首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
为加强超细水雾对甲烷爆炸的抑制效果,搭建小尺寸半封闭甲烷爆炸试验平台,开展氩气协同超细水雾抑制甲烷爆炸试验。通过单因素和曲面优化试验,测试氩气、超细水雾以及两者的协同作用对甲烷爆炸的抑制效果;从火焰特性、最大爆炸超压和平均升压速率3个方面探究氩气和超细水雾协同抑爆的优越性。结果表明:氩气和超细水雾协同抑制甲烷爆炸效果显著;随着氩气体积分数和超细水雾喷雾量的增加,火焰冲出管道的时间逐渐延长,最大爆炸超压和平均升压速率逐渐降低;其中氩气体积分数10%、超细水雾喷雾量4.2 m L的工况抑制效果最佳;甲烷最大爆炸超压较氩气和超细水雾单独作用下分别下降6.15和2.68 k Pa,说明氩气和超细水雾抑止甲烷爆炸具有协同效应。  相似文献   

2.
为进一步提高超细水雾抑制甲烷爆炸的效率,搭建抑制甲烷爆炸试验平台,开展用含甲烷氧化菌-无机盐超细水雾降解与抑爆甲烷的试验研究,考虑降解时间、第1次通雾量、第2次通雾量等3个因素进行正交试验,分析不同试验条件下甲烷爆炸压力和火焰传播过程。结果表明:改性培养基中的甲烷氧化菌降解甲烷效果优于普通培养基;降解时间对甲烷最大爆炸超压ΔP_(max)有显著影响,第2次通雾量对甲烷最大爆炸超压ΔP_(max)有一定影响;降解时间对火焰平均传播速度有显著影响,第2次通雾量对火焰平均传播速度有一定影响;同时增加降解时间和第2次通雾量可以降低平均升压速率和火焰平均传播速度。  相似文献   

3.
为深入了解超细水雾对甲烷爆炸的抑制作用,搭建小尺寸半封闭可视化试验平台并开展试验,研究超细水雾喷施量、甲烷体积分数、通入甲烷位置和预混时间4个因素对甲烷与空气的混合物的爆炸的影响。结果表明:超细水雾能有效抑制甲烷爆炸,其中对9. 5%甲烷的抑制作用最明显;随着超细水雾喷施量的增大,抑制作用增强;甲烷体积分数对甲烷爆炸最大爆炸超压ΔP_(max)有显著影响,超细水雾喷施量对甲烷爆炸ΔP_(max)有一定影响;超细水雾喷施量对甲烷爆炸火焰传播时间有显著影响,甲烷体积分数对甲烷爆炸火焰传播时间有一定影响。  相似文献   

4.
为了解CO2-超细水雾对瓦斯/煤尘爆炸抑制特性,用自行搭建的实验系统,从超压、火焰传播速度和火焰结构3个方面研究了CO2-超细水雾形成的气液两相介质对9.5%瓦斯/煤尘复合体系爆炸的抑爆效果、影响因素与原因。研究结果表明:随着CO2体积分数和超细水雾质量浓度的增加,爆炸火焰最大传播速度、爆炸超压峰值均出现明显下降,火焰到达泄爆口时间显著延迟;尤其当CO2体积分数达到14%与超细水雾的共同抑爆效果凸显,瓦斯/煤尘复合体系爆炸超压的“震荡平台”消失,同时火焰结构呈现“整体孔隙化”。所得结论为煤矿井下高效防爆抑爆技术进行了完善和增强。  相似文献   

