends in the US. For some pollutants, such as ozone, both observed and meteorologically adjusted trends are displayed. This paper describes an improved statistical methodology for meteorologically adjusting ozone trends as well as characterizes the relationships between individual meteorological parameters and ozone. A generalized linear model that accommodates the nonlinear effects of the meteorological variables was fit to data collected for 39 major eastern US urban areas. Overall, the model performs very well, yielding R2 statistics as high as 0.80. The analysis confirms that ozone is generally increasing with increasing temperature and decreasing with increasing relative humidity. Examination of the spatial gradients of these responses show that the effect of temperature on ozone is most pronounced in the north while the opposite is true of relative humidity. By including HYSPLIT-derived transport wind direction and distance in the model, it is shown that the largest incremental impact of wind direction on ozone occurs along the periphery of the study domain, which encompasses major NOx emission sources.  相似文献   

17.
In China, the areas that are undergoing rapid urban growth are faced with increasingly more complicated air pollution problems. Sources of air pollution need to be identified and their contributions quantified. In this study, PM2.5 (particulate matter with aerodynamic diameters < or =2.5 microm), PM2.5-10 (particulate matter with aerodynamic diameters 2.5-10 microm), organic carbon (OC), and elemental carbon (EC) concentrations were measured from April to July 2009 at four selected areas in Xiamen (the downtown area, an industrial park, a suburb, and one remote site). The contributions of carbonaceous aerosols to PM2.5 and PM2.5-10 were 20-30% and 10-20%, respectively, indicating that finer particles contained more carbonaceous aerosols. The EC concentrations in PM2.5 at the downtown, industrial, suburb, and remote sites were 2.16 +/- 0.61, 2.05 +/- 0.45, 1.69 +/- 0.54, and 0.65 +/- 0.43 microg m-3, respectively, showing a decrease from the urban and industrial hotspots to the surrounding areas. These data show that carbonaceous aerosols emitted from the combustion of fossil fuels in urban and industrial hotspots influence air quality at the regional scale. Higher levels of PM2.5 and PM2.5-10 were observed at the suburb site compared to the urban and industrial sites. Peak EC concentrations in PM2.5 were observed during the morning and evening rush hours. However, peak PM2.5 levels at the suburb site were observed around noon, which coincides with construction work hours, instead of the morning and evening rush hours when emissions from combustion dominated. These findings indicate that both fuel combustion and construction have exacerbated air pollution in coastal and urban areas in China.  相似文献   

18.
After reductions of fugitive and diffuse emissions by an industrial complex, a follow-up study was performed to determine the time variability of volatile organic compounds (VOCs) and the lifetime cancer risk (LCR). Passive samplers (3 M monitors) were placed outdoors (n?=?179) and indoors (n?=?75) in industrial, urban, and control areas for 4 weeks. Twenty-five compounds including n-alkanes, cycloalkanes, aromatics, chlorinated hydrocarbons, and terpenes were determined by GC/MS. The results show a significant decrease of all VOCs, especially in the industrial area and to a lesser extent in the urban area. The median outdoor concentration of benzene in the industrial area declined compared to the former study, around 85 % and about 50 % in the urban area, which in the past was strongly influenced by industrial emissions. Other carcinogenic compounds like styrene and tetrachloroethylene were reduced to approximately 60 %. VOC concentrations in control areas remained nearly unchanged. According to the determined BTEX ratios and interspecies correlations, in contrast to the previous study, traffic was identified as the main emission source in the urban and control areas and showed an increased influence in the industrial area. The LCR, calculated for benzene, styrene, and tetrachloroethylene, shows a decrease of one order of magnitude in accordance to the decreased total VOC concentrations and is now acceptable according to values proposed by the World Health Organization.  相似文献   

19.
The article discusses an experimental investigation of turbulent dispersion processes in a typical three-dimensional urban geometry, in reduced scale, in neutrally stable conditions. Wind tunnel experiments were carried out for characterizing the flow and the dispersion of a pollutant around a scaled model (1:400) of a group of eight 10-floor buildings surrounding a square. The situation corresponded to the dispersion of fine inertialess particles released from a line source positioned upstream of the urban geometry. After the sudden interruption of the source generation, the particles persisted in the recirculation cavity between the buildings, with the concentration decaying exponentially with time. This is in accordance with previous works on the dispersion process around bluff bodies of different shapes [e.g., Humphries and Vincent, 1976. An experimental investigation of the detention of airborne smoke in the wake bubble behind a disk. Journal of Fluid Mechanics 73, 453–464; Vincent, 1977. Model experiments on the nature of air pollution transport near buildings. Atmospheric Environment 11, 765–774; Fackrell, 1984. Parameters characterizing dispersion in the near wake of buildings. Journal of Wind Engineering and Industrial Aerodynamics 16, 97–118]. The main parameter in the investigation was the characteristic time constant for the concentration decay. The measurements of the variation in the concentration of the fine particles were performed by means of a photo-detection technique based on the attenuation of light. The velocity fields were evaluated with the particle image velocimetry (PIV) technique. The dimensionless residence time H for the particles (H=τU/L, where τ is the time constant for the concentration decay, U the free-stream velocity, and L is a characteristic dimension for the urban geometry, as defined by Humphries and Vincent [1976. An experimental investigation of the detention of airborne smoke in the wake bubble behind a disk. Journal of Fluid Mechanics 73, 453–464] was determined for various locations in the scaled model, in the range of Reynolds numbers (Re) between 8000 and 64,000. H was found to be 6.5±1.0.  相似文献   

20.
Cohort studies designed to estimate human health effects of exposures to urban pollutants require accurate determination of ambient concentrations in order to minimize exposure misclassification errors. However, it is often difficult to collect concentration information at each study subject location. In the absence of complete subject-specific measurements, land-use regression (LUR) models have frequently been used for estimating individual levels of exposures to ambient air pollution. The LUR models, however, have several limitations mainly dealing with extensive monitoring data needs and challenges involved in their broader applicability to other locations. In contrast, air quality models can provide high-resolution source–concentration linkages for multiple pollutants, but require detailed emissions and meteorological information. In this study, first we predicted air quality concentrations of PM2.5, NOx, and benzene in New Haven, CT using hybrid modeling techniques based on CMAQ and AERMOD model results. Next, we used these values as pseudo-observations to develop and evaluate the different LUR models built using alternative numbers of (training) sites (ranging from 25 to 285 locations out of the total 318 receptors). We then evaluated the fitted LUR models using various approaches, including: 1) internal “Leave-One-Out-Cross-Validation” (LOOCV) procedure within the “training” sites selected; and 2) “Hold-Out” evaluation procedure, where we set aside 33–293 tests sites as independent datasets for external model evaluation. LUR models appeared to perform well in the training datasets. However, when these LUR models were tested against independent hold out (test) datasets, their performance diminished considerably. Our results confirm the challenges facing the LUR community in attempting to fit empirical response surfaces to spatially- and temporally-varying pollution levels using LUR techniques that are site dependent. These results also illustrate the potential benefits of enhancing basic LUR models by utilizing air quality modeling tools or concepts in order to improve their reliability or transferability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号