共查询到16条相似文献,搜索用时 87 毫秒
1.
一种定量评价随机振动试验效果的新方法--计量法 总被引:1,自引:0,他引:1
从随机振动试验的试验手段和试验目的出发,分析了试验效果好坏的评判原则,针对以往试验人员主观定性判断试验效果的情况。通过定义统计量实现了试验效果的定量评价,评价从响应的均方根值(RMS)和功率谱密度(PSD)两方面考虑。用双台振动试验模型数据仿真证明了该方法的有效性.并讨论了其应用价值。 相似文献
2.
3.
目的解决传统试验精确度差、仿真程度低的问题,验证智能电表在随机振动过程中的可靠性。方法将基于疲劳损伤谱的等效随机振动试验方法运用到智能电表公路运输振动试验中,首先提出疲劳载荷谱的概念及其获取方法,并对采集的振动数据进行处理,得到用于加速振动试验的功率谱密度,最后验证基于疲劳损伤谱的随机振动试验方法应用于智能电表模拟公路运输方法的可行性及优势。结果使用该方法加速试验前后的累计疲劳损伤误差为6.4%。结论该方法不但能大幅减少试验时间,同时能够节省大量人力、物力资源。 相似文献
4.
5.
疲劳损伤等效在随机振动试验中的应用 总被引:5,自引:2,他引:5
以疲劳损伤等价为基础的随机振动试验是评价结构振动环境适应性能力的重要手段.将基于位移模态和应变模态的模态叠加方法分别应用于结构振动位移响应和应力响应的分析中,建立了随机振动试验不同激励条件下,结构振动响应的关系;将结构随机振动应力响应的峰值概率分布通用关系应用于疲劳损伤评估,导出了振动疲劳损伤等效关系.以一个试验为例介绍了疲劳损伤等效原则在随机振动试验中的应用. 相似文献
6.
对杯形毛坯的旋压成形工艺进行了研究,以期获得最佳的工艺参数。首先采用正交试验的方法,对旋压杯形毛坯的关键工艺参数进行分析;然后采用综合平衡分析法对工艺参数组合进行了优化,最后通过实际的旋压试验对所获得的优化工艺参数组合进行了验证。结果表明,采用综合平衡分析进行的工艺参数优化,可以制造出能够满足后续内齿轮旋压要求的杯形毛坯。 相似文献
7.
8.
目的 针对某车载油箱高周疲劳寿命难以预测问题,研究该设备在随机载荷环境下的疲劳寿命。方法 首先通过模态试验得到油箱固有频率及振型,然后利用Solidworks建立该车载油箱的仿真模型,在ANSYS Workbench软件中进行模态分析、随机振动分析、谐响应分析。最后利用ANSYS Workbench软件中的nCode SN Vibration (DesignLife)模块,在随机振动疲劳寿命频域分析法基础上,通过nCode模块中的Narrowband法进行油箱在多个加速度功率谱密度下的疲劳寿命研究。结果 该油箱在约束模态试验和仿真分析下所表现的动力学特性基本相同,油箱纵向为振动严酷方向。在已知加速度功率谱密度下,油箱疲劳寿命随低阶固有频率处功率谱密度幅值的增加而降低,但油箱薄弱部位始终保持不变。结论 建立的仿真模型准确,可为油箱优化设计及后续油箱疲劳试验提供参考。 相似文献
9.
10.
11.
12.
目的研究高温环境下薄壁试件的随机振动疲劳问题。方法综述国内外随机振动疲劳研究现状,制定有效的研究方案。首先,通过有限元法完成薄壁试件的动力学响应数值仿真计算与分析,基于改进的雨流循环计数法预估薄壁试件的疲劳寿命。然后,开展高温环境下薄壁试件随机振动疲劳试验,获取危险位置动力学响应与疲劳寿命。结果高温强振动环境下,结构的危险位置主要出现在固支边界或形状突变位置,且基频处的动力学响应峰值是结构疲劳寿命的主要影响因素,随温度和振动量级的增加,结构疲劳寿命呈抛物线降低趋势。结论通过仿真与试验的比对,验证了高温环境下薄壁试件随机振动疲劳仿真计算方法的有效性与可靠性。 相似文献
13.
14.
目的 分析得出轴向弹性触碰式连接器内导体失效的主要原因。方法 以某机载电子模块的连接器在功能振动试验后出现的故障为研究对象,对其进行目测检查、随机振动仿真分析和受力分析,定位故障原因,随后结合应力应变关系公式、高斯区间法和Miner累积损伤定律,推导内导体的疲劳寿命计算公式。结果计算得到内导体自身的振动响应应力仅为0.26 MPa,不足以产生疲劳破坏,但在振动激励下,连接器随模块的振动位移较大,超出了连接器的间隙容差范围,致使受压的内导体端面出现较大的往复动摩擦力,而摩擦力引起内导体根部的应力(250.13 MPa)超过了材料的疲劳极限,内导体有疲劳断裂的风险。进一步计算出内导体的振动疲劳寿命为0.67 h,小于功能振动试验时间,证实是振动位移引起的摩擦导致了内导体的疲劳断裂。结论 轴向弹性触碰式连接器必须要重视摩擦力的危害,提高模块的安装刚度,可以有效地提高连接器的可靠性。 相似文献
15.
目的 探究某批次电子设备随机振动环境筛选试验中故障发生原因.方法 首先对电子设备环境试验初步分析,确定设备螺钉点布置合理,结构本身无明显缺陷,但试验夹具可能导致振动载荷放大.通过Abaqus有限元软件仿真分析电子设备失效情况,同时开展试验确定振动夹具的固有频率,并绘制电子设备实际所受随机振动功率谱密度曲线,以该功率谱密度曲线为输入,开展有限元仿真,验证失效模式,并在此基础上完成故障复现试验,制定相应的改进措施.结果 有限元仿真得到电子设备3Sigma应力为22 MPa,在结构强度容许范围内.通过试验确定振动夹具固有频率与电子设备前两阶模态频率重频,发生共振,导致激励被放大,电子设备存在过考核,从而发生破坏.以设备实际所受功率谱密度曲线为输入条件,仿真得到3Sigma应力为52 MPa,超过焊接强度极限,导致焊点失效破坏.为进一步验证失效原因,使用原振动夹具完成故障复现试验,并改进试验夹具开展对比试验.结论 随机振动试验夹具的设计,应避免夹具固有频率与电子设备重频,从而导致设备破坏,合理选择设计夹具能有效避免电子设备遭受过考核. 相似文献