首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Disinfection tests were carried out at pilot scale to compare the disinfection efficiency of ozone, sodium hypochlorite (NaOCl), peracetic acid (PAA), and UV irradiation. Total coliforms, fecal coliforms, and Escherichia coli were monitored as reference microorganisms. Total heterotrophic bacteria (THB) were also enumerated by cytometry. At similar doses, NaOCl was more effective than PAA, and its action was less affected by contact time. The results obtained by ozonation were comparable for total coliforms, fecal coliforms, and E. coli. On the contrary, some differences among the three indicators were observed for NaOCl, PAA, and UV. Differences increased with increasing values of the disinfectant concentration times contact time (C x t) and were probably the result of different initial counts, as total coliforms include fecal coliforms, which include E. coli. The UV irradiation lead to complete E. coli removals, even at low doses (10 to 20 mJ/cm2). Total heterotrophic bacteria appeared to be too wide a group to be a good disinfection indicator; no correlation was found among THB inactivation, dose, and contact time.  相似文献   

2.
With its potential for low (if any) disinfection byproduct formation and easy retrofit for chlorine contactors, peracetic acid (PAA) or use of PAA in combination with other disinfectant technologies may be an attractive alternative to chlorine-based disinfection. Examples of systems that might benefit from use of PAA are water reuse schemes or plants discharging to sensitive receiving water bodies. Though PAA is in use in numerous wastewater treatment plants in Europe, its chemical kinetics, microbial inactivation rates, and mode of action against microorganisms are not thoroughly understood. This paper presents results from experimental studies of PAA demand, PAA decay, and microbial inactivation, with a complementary modeling analysis. Model results are used to evaluate techniques for measurement of PAA concentration and to develop hypotheses regarding the mode of action of PAA in bacterial inactivation. Kinetic and microbial inactivation rate data were collected for typical wastewaters and may be useful for engineers in evaluating whether to convert from chlorine to PAA disinfection.  相似文献   

3.
二氧化氯深度处理垃圾渗滤液研究   总被引:2,自引:0,他引:2  
利用二氧化氯对生物处理后的垃圾渗滤液进行深度处理,根据废水中有效氯浓度、COD、氨氮及细菌数等参数的分析,初步探讨了不同浓度的二氧化氯在不同处理时间内对垃圾渗滤液的处理效果。结果表明,对于COD初始浓度为450 mg/L左右的水样,二氧化氯的投加浓度达100 mg/L(有效氯),反应时间在50 min时,处理水样可达到同类废水的国家二级排放标准;对于同样条件下的水样,当加入约25 mg/L的二氧化氯时可以杀灭水样中的大肠杆菌,加入浓度达到90 mg/L的二氧化氯时,可以杀灭水样中几乎所有的细菌。  相似文献   

4.
Disinfection of an advanced primary effluent using a continuous-flow combined peracetic acid/ultraviolet (PAA/UV) radiation system was evaluated. The purpose was to determine whether the maximum microbial content, established under Mexican standards for treated wastewaters meant for reuse--less than 240 most probable number fecal coliforms (FC)/100 mL--could be feasibly accomplished using either disinfectant individually, or the combined PAA/UV system. This meant achieving reduction of up to 5 logs, considering initial concentrations of 6.4 x 10(+6) to 5.8 x 10(+7) colony forming units/100 mL. During the tests performed under these experiments, total coliforms (TC) were counted because FC, at the most, will be equal to TC. Peracetic acid disinfection achieved less than 1.5 logs TC reduction when the C(t) x t product was less than 2.26 mg x minimum (min)/L; 3.8 logs for C(t) x t 4.40 mg x min/L; and 5.9 logs for C(t) x t 24.2 mg x min/L. In continuous-flow UV irradiation tests, at a low-operating flow (21 L/min; conditions which produced an average UV fluence of 13.0 mJ/cm2), the highest TC reduction was close to 2.5 logs. The only condition that produced a disinfection efficiency of approximately 5 logs, when both disinfection agents were used together, was the combined process dosing 30 mg PAA/L at a pilot plant flow of 21 L/min and contact time of 10 minutes to attain an average C(t) x t product of 24.2 mg x min/L and an average UV fluence of 13 mJ/cm2. There was no conclusive evidence of a synergistic effect when both disinfectants were employed in combination as compared to the individual effects achieved when used separately, but this does not take into account the nonlinearity (tailing-off) of the dose-response curve.  相似文献   