5.
含添加剂细水雾抑制瓦斯爆炸有效性试验研究   总被引:2,自引:0,他引:2  
为进一步提高细水雾的抑爆灭火效能,在建立细水雾抑爆系统试验平台的基础上,选用MgCl2、FeCl2和NaHCO3这3种添加剂,研究细水雾对瓦斯爆炸火焰的抑制效果.结果表明:使用含添加剂细水雾后,体积分数为9.5%的瓦斯的爆炸传播速度从13.8 m/s至少降到2.75 m/s;水雾区火焰长度最多缩短了242 mm;含0.8%FeCl2的细水雾有效性系数为6,有效性最高;从火焰图片剖面像素分布可以看出,火焰的辐射体温度均出现了不同程度的降低.不同添加剂不同程度地提高了细水雾的灭火效能,对瓦斯体积分数接近化学当量比的火焰传播有明显抑制效果.  相似文献   

6.
利用自主搭建的易爆气体爆炸试验平台,研究了甲烷体积分数为8%、9%、9.5%、10%、11%的甲烷-空气混合气体的爆炸特性。结果表明:爆炸火焰在管道内经历了层流火焰传播加速、郁金香火焰传播速度变慢和湍流火焰传播速度增大3个特征阶段;爆炸管道压力表现出升压、振荡和反向冲击3个变化阶段;爆炸感应期、火焰最大传播加速度和最大爆炸升压速率等特征参数能更好地反映易爆气体的爆炸能力和爆炸强度。结合爆炸火焰图片、光电传感信号和压力传感信号发现,在一端开口的管道内,爆炸压力出现变化的时间总是先于火焰传播速度的变化时间,表明爆炸压力的变化是导致火焰传播速度变化的原因。因此,抑爆过程中,减小爆炸压力和降低升压速率是达到良好抑爆效果的关键。  相似文献   

7.
泄压点火不同端管道内甲烷爆炸特性数值模拟   总被引:1,自引:0,他引:1  
结合气体爆炸传播机理,利用FLACS软件对泄压点火不同端两种方式(泄压口通径为25 mm和泄压口完全开放)下甲烷的爆炸过程进行数值模拟,获得了5种体积分数甲烷的爆炸特性参数,分析得出:两种不同泄压方式下,10%,9.5%,11%体积分数的甲烷爆炸特性变化趋势接近,7%,8%的甲烷较前三者有所延迟;5种甲烷在管道中心处的最大爆炸压力、最大爆炸压力上升速率、最大爆炸压力下降速率、温度峰值都随甲烷体积分数的增大而逐渐上升,在10%时达到最大,继续增加甲烷体积分数则出现下降趋势,最大爆炸压力时间变化趋势与其相反;管道中心处的爆炸产物浓度随着甲烷体积分数的增大而增大,与泄压方式无关;增大管道泄压口面积有利于爆炸压力以及爆炸高温高压气体的释放,使得各体积分数甲烷的最大爆炸压力、最大爆炸压力上升速率、最大爆炸压力下降速率、温度峰值均下降,到达最大爆炸压力的时间均增大。  相似文献   

8.
为了解含钾细水雾在综合管廊燃气泄漏场景下的抑爆能力,采用自制的爆炸试验系统,开展含添加剂细水雾位于甲烷-空气爆炸区域外的抑爆试验,分析纯水及草酸钾、碳酸钾、氯化钾3种含钾化合物细水雾对9.5%甲烷-空气爆炸超压与过火范围的影响。研究结果表明:纯水细水雾的临界抑爆雾化质量浓度区间为320~480 g/m3;含草酸钾条件下超压下降率随质量分数增加呈现正态累积分布函数(NormalCDF)变化,最佳抑爆质量分数为10%;当雾化质量浓度为480 g/m3、雾滴D32为61.7μm、化合物质量分数为10%时,对应抑爆能力均大于纯水细水雾条件,其中,含草酸钾抑爆能力最强,其次为碳酸钾与氯化钾,峰值超压下降率较纯水细水雾条件分别提高2.32、1.88与1.53倍,过火范围分别缩减46.7%、40%与13.3%。相较于碳酸钾与氯化钾条件,爆炸气体预混区域外含草酸钾细水雾能够吸收更多的爆炸热量、消耗更多的活性自由基。  相似文献   

