首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 892 毫秒
1.
Decolorizing of lignin wastewater using the photochemical UV/TiO2 process   总被引:1,自引:0,他引:1  
Chang CN  Ma YS  Fang GC  Chao AC  Tsai MC  Sung HF 《Chemosphere》2004,56(10):1011-1017
Studies on applying the photochemical UV/TiO2 oxidation process to treat the lignin-containing wastewater for dissolved organic carbon (DOC), color and reducing A254 (the absorption at the wavelength of 254 nm) have been carried out. The data obtained in this study demonstrate that the UV/TiO2 process is effective in oxidizing the lignin thus reducing the color and DOC of the wastewater treated. The combined UV/TiO2 treatment can achieve better removal of DOC and color than the UV treatment alone. Color removal, based on American Dye Manufacture Index (ADMI) measurement, is greater than 99% if the pH is maintained at 3.0 with the addition of 1 g l(-1) TiO2. When 10 g l(-1) TiO2 is applied, the oxidation reduction potential (ORP) value is reached to result in an 88% removal of both DOC and color. A model was developed based on the variation of ORP during the photochemical reaction to simulate the decoloring process. The proposed model can be used to predict the color removal efficiency of the UV/TiO2 process.  相似文献   

2.
以工业硫酸氧钛为原料水解制得SO42-/TiO2光催化剂,并以苯酚为目标降解物,考察了SO24-/TiO2的光催化性能。结果表明:随着SO42-/TiO2制备过程中焙烧温度的升高,其光催化活性逐渐增加,650℃焙烧获得的SO24-/TiO2的光催化活性最好,此后再升高温度会因催化剂中硫的挥发而下降;在确定苯酚原液初始浓度为50 mg/L条件下,SO42-/TiO2的光催化降解苯酚的最佳工艺条件为反应时间2 h、苯酚pH为7、催化剂用量1 g/L。XRD、SEM和FTIR的分析结果显示实验温度下制得的SO42-/TiO2均为锐钛型TiO2;其间掺杂的SO24-在TiO2表面分散性较好,没有聚集成大的颗粒;红外分析的结果初步判定低温(<550℃)焙烧制得的催化剂SO42-在TiO2表面是螯合双配位吸附,高温焙烧时(>550℃)SO42-在TiO2表面是桥式配位吸附。  相似文献   

3.
Ling CM  Mohamed AR  Bhatia S 《Chemosphere》2004,57(7):547-554
TiO2 thin film photocatalyst was successfully synthesized and immobilized on glass reactor tube using sol-gel method. The synthesized TiO2 coating was transparent, which enabled the penetration of ultra-violet (UV) light to the catalyst surface. Two photocatalytic reactors with different operating modes were tested: (a) tubular photocatalytic reactor with re-circulation mode and (b) batch photocatalytic reactor. A new proposed TiO2 synthesized film formulation of 1 titanium isopropoxide: 8 isopropanol: 3 acetyl acetone: 1.1 H2O: 0.05 acetic acid (in molar ratio) gave excellent photocatalytic activity for degradation of phenol and methylene blue dye present in the water. The half-life time, t1/2 of photocatalytic degradation of phenol was 56 min at the initial phenol concentration of 1000 microM in the batch reactor. In the tubular photocatalytic reactor, 5 re-circulation passes with residence time of 2.2 min (single pass) degraded 50% of 40-microM methylene blue dye. Initial phenol concentration, presence of hydrogen peroxide, presence of air bubbling and stirring speed as the process variables were studied in the batch reactor. Initial methylene blue concentration, pH value, light intensity and reaction temperature were studied as the process variables in the tubular reactor. The synthesized TiO2 thin film was characterized using SEM, XRD and EDX analysis. A comparative performance between the synthesized TiO2 thin film and commercial TiO2 particles (99% anatase) was evaluated under the same experimental conditions. The TiO2 film was equally active as the TiO2 powder catalyst.  相似文献   

