首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crustacean molt cycle manifests extensive behavioral changes in addition to physiological and integumentary modifications. The paucity of quantitative studies led us to characterize molt stage dependent alterations in rhythmic locomotor, feeding, and agonistic behavior of subadult spiny lobster Panulirus argus held grouped and solitarily in simulated natural conditions. Non-disruptively determined molt stages were defined as proportions of intermolt duration. Significant nocturnal rhythmicity persisted through the full molt cycle, though daily form varied as a function of activity level and molt stage. A distinct early evening peak signaled initiation of foraging and walking behavior. Thereafter, rhythm amplitude either declined progressively (low activity: unimodal pattern), remained high (high activity: nocturnal plateau), or exhibited a secondary early morning peak (intermediate activity: bimodal and polymodal patterns). Activity ceased at or immediately prior to sunrise. Ecdysis was predominantly nocturnal, probably reflecting species specific spatiotemporal movement patterns and social behavior. A selective advantage of nocturnal ecdysis was postulated concerning avoidance of cannibalism and diurnal predators. Locomotor activity and feeding rates were not equivalent through the molt cycle, though both peaked in stages B2-C1. Locomotor activity remained high in metecdysis, decreased sharply at proecdysis initiation (D0), reaching lowest levels in D1-D3, then increased in D3 through B1. Activity dropped steeply at ecdysis, though lobsters were capable of intense and coordinated activity. Feeding decreased slowly through metecdysis after the B2-C1 maximum, then increased temporarily in C4 and D0, indicating heightened feeding motivation. This contrasts with the locomotor activity decrease at proecdysis. Food consumption declined rapidly in D1 and D2 and ceased at the D2-D3 transition. Feeding resumed in B1 or B2, intensifying to maximum in late B2. Feeding remained relatively constant within stages, whereas locomotor activity varied greatly, though both correlated with metabolic needs. Grouped and solitary lobsters displayed similar patterns of foraging and walking, equivalent to those of locomotor activity and feeding of solitary individuals. Frequency of agonistic interactions (not aggression per se) remained relatively constant through the cycle, peaking in metecdysis, though the highest relative proportion occurred near ecdysis. Lobsters then were submissive and avoided physical contact with conspecifics. Clearly, locomotor activity, feeding, and social behavior of P. argus are not simply determined. Indeed, behavior is distinctly phase coordinated with varying metabolic requirements dependent on the proximity to ecdysis and ecological pressures.  相似文献   

2.
Postlarval shrimp, Penaeus vannamei Boone, 1931, were held individually in cages and exposed to two feeding regimes. One group was starved for 12 d and then fed during the following 12 d. A second group was fed throughout the 24 d study. Four individuals were sampled from each of the two groups on Days 0, 1, 2, 4, 8, 12, 13, 14, 16, 20, and 24. Molting and growth among the starved-fed postlarvae stopped after 2 d starvation, while fed postlarvae increased significantly in size throughout the 24 d study. Among the starved-fed postlarvae, water content increased rapidly in response to starvation. DNA and sterol concentrations increased significantly during starvation due to selective catabolism of cellular components. After 12 d, RNA concentration was not significantly different between the fed and starved-fed postlarvae, but became significantly higher in the starved-fed postlarvae 48 h after feeding resumed. Triacylglycerol reserves were severely depleted during the first day of starvation, while protein concentrations began to decrease after the second day of starvation. RNA, protein, and the polyamines spermidine and spermine, when expressed as a ratio to DNA, decreased in response to starvation. Concentrations of all measured parameters in the starved-fed postlarvae returned to levels similar to those in the fed group 8 to 12 d after feeding resumed. Results of this study suggest that triacylglycerol provides energy during short periods of starvation, while protein is utilized during prolonged starvation. The ratios of RNA:DNA, protein:DNA, spermidine:DNA, spermine:DNA, two unidentified amine compounds, and percent water content are all useful indicators of prolonged nutritional stress in postlarval P. vannamei.  相似文献   