9.
为提升滑移装置抑爆效果,在方形管中通入体积分数为9.5%甲烷/空气预混气体,分析细水雾协同不同弹性系数滑移装置作用下,水雾起始喷洒时间对预混气体爆炸特性影响。结果表明:先喷、指尖喷出现坡形火焰二次加速火焰传播,爆炸反应加剧,水雾不同程度充当障碍物加速火焰传播和碰壁断链,缩短火焰熄灭时间;后喷细水雾障碍物作用微弱,利用吸热降温作用抑制火焰传播,熄灭耗时相对较长。在爆炸超压方面,0.22 N/mm、0.42 N/mm 2种弹性系数滑移装置协同作用,先喷情形超压峰值增幅分别为9.25%、16.55%,指尖喷情形则高达88.71%、77.37%,促爆效果明显。后喷有一定的抑爆作用,超压峰值降幅分别为7.11%、2.93%。综上,后喷的抑爆效果优于先喷和指尖喷。  相似文献   

10.
为研究狭长管道油气爆炸流场分布特征规律,搭建了狭长管道油气爆炸实验系统 ,并在狭长密闭管道中进行了油气爆炸实验。通过采集爆炸超压值和火焰强度值并进行 分析,得到以下结论:随着初始油气体积分数的增大,管道沿线最大爆炸超压值和升压 速率均呈现先增大后减小的趋势,在1.75%时达到最大,并且初始油气体积分数越接近 1.75%,升压速率增大越快;根据管道沿线最大超压分布规律可将初始油气体积分数分 为1.25%~1.55%、1.55%~2.20%、2.20%~2.65%3个部分;管道末端出现二次爆炸现象,爆 炸超压变化曲线可分为点火延迟、一次爆炸、二次爆炸、振荡衰减4个阶段;火焰持续 时间随油气体积分数的增加先下降后上升,油气体积分数为1.75%时火焰持续时间最短 。  相似文献   

11.
In order to deeply understand the inhibitory effect of ultrafine water mist containing methane-oxidizing bacteria on methane explosion, a small-sized semi-closed visual experimental platform was built. Five different application mist amounts (0.7 mL, 2.1 mL, 3.5 mL, 4.9 mL, 6.3 mL) of ultrafine water mist containing methane-oxidizing bacteria on 9.5% methane explosion were studied experimentally. Ultrafine water mist was generated by the ultrasonic atomization generator, and mist size was measured by a winner319 laser particle size analyzer. During the methane explosion, a high-frequency pressure sensor collected pressure change data, and a high-speed camera recorded the flame development process. The results indicated that the maximum explosion overpressure (ΔPmax) decreased with time, and the arrival time of the maximum explosion overpressure (ΔPmax) delayed. The appearance time of the “tulip” shaped flame delayed, and the flame propagation speed decreased. The ultrafine water mist and deposition can effectively inhibit the methane explosion. The explosion suppression effect of the second step spraying water mist was better. The improvement of the explosion suppression effect of the ultrafine water mist containing methane-oxidizing bacteria was attributed to the degradation effect of the methane-oxidizing bacteria. Under long-term degradation, methane-oxidizing bacteria in water mist play a role in inhibiting methane explosion.  相似文献   

12.
In this study, in order to research the synergistic inhibition effect of nitrogen and ultrafine water mist on gas explosion in a vented duct, a semi-confined transparent chamber was designed with the size of 120 × 120 × 840 mm, and the experiments were carried out with stoichiometric methane/air premixed mixture (fraction of methane: 9.5%), adding different fractions of nitrogen and ultrafine water mist. The experimental results showed the following: The combination of nitrogen and ultrafine water mist had a synergistic inhibiting effect on methane/air explosion, which was preferable to the single use of any kind. With the increase of spraying time of water mist and fraction of nitrogen, the initial shape of the explosion flame became snakelike, and at the same time the peak flame propagation speed and peak overpressure decreased significantly. When the nitrogen fraction was increased to 10% and the mist spraying time was increased to 2min, synergistic inhibiting effect on overpressure was high efficient. However, with the increase of spraying time of water mist and fraction of nitrogen going on, the amount of increase of explosion inhibition efficiency was gradually reduced.  相似文献   