5.
Linear, quadratic, and artificial neural network (ANN)-based metamodels were developed for predicting the extent of anthrax spore inactivation by chlorine dioxide in a ventilated three-dimensional space over time from computational fluid dynamics model (CFD) simulation data. Dimensionless groups were developed to define the design space of the problem scenario. The Hammersley sequence sampling (HSS) method was used to determine the sampling points for the numerical experiments within the design space. A CFD model, comprised of multiple submodels, was applied to conduct the numerical experiments. Large eddy simulation (LES) with the Smagorinsky subgridscale model was applied to compute the airflow. Anthrax spores were modeled as a dispersed solid phase using the Lagrangian treatment. The disinfectant transport was calculated by solving a mass transport equation. Kinetic decay constants were included for spontaneous decay of the disinfectant and for the reaction of the disinfectant with the surfaces of the three-dimensional space. To enhance the mixing of the disinfectant with the room air, a momentum source was included in the simulation. An inactivation rate equation accounted for the reaction between the spores and the disinfectant. The ANN-based metamodels were most successful in predicting the number of viable bioaerosols remaining in an arbitrary enclosed space. Sensitivity analysis showed that the mass fraction of the disinfectant, inactivation rate constant, and contact time had the most influence on the inactivation of the spores.  相似文献   

6.
为研究中水消毒过程,对次氯酸钠消毒中水的折点加氯反应与消毒效果之间的关系进行研究。通过探讨加氯量位于折点曲线不同位置的消毒效果,分析接触时间和氨氮浓度的影响,得出了根据氨氮浓度确定的接触时间和加氯量公式。结果表明,氨氮浓度〈2 mg/L时,将加氯量控制在折点之后接触反应30 min,氨氮浓度〉2 mg/L时,将加氯量控制在峰点附近接触反应60 min均可实现中水消毒要求。  相似文献   

7.
This study examined whether ferrate could meet the international standards for successful ballast water treatment, including final concentrations of less than 1 CFU/mL of Enterococci, less than 2.5 CFU/mL of Escherichia coli, and less than 1 CFU/100 mL of Vibrio cholerae. Pure cultures of E. coli, Klebsiella pneumoniae, and V. cholerae, and a mixed culture of Enterococcus faecium and E. faecilis were grown in saline solution to simulate ballast water and were treated with dosages of ferrate ranging from 0.25 to 5.0 mg/L. A ferrate dose of 5 mg/L resulted in complete disinfection of all organisms tested, and smaller dosages were also very effective. Tailing was consistently observed, and the Hom's model (1972) appeared to most accurately represent the action of ferrate on these organisms. Salinity and pH did not adversely affect results, and regrowth was not a problem. Ferrate shows good potential as an effective disinfectant in the treatment of ballast water.  相似文献   

8.
This research investigated the effects of extending the holding time of samples for microbial analysis beyond the standard of 24 hours for purposes such as watershed characterization. Experiments were conducted with both sanitary wastewater and stormwater samples. The refrigerated samples (4 degrees C) were held for up to 9 days before being analyzed for two pathogens (Pseudomonas aeruginosa and Staphylococcus aureus) and five indicator organisms (total coliform, fecal coliform, fecal streptococcus, enterococcus, and Escherichia coli) by membrane filtration. The concentrations (as colony-forming units per 100 mL) were normalized by log10(transformation and used in subsequent statistical analysis testing for significant differences. The results suggested that the concentrations of microorganisms in water samples analyzed on days 1 and 2 did not vary significantly in 8 of 13 analyses. The results of a field study concluded that the concentration of fecal coliform did not change significantly between 7 hours holding time and greater than 24 hours holding time for fecal coliform.  相似文献   

9.
ABSTRACT

Linear, quadratic, and artificial neural network (ANN)-based metamodels were developed for predicting the extent of anthrax spore inactivation by chlorine dioxide in a ventilated three-dimensional space over time from computational fluid dynamics model (CFD) simulation data. Dimensionless groups were developed to define the design space of the problem scenario. The Hammersley sequence sampling (HSS) method was used to determine the sampling points for the numerical experiments within the design space. A CFD model, comprised of multiple submodels, was applied to conduct the numerical experiments. Large eddy simulation (LES) with the Smagorinsky subgrid-scale model was applied to compute the airflow. Anthrax spores were modeled as a dispersed solid phase using the Lagrangian treatment. The disinfectant transport was calculated by solving a mass transport equation. Kinetic decay constants were included for spontaneous decay of the disinfectant and for the reaction of the disinfectant with the surfaces of the three-dimensional space. To enhance the mixing of the disinfectant with the room air, a momentum source was included in the simulation. An inactivation rate equation accounted for the reaction between the spores and the disinfectant. The ANN-based metamodels were most successful in predicting the number of viable bioaerosols remaining in an arbitrary enclosed space. Sensitivity analysis showed that the mass fraction of the disinfectant, inactivation rate constant, and contact time had the most influence on the inactivation of the spores.