3.
S. M. Moss 《Marine Biology》1994,120(3):359-367
The use of nucleic acids to estimate crustacean growth is not well documented, and may be complicated by biochemical changes associated with their molt cycle. The objectives of this study were to assess the effects of molt stage on nucleic acid concentrations in abdominal muscle tissue of juvenile white shrimp,Penaeus vannamei, and to examine the relationship between nucleic acid concentrations and growth rates of shrimp exposed to different feeding regimes throughout a 12 d feeding experiment. RNA and DNA concentrations and RNA:DNA ratios were not significantly different among the five major molt stages early postmolt, late postmolt, intermolt, early premolt, and late premolt. In the feeding experiment, RNA concentrations and RNA:DNA ratios accounted for >70% of the variation in shrimp growth on three different sampling days. In addition, RNA concentrations and RNA:DNA ratios were used successfully to discriminate between unfed, moderately-fed, and well-fed shrimp. These variables exhibited significant treatment differences in <24 h after the initiation of the different feeding regimes, whereas significant changes in whole-body weight took longer to detect. Rapid detection of significant treatment effects can be useful in ecological studes, especially those concerned with food-web interactions.  相似文献   

4.
Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) contents were measured daily during the zoeal development of the crab Rhithropanopeus harrisii (Gould). DNA concentration (per unit protein) decreased as larvae increased in size. Total DNA content per larva showed an abrupt increase at the second molt and increased steadily during the third and fourth zoeal stages. Ratios of fresh weight to DNA were highest during the first two zoeal stages, dropped sharply at the second molt, then increased during the third and fourth zoeal stages. RNA:DNA ratios showed cyclical activity apparently related to the molt cycle. Assuming that fresh weight: DNA ratio reflects cell size and that DNA content reflects cell number, growth during the first two stages is due primarily to increase in cell size and during the last two stages to a combination of increase in cell size and number. Assuming further that RNA:DNA ratios reflect protein-synthesis activity, such activity in these larvae follows a rhythm related to the molt cycle.  相似文献   

5.
We used time-series analysis to identify weekly and annual patterns in the supply of spiny lobster, Panulirus argus (Latreille, 1804), postlarvae to the Florida Keys, USA, over an 8 yr period. We also investigated the relationship between postlarval influx and wind forcing as a transport mechanism using the complex vector-scalar correlation analysis. Postlarval supply had a lunar phase periodicity at 4.5 wk intervals, with postlarval abundance peaking between the new moon and first-quarter lunar phases. A distinct annual cycle of postlarval supply with two peak periods was also apparent. Cross-correlation analysis between relative postlarval abundance and a 12 mo cycle showed that the annual peak occurs in spring, centered around March. With the 12 mo periodicity removed, a smaller peak at 5 mo intervals was also well defined. Wind-forcing for 7 d prior to the time of postlarval collection was marginally correlated with postlarval abundance through the entire time-series; the association was strongest during the late fall to early spring months. The analysis indicated that postlarval supply was correlated with winds from the northeast (ca. 45°), which are associated with winter atmospheric fronts. In contrast to results reported for other spiny lobster populations, these patterns suggest that recruitment of lobster postlarvae to south Florida is predictable only at a gross level and is presumably affected by the temporally inconsistent structure of regional oceanic gyres and variability in the timing of lobster spawning in the Caribbean. Received: 24 January 1997 / Accepted: 4 March 1997  相似文献   