13.
Experiments about the influence of ultrafine water mist on the methane/air explosion were carried out in a fully sealed visual vessel with methane concentrations of 8%, 9.5%, 11% and 12.5%. Water mists were generated by two nozzles and the droplets' Sauter Mean Diameters (SMD) were 28.2 μm and 43.3 μm respectively which were measured by Phase Doppler Particle Anemometer (PDPA). A high speed camera was used to record the flame propagation processes. The results show that the maximum explosion overpressure, pressure rising rate and flame propagation velocity of methane explosions in various concentrations increased significantly after spraying. Furthermore, the brightness of explosion flame got much higher after spraying. Besides, the mist with a larger diameter had a stronger turbulent effect and could lead to a more violent explosion reaction.  相似文献   

14.
To study the influence of the charge-to-mass ratio of a charged water mist on a methane explosion, the induction charging method was used to induce charge on a normal water mist; a mesh target method was employed to test the charge-to-mass ratio of its droplets. The propagation images, propagation average velocities, and overpressures of a methane explosion suppressed by charged water mist were analysed. The influence of the charge-to-mass ratio of the suppressant water mist on a methane explosion was studied. Results show that the explosion temperature, propagation average velocity, and peak overpressure deceased more obviously with charged water mist than ordinary water mist. With increasing charge-to-mass ratio, the suppression effect of the charged water mist underwent a significant increase. Under experimental conditions, compared with ordinary water mist, when the charge-to-mass ratio was 0.445 mC/kg and the mist flux was 4 L, the minimum flame propagation average velocity was 3.456 m/s, with a drop of 2.37 m/s (40.68%), and the peak overpressure of the methane explosion was 10.892 kPa, with a drop of 10.798 kPa (49.78%). The suppression effect is considered from the changes of the physico-chemical properties of the water mist as affected by the applied charge-to-mass ratio.  相似文献   

15.
为了研究超细水雾对酒精火的抑制效果,通过搭建超细水雾抑制受限空间酒清火燃烧的小尺寸实验平台,利用基于质量损失速率的热释放速率计算方法,研究超细水雾与酒精火焰相互作用时,酒精火火焰的变化规律及酒精火的热释放速率,与此同时,采用高速摄像仪对火焰进行拍摄,利用Matlab图像处理程序对采集的火焰图片剖面进行处理.研究发现:施...  相似文献   

16.
In order to explore the influence of attapulgite powder on the methane explosion, a small-size semi-closed visual explosion experiment platform was built, and experiments were carried out. The effect of spraying powder on the whole process of methane explosion was studied when methane concentration was 7%, 8%, 9.5%, 11% and 12%, respectively. When the methane concentration was 11%, the maximum explosion overpressure dropped by modified spraying attapulgite powder was as high as 33.26%, and at the same time, the reduction rate of flame propagation velocity reached the maximum value of 36.65%. Furthermore, when the methane concentration was 9.5%, the experimental results when the powder spraying amount of modified attapulgite was 120 mg, 160 mg, 200 mg, 240 mg and 280 mg showed that when the powder spraying was 240 mg, the maximum explosive overpressure decreased by 33.14%, and the reduction rate of the peak flame propagation velocity reached the maximum value of 33.73%. Through the video images recorded by the high-speed camera, the flame structure, shape, color, etc. Were analyzed. The characterization analysis illustrated that the modified attapulgite powder has a small particle size, relatively large porosity and specific surface area. Also, it has a high weight loss rate. Combined with the results of characterization analysis, the explosion suppression mechanism of modified attapulgite powder was discussed. It was found that the modified attapulgite powder could effectively absorb the active free radicals generated in the explosion, and the modified new chemical components have a better thermal decomposition and endothermic effect and a better suppression of methane explosions.  相似文献   