4.
Monteagudo JM  Durán A 《Chemosphere》2006,65(7):1242-1248
The decoloration and mineralization of the azo dye orange II under conditions of artificial ultraviolet light and solar energy concentrated by a Fresnel lens in the presence of hydrogen peroxide and TiO(2)-P25 was studied. A comparative study to demonstrate the viability of this solar installation was done to establish if the concentration reached in the focus of the Fresnel lens was enough to improve the photocatalytic degradation reaction. The degradation efficiency was higher when the photolysis was carried out under concentrated solar energy irradiation as compared to UV light source in the presence of an electron acceptor such us H(2)O(2) and the catalyst TiO(2). The effect of hydrogen peroxide, pH and catalyst concentration was also determined. The increase of H(2)O(2) concentration until a critical value (14.7 mM) increased both the solar and artificial UV oxidation reaction rate by generating hydroxyl radicals and inhibiting the (e(-)/h(+)) pair recombination, but the excess of hydrogen peroxide decreases the oxidation rate acting as a radical or hole scavenger and reacting with TiO(2) to form peroxo-compounds, contributing to the inhibition of the reaction. The use of the response surface methodology allowed to fit the optimal values of the parameters pH and catalyst concentration leading to the total solar degradation of orange II. The optimal pH range was 4.5-5.5 close to the zero point charge of TiO(2) depending on surface charge of catalyst and dye ionization state. Dosage of catalyst higher than 1.1 gl(-1) decreases the degradation efficiency due to a decrease of light penetration.  相似文献   

5.
Kinetics and mechanism of TNT degradation in TiO2 photocatalysis   总被引:9,自引:0,他引:9  
Son HS  Lee SJ  Cho IH  Zoh KD 《Chemosphere》2004,57(4):309-317
The photocatalytic degradation of TNT in a circular photocatalytic reactor, using a UV lamp as a light source and TiO(2) as a photocatalyst, was investigated. The effects of various parameters such as the initial TNT concentration, and the initial pH on the TNT degradation rate of TiO(2) photocatalysis were examined. In the presence of both UV light illumination and TiO(2) catalyst, TNT was more effectively degraded than with either UV or TiO(2) alone. The reaction rate was found to obey pseudo first-order kinetics represented by the Langmuir-Hinshelwood model. In the mineralization study, TNT (30 mg/l) photocatalytic degradation resulted in an approximately 80% TOC decrease after 150 min, and 10% of acetate and 57% of formate were produced as the organic intermediates, and were further degraded. NO(-)(3) NO(-)(2), and NH(+)(4) were detected as the nitrogen byproducts from photocatalysis and photolysis, and more than 50% of the total nitrogen was converted mainly to NO(-)(3)in the photocatalysis. However, NO(-)(3) did not adsorbed on the TiO(2) surface. TNT showed higher photocatalytic degradation efficiency at neutral and basic pH.  相似文献   

6.
研究了负载于玻璃上的固定化催化剂TiO2膜光催化降解水中三氯乙醛的效果,探讨了TiO2膜光催化降解三氯乙醛的机理,考察了溶液pH值和三氯乙醛初始浓度埘TiO2膜光催化降解三氯乙醛的影响,并研究了固定化催化剂TiO2膜光催化降解三氯乙醛的动力学.结果表明,固定化催化剂TiO2膜光催化降解水中三氯乙醛的效果良好,当三氯乙醛初始浓度为2.25 mg/L时,在紫外光照时间3 h下,三氯乙醛的降解率高达100%.在相司紫外光照时间下,三氯乙醛的光催化降解率随着三氯乙醛初始浓度的增大而下降.在溶液pH=6.5时,三氯乙醛的降解效率最高.固定化催化剂TiO2膜光催化降解三氯乙醛的反应遵循一级反应动力学,反应速率常数随三氯乙醛初始浓度的增大而减小.  相似文献   

7.
The role of hydroxyl radicals on the degradation of lignins during a cellulosic pulp bleaching process including a photocatalytic stage, was assessed using peroxyformic acid lignins EL1 and REL1 and two phenolic niphenyl lignin models 1 and 2. The irradiations were performed in the absence of photocatalyst TiO2 and H2O2 (condition a), in the presence of TiO2 (condition b) and in the presence of H2O2 (condition c). The experiments were conducted in alkaline (pH approximately 11) aqueous ethanol solutions with oxygen bubbling. The relative phenolic content of the irradiated solutions, which is indicative of the involvement of hydroxyl radicals, was determined by ionization absorption spectroscopy. The results obtained show that the catalyzed reaction involves both degradation of the phenolate groups by electron transfer and hydroxylation of the lignin aromatic structure. Benzyl alcohol structural elements in sodium borohydride reduced lignin REL1 and compound 2 were also found as good trapping agents for the hydroxyl radicals. The degradation of EL1 was studied by measuring its fluorescence emission by comparison to the fluorescence of compound 2. The emission spectra indicate that some biphenyl phenolate anions in EL1 are reacting under UV/visible irradiation and some others, probably polyphenolic chromophores emitting less fluorescence, are formed.  相似文献   