6.
Zoea I larvae of Hyas araneus L. (Decapoda: Brachyura: Majidae) were dredged in January 1986 from the German Bight and reared in the laboratory at constant 12°C, until they reached the transition of stages C/D0 of the moult cycle (4 d after hatching). This developmental stage had previously been found to correspond with the point of reserve saturation (PRS) which allows autonomous (food-independent) development through the rest of the moult cycle and hence, was termed the D0 threshold. One part of the larvae was continually fed (control), another group was starved from the D0 threshold until moulting to the zoea II instar. In these two experimental groups, as well as in the two groups of zoea II larvae obtained from the different feeding conditions, the course of the moult cycle, biomass (dry weight, W; carbon, C; nitrogen, N; hydrogen, H; energy, E; the latter estimated from C), and ecdysteroid titers (measured with a radio-immuno-assay as ecdysone equivalents) were investigated. When the larvae reached the PRS, they had gained 90% in W, 72% in C, 32% in N, 53% in H, and 65% in E, since hatching, corresponding to an accumulation of 87% of final W and 62 to 69% of C, N, and H reached later, at the end of the mould cycle in the control. The period of starvation caused a 2.5-d delay of the moult cycle, mainly in late premoult, and significant losses of biomass and energy. Starved and fed larvae secreted similar amounts of moulting hormone per individual, but with a reduced rate in the starved group, thus causing developmental delay. Zoea II larvae moulting after starvation contained less than half of the control biomass and energy, and even less than a freshly hatched zoea I. Growth rate was only slightly enhanced in these zoea II larvae as compared to the fed control, but losses of biomass, mainly of lipids, were partly compensated by a 4-d prolongation of their moult cycle, chiefly (3 d) in stage C. Biomass curves were almost parallel in the two experimental groups of zoea II larvae, with significantly higher values in the control during all stages of the moult cycle. However, similar relative proportions (74 to 89%) of late premoult biomass and energy were reached at the D0 threshold, regardless of different feeding history and initial or final values in a given group. The ecdysteroid titer curve of the zoea II which had moulted from starved zoea I was very similar to that in control larvae, but with a 3-d delay in the occurrence of premoult peak concentration (in both groups in stage D1). Regulation and coordination of moult cycle, ecdysteroid titers, and growth in the larval development of decapod crustaceans are discussed, with special reference to the D0 threshold.  相似文献   

7.
The natural diet and mode of feeding of the rock lobster Jasus lalandii (H. Milne Edwards) was determined in a rock-lobster sanctuary near Cape Town, South Africa. Field observations were tested and confirmed by means of aquarium studies. Rock lobsters feed mainly upon ribbed mussels Aulacomya ater (Molina), which comprise the largest component of the sessile benthic fauna. Mussel remains were found as the major constituent in 97% of the rock-lobster stomachs examined. The density of rock lobsters averaged 8,100 per hectare (0.81 m-2), while mussel biomass averaged more than 5 kg (wet whole weight) m-2 within the same depth range (12 to 30 m). More than 80% of the mussel biomass comprised large individuals between 60 and 90 mm in length. Large rock lobsters (mainly males) were capable of feeding on all sizes of mussels, although many of these were inaccessible to predation. Smaller rock lobsters became progressively more limited in the size range of mussels which they could crack open and consume. Competition between rock lobsters for small mussels appeared to be intense, as mussels of suitable size for feeding were generally in short supply to most of the rock-lobster population. Hence, feeding and growth rates of rock lobsters are likely to be affected by the relative population densities of predator and prey. Growth rates of rock lobsters could be limited by food supplies even in areas where mussel biomass is comparatively large.  相似文献   