17.
用自行设计的三面透明的细水雾抑制甲烷爆炸的实验装置,研究了不同体积超细水雾对不同浓度甲烷爆炸的抑制现象。运用GigaView高速摄影观察了超细水雾抑制甲烷爆炸的过程,并且对现象进行了分析。采用四个E12-1-K型快速响应热电偶获取超细水雾抑爆过程中四个不同位置的温度变化情况,并且讨论了甲烷浓度和超细水雾体积对爆炸延迟时间的影响。实验结果表明,超细水雾对甲烷爆炸的抑制效果是与水雾的体积和甲烷浓度紧密相关的。初步确定了超细水雾抑制甲烷爆炸的临界体积。  相似文献   

18.
为探究超细粉体惰化剂对铝合金抛光伴生粉尘爆炸特性的影响规律,利用标准化实验装置及自行搭建的实验平台,在对爆炸基本参数进行测试的基础上,分别研究超细CaCO3粉体对抛光废弃物粉尘点燃敏感度的钝化作用以及对爆炸火焰传播进程的惰化效果,并在相同条件下与同等粒径高纯度铝粉的实验效果进行比对。研究结果表明:铝合金抛光废弃物粉尘最小点火能量为280 mJ,而同等粒径高纯度铝粉最小点火能量为35 mJ;在铝合金抛光废弃物粉尘质量浓度为300 g/m3条件下,发生爆炸的火焰传播速度峰值为7.4 m/s,约为高纯度铝粉的57%,铝合金抛光废弃物粉尘的爆炸敏感度及猛烈度均低于高纯度铝粉;当超细CaCO3粉体的惰化比为30%时,可将铝合金抛光废弃物粉尘的最小点火能量钝化至约1 J,爆炸火焰失去持续传播能力,惰化作用效果充分显现。  相似文献   

19.
To explore the inhibitory effects of CF3I and CO2 gas on the explosion pressure and flame propagation characteristics of 9.5% methane, a spherical 20 L experimental explosion device was used to study the effect of the gas explosion suppressants on the maximum explosion pressure, maximum explosion pressure rise rate and flame propagation speed of methane. The results indicated that with a gradual increase in the volume fraction of the gas explosion suppressant, the maximum explosion pressure of methane and maximum explosion pressure rise rate gradually decreased, and the time taken to reach the maximum explosion pressure and maximum explosion pressure rise rate was gradually delayed. At the same time, the flame propagation speed gradually decreased. Additionally, the time taken for the flame to reach the edge of the window and the time taken for a crack as well as a cellular structure to appear on the flame surface was gradually delayed. The fluid dynamics uncertainty was suppressed. The explosion pressure and flame propagation processes were markedly suppressed, but the flame buoyancy instability was gradually enhanced. By comparing the effects of the two gas explosion suppressants on the pressure and flame propagation characteristics, it was found that at the same volume fraction, trifluoroiodomethane was significantly better than carbon dioxide in suppressing the explosion of methane. By comparing the reduction rates of the characteristic methane explosion parameters at a volume fraction of 9.5%, it was observed that the inhibitory effect of 4% trifluoroiodomethane on the maximum explosion pressure was approximately 4.6 times that of the same amount of carbon dioxide, and the inhibitory effect of 4% trifluoroiodomethane on the maximum explosion pressure rise rate and flame propagation speed was approximately 2.7 times that of the same amount of carbon dioxide. The addition of 0.5%–1.5% trifluoromethane to 4% and 8% carbon dioxide can improve the explosion suppression efficiency of carbon dioxide. This enhancing phenomenon is a comprehensive manifestation of the oxygen-decreasing effect of carbon dioxide and the trifluoroiodomethane-related endothermic effect and reduction in key free radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号