IMPLICATIONS This investigation presents a framework for the development of user-friendly models; metamodels for the prediction of the number of viable spores remaining in an indoor room during disinfection from accurate but time-consuming CFD studies. During any decontamination event, to know when to stop pumping in the disinfectant and to know what level of log reduction of the spores have been achieved before even starting decontamination would provide valuable guidance. The neural network based metamodels can be applied to obtain quick and relatively accurate answers. This would be necessary when immediate information is required during emergencies.  相似文献   

10.
Batch and continuous experiments using model and real wastewaters were conducted to investigate the effect of metal salt (ferric and alum) addition in wastewater treatment and the corresponding phosphate removal from a design and operational perspective. Key factors expected to influence the phosphorus removal efficiency, such as pH, alkalinity, metal dose, metal type, initial and residual phosphate concentration, mixing, reaction time, age of flocs, and organic content of wastewater, were investigated. The lowest achievable concentration of orthophosphate under optimal conditions (0.01 to 0.05 mg/L) was similar for both aluminum and iron salts, with a broad optimum pH range of 5.0 to 7.0. Thus, in the typical operating range of wastewater treatment plants, pH is not a sensitive indicator of phosphorus removal efficiency. The most significant effect for engineering practice, apart from the metal dose, is that of mixing intensity and slow kinetic removal of phosphorus in contact with the chemical sludge formed. Experiments show that significant savings in chemical cost could be achieved by vigorously mixing the added chemical at the point of dosage and, if conditions allow, providing a longer contact time between the metal hydroxide flocs and the phosphate content of the wastewater. These conditions promoted the achievement of less than 0.1 mg/L residual orthophosphate content, even at lower metal-to-phosphorus molar ratios. These observations are consistent with the surface complexation model presented in a companion paper (Smith et al., 2008).  相似文献   

11.
Photoreactivation of microorganisms following UV inactivation is a well-known, but complex, phenomenon. It is affected by several factors, including UV fluence, wavelength, light intensity, and exposure time to photoreactivating light. The effect on photoreactivation of a combined peracetic acid (PAA)/UV process has not been investigated. Accordingly, this study compared the degree of photoreactivation, under both sunlight and artificial lights, following UV and combined PAA/UV inactivation of fecal coliforms. Effluent samples from the Montreal Wastewater Treatment Plant (MWTP) (Quebec, Canada) were exposed, for 3 hours, to both low- and high-intensity artificial lights and sunlight. All resulted in similar photoreactivation levels. However, average photoreactivation for UV-treated wastewater samples was 1.2 logs, compared with 0.1 log for the combined PAA/UV treatment. Hence, the use of PAA in combination with UV can significantly reduce the potential for photoreactivation. To simulate the photoreactivation conditions of the MWTP effluent (which passes through a 4-km outfall tunnel with approximately 3 hours detention time), UV-treated samples were kept in the dark for 3 hours before photoreactivating light exposure. After this period, photoreactivation levels were close to zero. Hence, the effects of photoreactivation may be diminished by use of a combined disinfection scheme and/or by delaying exposure of the disinfected wastewater to light.  相似文献   

12.
硅质磷块岩对水溶液中镉离子的吸附实验结果表明,硅质磷块岩对水溶性镉离子具有良好的去除效果,主要影响因素有介质的酸度、作用时间、镉离子的初始浓度和样品用量.在pH=6,作用时间为15 min,初始Cd2+浓度为30mg/L的实验条件下,硅质磷块岩对镉离子的去除率可达98%,有可能利用动态法进行工业废水的连续处理.初步研究结果显示,磷块岩对水溶性镉离子的吸附作用符合Langmuir等温吸附模型,不同产地的硅质磷块岩S1和S2对镉离子的最大吸附容量分别为4.43 mg/g和3.88 mg/g.  相似文献   