8.
Acute toxicity of ammonia was determined for cultured larval, postlarval, and wild adult lobsters (Homarus americanus) in 1988. Ammonia tolerance was found to increase with ontogenetic development. Based on 96-h LC50 values of 58 mg l–1 NH4 + + NH3 l–1 seawater (0.72 mg NH3 l–1) for Stage I larvae, 87 mg NH4 + + NH3 l–1 (1.7 mg NH3 l–1) for Stage II larvae, 125 mg NH4 + + NH3 l–1 (2.13 mg NH3) for Stage III larvae, 144 mg NH4 + + NH3 l–1 (2.36 mg NH3 l–1) for Stage IV postlarvae, 377 mg NH4 + + NH3 l–1 (5.12 mg NH3 l–1) for adult lobsters at 5°C and 219 mg NH4 + + NH3 l–1 (3.25 mg NH3 l–1) for adult lobsters at 20°C, recommendations for safe levels of total ammonia and un-ionized ammonia were calculated using an application factor of 0.1. Effects of ammonia on osmoregulatory capacity were studied on postlarvae and adults. Ability of postlarvae and adults to hyper-regulate in low-salinity media decreased after exposure to ammonia. In postlarval lobsters, osmoregulatory capacity was significantly affected in ammonia concentrations exceeding 32 mg l–1. Osmoregulatory capacity in adult lobsters (5 and 20°C) was affected at 150 mg l–1. In postlarval lobsters, a minimum exposure time of 12 h was required to impair osmoregulatory capacity. The decrease in hemolymph osmotic pressure was caused by lower hemolymph sodium concentrations. The presence of ammonia in the external medium could markedly affect the Na+/NH4 + transport mechanism by permanently, temporarily, or partially impairing the transport sites for sodium.  相似文献   

9.
Survival of individually reared larval and juvenile stage lobsters, Homarus americanus (Milne-Edwards), was significantly higher than in corresponding groups of communally reared individuals. Among communally reared lobsters, the mortality rate was highest in the second-stage larvae and then progressively decreased in the later stages. The relationship between survival and duration of molt period of each life-cycle stage indicates that asynchronous molting in the groups of communally reared lobsters is a contributing factor to the higher mortality rate. The molting and mortality curves of communally held lobsters reared from the first larval to first or second juvenile stage showed best cross correlation at 0- or 1-day time lag. The decreased mortality rate observed in the later larval and juvenile stages appears to have resulted from the establishment of new behavior patterns. Group interactions which are influenced by numerous extrinsic and intrinsic factors lead to higher mortality rate (cannibalism) among communally reared lobsters.  相似文献   

10.
The activity of chitobiase, also known as N-acetyl-β-glucosaminidase, in the epidermis and hepatopancreas of the fiddler crab Uca pugilator (Bosc, 1802), during the molting cycle, was investigated. A pH optimum of 5 to 6 was found for the enzymatic activity in both the epidermis and hepatopancreas. The temperature optimum for epidermal and hepatopancreatic chitobiase activities was 50 to 60 °C. The K m values for epidermal and hepatopancreatic chitobiase activities at 19 °C were 0.190 ± 0.027 and 0.203 ± 0.016 mM 4-methylumbelliferyl-N-acetyl-β-glucosaminide, respectively. Hepatopancreatic chitobiase activity was significantly higher than epidermal enzymatic activity in all the molt cycle stages tested except Postmolt Stage A-B. Chitobiase activity varied significantly during the molting cycle, with the epidermal enzymatic activity in Premolt Stage D3–4 significantly higher than in Stage C (intermolt) and Premolt Stage D0, whereas hepatopancreatic chitobiase activity in Premolt Stage D3–4 was significantly higher than in all other molt stages tested. The patterns of chitobiase activity in the epidermis and hepatopancreas correlate well with the hemolymph titer of ecdysteroids in U. pugilator during the molting cycle; this suggests that chitobiase activity in both tissues is regulated at least in part by the steroid molting hormones. Received: 6 May 1998 / Accepted: 12 September 1998  相似文献   