8.
以硫脲为硫的源物质,以钛酸四丁酯为TiO2的前驱体,采用溶胶-凝胶法制备了掺硫改性TiO2光催化剂。以活性艳红X-3B为目标污染物,研究了该催化剂的光催化降解性能,对硫掺杂量、催化剂焙烧温度、溶液pH值以及催化剂添加量等影响因素进行了研究,并采用XRD分析手法对光催化剂进行表征。结果表明,经掺硫改性后的TiO2的催化活性有了很大提高,且硫的掺杂有一个最佳值,即Ti∶S的摩尔比为1∶1。经掺硫改性的TiO2在可见光区具备一定的催化活性, 180 min内对活性艳红X-3B的去除率可达35.1%,且在紫外光区的催化活性优于纯TiO2。  相似文献   

9.
采用共沉淀-浸渍法制备了固体超强酸SO4^2-/TiO2-SnO2/Ce^4+,并用XRD、SEM等方法对其结构进行了表征。以苯酚的光催化降解为反应模型,确定了最佳的工艺条件和催化剂再生方法。结果表明:在pH值为6,苯酚初始浓度为50mg/L,催化剂投加量4g/L,光照距离12cm,光照时间为150min,降解率达67.73%,添加助催化剂H2O2后,反应60min,苯酚降解率达到86.33%,催化剂的最佳再生方法是先用1mol/L的硫酸浸渍24h后,在450℃下焙烧6h。  相似文献   

10.
La2O3/ZnO/TiO2光催化降解活性艳红K-2BP的研究   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法制备了La2O3/ZnO/TiO2复合光催化剂,以紫外灯为光源,活性艳红K-2BP为模型降解物,研究了La2O3/ZnO/TiO2的光催化性能。结果表明:当锌和镧的掺杂量w(ZnO)=20%, w(La2O3)=0.5%, 煅烧温度为500℃时,La2O3/ZnO/TiO2复合光催化剂的光催化活性最高;当催化剂投加量4 g/L,通气量800 mL/min,初始pH值3.12时,La2O3/ZnO/TiO2对活性艳红K-2BP的降解效果最好。实验证明,La2O3/ZnO/TiO2对活性艳红K-2BP的降解遵从Langmuir-Hinshelwood动力学模型,测得其反应速率常数k=11.5 mg/(L·min);吸附常数K=2.88×10-2 L/mg。  相似文献   

11.
采用自制的负载型纳米RuO2-TiO2光催化剂对农药厂生产废水进行光电催化降解试验。考察了煅烧时间、催化剂用量、光辐照强度、电流密度、废水初始pH值和反应时间对废水COD和色度去除率的影响。结果表明,自制光催化剂光电催化性能显著,最佳光电催化活性是同样降解条件下、同样含量的Degussa P-25 TiO2的1.38倍,是Ru0.3Ti0.7O2的1.81倍。其COD和色度去除率分别为64.3%和95.2%。  相似文献   

12.
为了研究Fenton试剂协同TiO2光催化降解三氯乙酸(TCAA)的反应及其协同机理,在自制的光催化反应装置中分别考察了Fenton、UV/TiO2及Fenton/ UV/TiO2 3个反应对TCAA的降解情况。研究结果表明,在TCAA初始浓度为2.0 mg/L,TiO2用量为1.0 g/L,紫外辐射光源为15 W(λmain=254 nm)的实验条件下,Fenton试剂协同TiO2光催化降解TCAA反应在pH 3~7范围内均有较高的降解率;TCAA 在Fenton、UV/TiO2及Fenton/ UV/TiO2 3个反应中的一级反应速率常数分别为0.0009、0.0131和0.0456 min-1;Fenton试剂与TiO2光催化反应间存在较明显的协同效应,其协同机理主要体现在两个方面:一是紫外光激发Fe(OH)2+和H2O2分解产生更多的·OH,二是Fenton试剂中部分被氧化成的Fe3+可与TiO2表面的光生电子结合被还原为Fe2+,抑制了光生电子与空穴的复合,从而提高了TiO2光催化降解TCAA的效率。  相似文献   