13.
Pregrown, two-month-old lawn was layered in 12 large square pots with an area of 0.25 m2 each, filled with a mixture of topsoil, peat, and sand. In late July, in the heart of the Mediterranean summer, the pots were divided into two groups, with six pots per group. On four different occasions, the pots in each group were sprinkled (surface irrigation) with 2 L of either secondary-treated wastewater (STW, group A) or chlorinated effluent (CHE, group B). Wastewater application always took place at 0700 hours. Samples of the surface soil and grass from each pot were collected at the following times: before irrigation, immediately after irrigation, two hours later (0900 hours), and four hours later (1100 hours). In the samples collected, the number of total coliforms per gram was measured using standard microbiological analyses. Temperature and sunlight intensity were also monitored. There was an increase in the coliforms population in soil and grass samples of both groups immediately after the wastewater application. In group A, the mean number of coliforms recorded in the soil samples reached mean values higher than 5000 cfu/g compared to 312 cfu/g recorded before application. The increase in group B was smaller but still significant. Two hours later, the number of coliforms was reduced substantially in all samples (e.g., group A, soil samples 477 cfu/g). Coliform inactivation is thought to result from the effect of temperature and mainly sunlight. However, four hours after application (1100 hours), there was a noticeable increase in the coliform number again, in all sample categories of both groups. Coliform reactivation could be a result of shadowing effect resulting from the thick foliage of the grass, where the microorganisms were protected by the sunlight radiation and regrowth in a friendly environment (especially of the soil) where moisture and nutrients were present. This, in addition to the fact that coliforms seemed to retain a sizable population between applications, results in three conclusions: (1) coliforms can survive in grass and soil for a substantial period of time, recovering from the destructive effect of chlorination, (2) use of STW, even during the Mediterranean summer, could result in a substantial "contamination" of lawns, without any proof that sun and temperature can reduce the coliform number, and (3) intense sunlight (up to 68 000 lux) was far more effective in coliform suppression than elevated temperature (up to 38 degrees C).  相似文献   

14.
以枯草芽孢杆菌芽孢为模型微生物,研究了实际水体中单独氯消毒、单独臭氧消毒和臭氧-自由氯联合作用的灭菌效果.结果表明,枯草芽孢杆菌芽孢对单独氯消毒的抗性很大,6 mg/L氯作用240 min后灭活率仅为0.84个对数级;臭氧对枯草芽孢杆菌芽孢有较好的灭活效果,臭氧作用5 min,对其有4.68个对数级的灭活率.与单独氯消...  相似文献   

15.
The effectiveness of gaseous ozone (O3) as a disinfectant was tested on Bacillus subtilis spores, which share the same physiological characteristics as Bacillus anthracis spores that cause the anthrax disease. Spores dried on surfaces of different carrier material were exposed to O3 gas in the range of 500-5000 ppm and at relative humidity (RH) of 70-95%. Gaseous O3 was found to be very effective against the B. subtilis spores, and at O3 concentrations as low as 3 mg/L (1500 ppm), approximately 3-log inactivation was obtained within 4 hr of exposure. The inactivation curves consisted of a short lag phase followed by an exponential decrease in the number of surviving spores. Prehydration of the bacterial spores has eliminated the initial lag phase. The inactivation rate increased with increasing O3 concentration but not >3 mg/L. The inactivation rate also increased with increase in RH. Different survival curves were obtained for various surfaces used to carry spores. Inactivation rates of spores on glass, a vinyl floor tile, and office paper were nearly the same. Whereas cut pile carpet and hardwood flooring surfaces resulted in much lower inactivation rates, another type of carpet (loop pile) showed significant enhancement in the inactivation of the spores.  相似文献   

16.
用高压电弧放电产生的低温等离子体对含偶氮染料的废水进行了处理,以甲基橙为例研究了电压幅值、处理时间、溶液初始浓度、溶液初始pH值、投加Fe^2+和Fe^3+对染料脱色的影响。实验结果表明,甲基橙浓度为50mg/L时其降解率随时间和电压幅值的增加而增加。溶液初始浓度对染料去除效果影响较为明显,同等条件下初始浓度越低降解率越高。酸性条件下有利于低温等离子体处理甲基橙。Fe^2+和Fe^3+对低温等离子体降解甲基橙有一定的催化作用。电压8kV处理3min,Fe^2+为20mg/L时去除率由89.64%增至99.72%。Fe2(SO4),的最佳投加量为5mg/L(以Fe^3+计),而FeCl,的最佳投加量为80mg/L(以Fe^3+计)。  相似文献   

17.
The objectives of this research were to evaluate the potential for sudden increase and/or regrowth of alternative bacteria as either indicators or pathogens after dewatering of thermophilic and mesophilically digested biosolids. The results showed that, in general, for thermophilic processes, even when a statistically significant (p < 0.05) sudden increase and regrowth occurred for fecal coliforms, Escherichia coli, and Enterococci, it did not occur for Salmonella or Aeromonas. For the mesophilic process evaluated, sudden increase did not occur, but regrowth occurred for fecal coliforms, E. coli, Enterococci, and Salmonella. The results have implications for Class A and B biosolids regulations, as both fecal coliform and Salmonella are part of the regulatory limits. The results also suggest that the public health risks are minimal, as a result of the potential sudden increase and regrowth that may occur.  相似文献   