11.
For crustaceans with a well-defined annual molting season, such as adult female Dungeness crabs (Cancer magister Dana), setal molt staging can, in principle, be used to predict molting destiny of individual crabs. Size-specific predictions of molting probability could, in turn, be useful for estimating mortalities due to molting. Female Dungeness crabs were collected January–March 1997 at depths of 10–30 m off the California coast, USA (41°N). Intermolt stage A1–C4 and premolt stages D0, D1, D1, D1 and D2 were described based on features of the branchial epipod. Laboratory experiments suggested that stage D1 was the earliest stage beyond which eventual molting was inevitable so that molting destiny could be determined. Estimated mean number of days from the beginning of stage D1 to molting was 85. Estimated individual stage durations, based on laboratory experiments, were 24, 51, –4, 18, and 20 days, respectively, for stages D0, D1, D1, D1, and >D2. The estimated –4 days for stage D1 suggests that this stage must be very brief and raises a question of its utility in designation of molt stages. Molt staging of three field samples, 300–600 crabs in each, collected prior to the 1997 annual molting season, indicated an increase in the size and frequency of crabs staged D1 or later as the time to molt approached, although crabs of 150 mm carapace width and larger showed few signs of molt preparation. Because the duration of the molting season (approximately 120 days) for adult female C. magister in northern California exceeds the estimated maximum duration of reliable prediction of molting destiny (85 days), it does not appear that molt staging can be used to predict molting destiny in this population. However, the procedures that we have used in this paper for application to female C. magister might be used with success for other crustaceans if the duration of stages D1 to molting exceeds the duration of the molting season, and furthermore may be used for describing temporal molting trends.Communicated by J.P. Grassle, New Brunswick  相似文献   

12.
The microhabitat of Symbion pandora (Cycliophora) was described by recording the prevalence and distribution of two life cycle stages, namely feeding individuals and chordoid cysts on the mouth appendages of 65 Norway lobsters. The commensals infested lobsters with a carapace length >35 mm, while the intensity of the commensals increased with host size up to more than 1,100 feeding individuals and 173 chordoid cysts. Feeding individuals and chordoid cysts were found on all six pairs of mouth appendages, but were rare on Mxp3. A Kruskal–Wallis analysis of variance showed that the distribution of the two stages over individual segments deviated significantly from random expectations (P<0.001). Feeding individuals densely aggregated on a few medial segments, generally those that are pervaded by suspended food particles during host feeding. Chordoid cysts, which arise from non-feeding females occurred in low numbers and were more evenly distributed over the segments, often aggregating on the lateral parts and in the articulations of the segments. Based on these findings we suggest that the feeding activity of S. pandora is synchronized with that of the host.  相似文献   

13.
Protein, total lipid, and the activities of the enzymes alkaline phosphatase (AP) and glutamic oxaloacetic transaminase (GOT) were measured daily during larval development of the xanthid crab Rhithropanopeus harrisii (Gould). Percent increase in fresh weight was greatest on the first day after each molt. Protein and total lipid per larva increased during the second, third, and fourth zoeal stages, with the most marked increase during the third. When calculated as percent fresh weight, marked accumulation of both protein and total lipid occurred during the third zoeal stage. GOT activity remained stable during the third zoeal stage, but increased significantly during the fourth zoeal stage. AP showed a 4-day cycle of activity apparently related to the molt cycle. It is suggested that increased protein and total lipid content during the third zoeal stage indicate nutritional requirements prior to metamorphosis. Biochemical change may be a more relevant indicator of growth during larval development than either size increase or molt frequency when assessing the value of various diets in the culture of crabs.  相似文献   