13.
He C  Shu D  Xiong Y  Zhu X  Li X 《Chemosphere》2006,63(2):183-191
Two types of platinised TiO2 films, i.e., Pt-TiO2/ITO and Pt(TiO2)/ITO, were prepared by a procedure of dip-coating and subsequent photo-deposition, and photo-deposition and subsequent dip-coating, respectively. They were well characterized by DRS, XRD spectra, SEM microscopy and photoelectrochemical measurement. Their photocatalytic, dark catalytic and photoelectrocatalytic activities were investigated using formic acid as a model organic pollutants. Compared with pure TiO2/ITO film, the photocatalytic activity of the platinised TiO2 films were apparently improved. However, the improvement was considerably dependent on the preparation method of these films. Pt-TiO2/ITO not only possessed higher photocatalytic activity but also showed a dark catalytic activity towards HCOOH degradation. As a sequence, it was first emphasized that the dark catalytic effect of Pt-TiO2/ITO was partly responsible for degradation of formic acid in the photocatalytic oxidation process. Although the Pt(TiO2)/ITO film does not exhibit the dark catalytic activity, its photocatalytic degradation efficiencies towards HCOOH are higher than that of Pt-TiO2/ITO film. Therefore, in view of enhanced photocatalytic activity, the Pt(TiO2)/ITO was more favored than Pt-TiO2/ITO film.  相似文献   

14.
Photocatalytic degradation of imazethapyr herbicide at TiO2/H2O interface   总被引:2,自引:0,他引:2  
The photocatalytic degradation of imazethapyr, a herbicide of the imidazolinone family, was investigated in an aqueous suspension of titanium dioxide used as a catalyst. A pseudo-first order kinetic model was employed to discuss the results. The effect of catalyst loading, initial concentration of imazethapyr, hydrogen peroxide, pH value, and temperature were investigated. Imazethapyr disappearance as a function of irradiation time was analyzed by HPLC. The ammonium ion formation was determined spectrophotometrically at 694 nm. The degradation was observed to proceed more favorably at natural pH (ca. 4.4) when the pH was varied in the range from 2 to 11. The addition of hydrogen peroxide to the TiO2 suspension enhanced the degradation rate constant up to 5.0x10(-3) mol l-1, but decreased it at higher concentrations. The degradation rate constants decreased by 19% with a temperature increase from 20 to 40 degrees C in the TiO2 suspension, whereas a 16% increase in imazethapyr direct photolysis was observed for the same temperature range. This behavior indicates the occurrence of physisorption between TiO2 and imazethapyr molecules.  相似文献   

15.
The present investigation covers immobilization of TiO2 using a simple solid state dispersion technique over mesoporous Al-MCM-41 support for the treatment of isoproturon herbicide. Catalysts are characterized by XRD, X-ray photo electron spectroscopy (XPS), surface area, UV-Vis diffused reflectance spectra (DRS), SEM and TEM. A detailed photocatalytic degradation study of isoproturon under solar light in aqueous suspensions is reported. The 10 wt% TiO2/Al-MCM-41 composite system found to be optimum with high degradation activity. The reaction follows pseudo-first order kinetics. The parameters like TiO2 loading over Al-MCM-41, amount of catalyst, concentration of substrate, pH effect, durability of the catalyst, activity comparison of TiO2 and Al-MCM-41 supported system are studied. The mineralization of isoproturon is monitored by TOC. Based on the degradation products detected through LC-MS, a plausible degradation mechanism is proposed. The data indicates that TiO2/Al-MCM-41 composite system is an effective photocatalyst for treatment of isoproturon in contaminated water.  相似文献   

16.
In this study, the heterogeneous photocatalytic degradation of prometryn using TiO(2) as photocatalyst was investigated. The main objectives of the study were: (I) to evaluate the kinetics of the pesticide disappearance, (II) to compare the photocatalytic efficiency of two different types of TiO(2), (III) to examine the influence of various parameters such as initial concentration of pesticide or catalyst and presence of oxidants (H(2)O(2) and K(2)S(2)O(8)), (IV) to evaluate the degree of mineralization and (V) to assess the detoxification efficiency of the studied processes. The experiments were carried out in a 500 ml pyrex UV reactor equipped with a 125 W high-pressure mercury lamp surrounded by a pyrex filter blocking wavelengths below 290 nm. Prometryn concentration was determined using HPLC. It was found that the degradation of the pesticide follows the first order kinetics according to the Langmuir-Hinshelwood model. Parameters like the type and concentration of the catalyst affect the degradation rate. A synergistic effect was observed when an oxidant was added in the TiO(2) suspensions increasing the reaction rate of photodegradation. In order to examine the extent of pesticide mineralization, DOC measurements were carried out. After 6h of illumination, mineralization was achieved up to almost 70%. The toxicity of the treated solution was evaluated using the Microtox test based on the luminescent bacteria Vibrio fisheri, in order to compare the acute toxicity of prometryn and its photoproducts. The detoxification efficiency was found to be dependent on the studied system and it did not follow the rate of pesticide disappearance.  相似文献   