18.
O3氧化工艺处理黄连素制药废水研究   总被引:1,自引:0,他引:1  
采用臭氧(O3)氧化法处理含高浓度黄连素和COD的制药废水,探讨了废水初始pH、O3投加量及初始黄连素浓度等因素对O3氧化过程的影响,确定了O3氧化技术处理黄连素制药废水的最佳操作条件。结果表明,O3能够有效分解废水中的黄连素,降低其COD浓度;黄连素浓度为700mg/L、COD为3500mg/L、pH为0.88的废水,进气O3浓度为14.05mg/(L·min),处理时间为180rain(即投加量为2529mg/L)时,黄连素和COD的降解率分别可达77.46%和41.28%,BOD,/COD比(B/C比)从0.06提高到0.34,增加了4.7倍;随着废水中初始黄连素浓度的升高,废水COD降解率逐渐降低。O3氧化法是一种有效的黄连素制药废水预处理技术,可以大大提高废水的可生化性。  相似文献   

19.
Wastewater disinfection is practiced with the goal of reducing risks of human exposure to pathogenic microorganisms. In most circumstances, the efficacy of a wastewater disinfection process is regulated and monitored based on measurements of the responses of indicator bacteria. However, inactivation of indicator bacteria does not guarantee an acceptable degree of inactivation among other waterborne microorganisms (e.g., microbial pathogens). Undisinfected effluent samples from several municipal wastewater treatment facilities were collected for analysis. Facilities were selected to provide a broad spectrum of effluent quality, particularly as related to nitrogenous compounds. Samples were subjected to bench-scale chlorination and dechlorination and UV irradiation under conditions that allowed compliance with relevant discharge regulations and such that disinfectant exposures could be accurately quantified. Disinfected samples were subjected to a battery of assays to assess the immediate and long-term effects of wastewater disinfection on waterborne bacteria and viruses. In general, (viable) bacterial populations showed an immediate decline as a result of disinfectant exposure; however, incubation of disinfected samples under conditions that were designed to mimic the conditions in a receiving stream resulted in substantial recovery of the total bacterial community. The bacterial groups that are commonly used as indicators do not provide an accurate representation of the response of the bacterial community to disinfectant exposure and subsequent recovery in the environment. UV irradiation and chlorination/dechlorination both accomplished measurable inactivation of indigenous phage; however, the extent of inactivation was fairly modest under the conditions of disinfection used in this study. UV irradiation was consistently more effective as a virucide than chlorination/dechlorination under the conditions of application, based on measurements of virus (phage) diversity and concentration. Taken together, and when considered in conjunction with previously published research, the results of these experiments illustrate several important limitations of common disinfection processes as applied in the treatment of municipal wastewaters. In general, it is not clear that conventional disinfection processes, as commonly implemented, are effective for control of the risks of disease transmission, particularly those associated with viral pathogens. Microbial quality in receiving streams may not be substantially improved by the application of these disinfection processes; under some circumstances, an argument can be made that disinfection may actually yield a decrease in effluent and receiving water quality. Decisions regarding the need for effluent disinfection must account for site-specific characteristics, but it is not clear that disinfection of municipal wastewater effluents is necessary or beneficial for all facilities. When direct human contact or ingestion of municipal wastewater effluents is likely, disinfection may be necessary. Under these circumstances, UV irradiation appears to be superior to chlorination in terms of microbial quality and chemistry and toxicology. This advantage is particularly evident in effluents that contain appreciable quantities of ammonia-nitrogen or organic nitrogen.  相似文献   

20.
In this study, the removal of Cr(III) and Cu(II) from contaminated wastewaters by rice husk, as an organic solid waste, was investigated. Experiments were performed to investigate the influence of wastewater initial concentration, pH of solution, and contact time on the efficiency of Cr(III) and Cu(II) removal. The results indicated that the maximum removal of Cr(III) and Cu(II) occurred at pH 5–6 by rice husk and removal rate increased by increased pH from 1 to 6. It could be concluded that the removal efficiency was enhanced by increasing wastewater initial concentration in the first percentage of adsorption and then decreased due to saturation of rice husk particles. Also according to achieved results, calculated saturation capacity in per gram rice husk for Cr(III) and Cu(II) were 30 and 22.5 mg?g?1, respectively. The amounts of Cr(III) and Cu(II) adsorbed increased with increase in their contact time. The rate of reaction was fast. So that 15–20 min after the start of the reaction, between 50 and 60 % of metal ions were removed. Finally, contact time of 60 min as the optimum contact time was proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号