14.
Arylsulphatases (ASases) have been identified in the mantle tissues of the barnacle Balanus eburneus Gould. This is the first report of these enzymes in the Cirripedia. Using p-nitrocatechol sulphate (NCS) as a substrate, the optimum pH for activity was found to be 5.6 in 0.5 M-acetate buffer, and substrate concentration of 12 mM. The activity of the enzyme was strongly inhibited by phosphate, sulphite and sulphate and not by cyanide, indicating the presence of Type II ASase. Biochemical and electrophoretic studies revealed the coexistence of at least two distinct Type II ASases in the mantle tissues. These are probably similar to the ASase-A and ASase-B reported for vertebrate tissues. The presence of multiple molecular forms of ASase capable of hydrolyzing potassium 6-benzoyl-2-naphthyl sulphate was demonstrated by polyacrylamide gel disc-electrophoresis. The activity patterns of ASases in the mantle tissues were studied in relation to the molt cycle. The activity of ASase-B followed a cyclic pattern which correlated with the molt stages, reaching a maximum in the postmolt. The activity of ASase-A remained essentially the same during the entire molt cycle. Analysis of the activities after dialysis indicates a change in the activity of ASase-B into a non-fluctuating pattern. The enzyme was found in all stages of development, with a ninefold increase in activity in adult forms. The fact that a greater activity was found in the nondigestive organs and that there is an increase in the activity of ASase in tissues of unfed (starved) specimens indicates that the enzyme does not function in the digestive processes, as suggested for other animals by certain investigators. The evidence in this study implicates a major role for dialyzable inhibitory factor(s) as the mechanism involved in the regulation of the activity of ASase-B during the molt cycle. The possible relationship of endogenous phosphate and/or neurosecretory substance(s) with the dialyzable inhibitory factor(s) is discussed. A discussion speculating on the relationship of ASase activity to the cyclic formation and hardening of the exoskeleton and adhesive substance(s) is also presented.  相似文献   

15.
We tested the hypothesis that larval size in the acorn barnacle Balanus eburneus Gould (Cirripedia Thoracica) varies in relation to food availability. In March–November 1980, and March–July 1981, larvae were obtained from adult Balanus eburneus collected in the Newport River, North Carolina, USA. Carapace length and width of larvae reared at three different food concentrations were measured. Mean naupliar instar size was independent of food concentration. Mean size of the cypris instar increased with increasing food level. Greater cypris size could be attributed to increased food reserves in the preceding naupliar stage, and was coinciden with inmarked increase in metamorphic success. Variation in instar size remained constant or declined during naupliar development, but increased sharply at the molt to the cyprid. Naupliar size regulation involved: (1) conservation of a molt increment specific for each naupliar-naupliar molt, (2) an inverse relationship between premolt size and the molt increment during the first five naupliar instars, and (3) an increase in the precision of the molt increment at the molt to the sixth naupliar instar. Experimental evidence implies that size regulation in Balanus eburneus limits variation about a fixed final naupliar size (e.g. volume). Measurement of naupliar size, accumulated energy reserves, survival and development time, and cypris metamorphic success indicated that naupliar cuticular growth is the most conservative feature of larval development. The data suggest that maximum naupliar size is limited by escalating metabolic costs during development, while minimum naupliar size is limited by size-related feeding effectiveness.  相似文献   

16.
To determine the effects food ration and feeding regime on growth and reproduction of Strongylocentrotus droebachiensis (Müller), sea urchins in laboratory aquaria were fed kelp (Laminaria longicruris) supplied at either a high (H, ad libidum daily) or a low (L, ad libidum 1 d wk−1) ration in two successive 12-wk intervals during the reproductive period. After 24 wk, urchins fed the high ration continuously (HH) or for the last 12 wk only (LH) had a significantly greater mean gonad index [(gonad weight/total body weight) × 100] and body weight than urchins fed the low ration continuously (LL) or for the last 12 wk only (HL). Urchins in the HL treatment had a significantly greater gonad index than those in the LL treatment; there was no significant difference in gonad index between the LH and HH treatments. Females had a greater gonad index than males in the low ration (LL and HL) treatments at the end of the experiment; there was no significant difference between sexes in the high ration (LH, HH) treatments. Gametogenesis proceeded to maturation in all treatments and some individuals spawned at the end of the experiment. Females in the high ration (HH and LH) treatments had a greater proportion of nutritive phagocytes in their ovaries than females in the low ration treatments, but there was no effect of feeding treatment on oocyte or ovum size. Feeding treatment had no effect on the relative abundance of nutritive phagocytes in the testes, although the proportion of spermatocytes was higher (and that of spermatozoa lower) in the high ration than in the low ration treatments. Urchins in the high ration treatments had a lower mean jaw height index [(jaw height/test diameter) × 100] and greater mean test diameter than those in the low ration treatments at the end of the experiment, although these differences were not statistically significant. Feeding rate on kelp at the end of the experiment was significantly greater for urchins in the low ration than in the high ration treatments. Our experimental results show that even relatively low rations of kelp support somatic and gonadal growth in S. droebachiensis. Increasing the supply of kelp, particularly during the period of active gametogenesis, results in maximal rates of growth and reproduction. These results suggest that populations of S. droebachiensis in barrens may derive a substantial proportion of their nutrition from drift kelp, which may contribute to their persistence in these habitats. They also explain the large body size, high reproductive effort and fecundity of urchins grazing on kelp beds. These findings have important implications for understanding the dynamics of natural populations of S. droebachiensis and for development of effective aquacultural practices. Received: 17 February 1997 / Accepted: 5 March 1997  相似文献   