17.
以钛酸四丁酯为钛源,硫脲为掺硫前驱物,采用聚乙二醇辛基苯基醚(Triton X-100)/正己醇/环己烷/氨水的微乳液体系合成了掺硫的纳米TiO2粉体;对其结构进行了表征,以甲基橙为目标降解物考察了其光催化性能。烧结温度通过影响TiO2的晶型转变和颗粒尺寸来影响其光催化性能,随着烧结温度的升高,TiO2的光催化性能先是提高,然后迅速降低;在600℃烧结2 h时催化剂的降解性能达到最佳。掺杂硫可提高TiO2的光催化活性,随着掺杂量的增加,催化剂对甲基橙的降解率先快速增加然后缓慢降低,当掺杂量为S/Ti(摩尔比)=0.01∶1时TiO2的光催化降解效果最好。催化剂在用量较小时迅速提高TiO2的光催化降解性能,而后随着用量的增大反而降低,当催化剂用量为1.5 g/L时,对甲基橙的降解效果最好。  相似文献   

18.
Photocatalytic degradation and mineralization of pesticides are studied over TiO(2) supported mesoporous SBA-15 composite system using solar light. TiO(2) is immobilized over SBA-15 by solid sate dispersion method. The catalysts are characterized by XRD, surface area, UV-Vis diffused reflectance spectra, SEM and TEM. The detailed photocatalytic degradation studies are carried out over TiO(2), SBA-15 and different TiO(2) wt% supported SBA-15. The activity evaluation parameters such as catalyst amount, pH, and pollutant initial concentration are studied taking isoproturon as a model compound and established conditions for pesticide degradation. The optimum degradation is achieved over 10 wt% TiO(2)/SBA-15 within 30 min and the reaction is following pseudo-first order kinetics. The isoproturon mineralization is monitored with TOC reduction and it takes around 9h for disappearance. The commercial pesticide solutions containing imidacloprid and phosphamidon are also successfully degraded over these composites with the established conditions. The data indicates that 10 wt% TiO(2)/SBA-15 composite is an effective and highly active system for the pesticide degradations.  相似文献   

19.
Huang HH  Tseng DH  Juang LC 《Chemosphere》2008,71(2):398-405
The reaction sequence for the photocatalytic degradation of monochlorobenzene (MCB) in UV/TiO2 process, including substrate adsorption, degradation, and mineralization, was studied. The theoretical maximum quantity of MCB that could be adsorbed onto TiO2 surface in aqueous phase was 0.18+/-0.04 micromol m(-2) of TiO2. In accordance with the upper limit of the relative surface coverage of MCB molecules to surface hydroxyls of TiO2 was around 2.2%, the water molecules as the major adjacent species near TiO2 surface would compete with MCB molecules. Increasing the initial substrate concentration to an appropriate value or enhancing the affinity between the MCB and the TiO2 surface by adjusting the solution pH would promote the photocatalytic degradation. Experimental results revealed that the neutral medium was beneficial for the degradation of MCB. In comparison, the mineralization was most improved at acidic condition. Generally, 90% of the total organic carbon (TOC) was mineralized after 240 min illumination time in the examined pH range except solution pH 11. The suppressed mineralization of MCB at solution pH 11 was ascribed to the lack of adsorption. A simplified 2-step consecutive kinetic model was used to simulate the mineralization.  相似文献   

20.
Xu XR  Li HB  Gu JD 《Chemosphere》2006,63(2):254-260
Hexavalent chromium and methyl tert-butyl ether (MTBE) are two important environmental pollutants. Simultaneous decontamination of Cr(VI) and MTBE was studied by UV/TiO2 process. The influences of pH and the concentrations of pollutants on the kinetics of the photocatalytic reactions were evaluated. Dark adsorption tests showed that the acidic pH favored the adsorption of Cr(VI) while neutral pH favored the adsorption of MTBE. Under UV irradiation, Cr(VI) reduction was observed in Cr(VI)/TiO2 system, and MTBE oxidation was observed in MTBE/TiO2 system. The system containing Cr(VI) and MTBE by UV/TiO2 process demonstrated the synergistic effect between oxidation of MTBE and reduction of Cr(VI). The results demonstrated that two pollutants Cr(VI) and MTBE could be eliminated simultaneously by UV/TiO2 process. tert-Butyl formate, tert-butyl alcohol and acetone were identified as primary degradation products of MTBE by gas chromatography-mass spectrometry in the degradation of MTBE by UV/TiO2 process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号