17.
 Sedimentary DNA, RNA and ATP concentrations were measured at six stations on a tidal flat in the German Wadden Sea from April to December 1995 to determine factors controlling microbial abundance and activity. Two stations (1 and 2) were located in a mussel bed (Mytilus edulis) in the middle of the flat, and the other four were arranged in a line following ebb tide direction. DNA and ATP concentrations were converted into carbon equivalents using literature coefficients and considered to represent total microbial biomass and viable microbial biomass, respectively. The difference between CDNA and CATP was considered as detrital biomass. CDNA and detrital CDNA biomass both increased from spring to summer and decreased in autumn to reach lowest values in December. The most prominent seasonal increase was observed at the mussel bed stations and two adjacent stations. CATP biomass peaked in early spring, especially at the mussel bed stations, and showed a secondary peak in summer. Regression analysis yielded a highly significant relation between the silt content of the sediment and CDNA and CATP. However, CDNA and CATP biomass are not correlated if silt is taken into account. The relation between silt and microbial biomass in combination with the decrease of the silt content with distance from the mussel bed indicate the importance of mussel beds for the microbial activity on the tidal flat, most likely through deposition of feces and pseudofeces. The low silt content and microbial biomass in winter are attributed to resuspension events. The zero intercepts of the regressions between DNA and ATP or RNA suggest that extracellular DNA is absent in our samples. Hence, detrital CDNA biomass in our samples probably consists of intact but dormant cells. Compared to other marine habitats the percentage of detrital CDNA biomass on the tidal flat is quite high, i.e. up to >95% of the total CDNA. However some doubt is expressed about the validity of factors used to convert ATP and DNA to carbon. The proportion of active biomass, expressed by the ratio CATP/CDNA being the complement of the detrital CDNA percentage shows a steady decrease with time and with diminishing distance towards the mussel beds. The role of a mussel bed as a biosedimentary system influencing spatial and temporal trends in specific activity is discussed. Received: 26 January 2000 / Accepted: 3 July 2000  相似文献   

18.
Adult spiny lobsters (Panulirus argus) were collected from nine locations throughout the tropical and subtropical northwest Atlantic Ocean and examined for mitochondrial DNA (mtDNA) variation. 187 different mtDNA haplotypes were observed among the 259 lobsters sampled. Haplotype diversity was calulated to be 0.986 and mean nucleotide sequence-diversity was estimated to be 1.44%; both of these values are among the highest reported values for a marine species. Analysis of molecular variance (AMOVA) and phenetic clustering both failed to reveal any evidence of genetic structure within and among populations of P. argus. The present data are consistent with high levels of gene flow among populations of P. argus resulting from an extended planktonic larval stage and strong prevailing ocean currents.  相似文献   

19.
The locomotor activity patterns and agonistic encounters of cultured juvenile (IX–XIII stage) American lobsters, Homarus americanus (Milne-Edwards) held in 8 experimental environments were investigated to examine their relative contribution to aggressive level. Three variables: (1) lobsters individually or communally maintained, (2) shelters present or absent, and (3) open or closed seawater system were tested in a set of factorial experiments. Locomotor activity of lobsters held in a 12 h: 12 h light: dark regime was recorded for individually separated lobsters for the first 5 days and for communally held lobsters for the next 5 days of a 10-day experimental period. All lobsters maintained individually had similar levels of activity. When the same individuals were communally maintained, there appeared to be social inhibition of activity. In addition, communally held lobsters without shelter were twice as active as those provided with shelter. The activity levels of groups of communally held lobsters with shelter progressively decreased over the experimental period. All lobsters became somewhat entrained to the light: dark cycle and were nocturnally active. However, the degree of entrainment was strongly influenced (P<0.001) by the presence or absence of shelter and other lobsters. Individually maintained lobsters all showed good entrainment, although those provided with shelter were slightly better entrained. The presence of conspecifics desynchronized activity patterns when shelter was not provided. Aggressive level, as measured by the frequency of agonistic encounters per 15-min observation period and the number and types of displays per encounter, decreased over an 8-day period for groups of 3 lobsters in all experimental environments. Lobsters maintained in a closed system initially showed higher frequencies of agonistic encounters than those held in an open system. The observed decrease in aggressive level with time primarily resulted from decreased activity levels. When two lobsters met, the probability of an agonistic encounter was about 0.8 throughout the experimental period, but decreasing activity levels resulted in progressively fewer encounters. The results suggest several approaches for limiting aggression among communally maintained lobsters in culture systems by environmental manipulation.  相似文献   

20.
To examine variation in diet and daily ration of the bonnethead shark, Sphyrna tiburo (Linnaeus 1758), animals were collected from three areas in the eastern Gulf of Mexico: northwest Florida (∼29°40′N, 85°13′W), Tampa Bay near Anclote Key (∼28°10′N, 82°42.5′W), and Florida Bay (∼24°50′N, 80°48′W) from March through September, 1998–2000. In each area, diet was assessed by life stage (young-of-the year, juveniles, and adults) and quantified using five indices: percent by number (%N), percent by weight (%W), frequency of occurrence (%O), index of relative importance expressed on a percent basis (%IRI), and %IRI based on diet category (%IRIDC). Diet could not be assessed for young-of-the-year in Tampa Bay or Florida Bay owing to low sample size. Diet analysis showed an ontogenetic shift in northwest Florida. Young-of-the-year stomachs from northwest Florida (n = 68, 1 empty) contained a mix of seagrass and crustaceans while juvenile stomachs (n = 82, 0 empty) contained a mix of crabs and seagrass and adult stomachs (n = 39, 1 empty) contained almost exclusively crabs. Crabs made up the majority of both juvenile and adult diet in Tampa Bay (n = 79, 2 empty, and n = 88, 1 empty, respectively). Juvenile stomachs from Florida Bay (n = 72, 0 empty) contained seagrass and a mix of crustaceans while adult stomachs contained more shrimp and cephalopods (n = 82, 3 empty). Diets in northwest Florida and Tampa Bay were similar. The diet in Florida Bay was different from those in the other two areas, consisting of fewer crabs and more cephalopods and lobsters. Plant material was found in large quantities in all stomachs examined from all locations (>15 %IRIDC in 6 of the 7 life stage-area combinations, >30 %IRIDC in 4 of the 7 combinations, and 62 %IRIDC in young-of-the-year diet in northwest Florida). Using species- and area-specific inputs, a bioenergetic model was constructed to estimate daily ration. Models were constructed under two scenarios: assuming plant material was and was not part of the diet. Overall, daily ration was significantly different by sex, life stage, and region. The bioenergetic model predicted increasing daily ration with decreasing latitude and decreasing daily ration with ontogeny regardless of the inclusion or exclusion of plant material. These results provide evidence that bonnetheads continuously exposed to warmer temperatures have elevated metabolism and require additional energy consumption to maintain growth and reproduction. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号