首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: Nitrogen and P fluxes, transformations and water quality functions of Lake Verret (a coastal Louisiana freshwater lake), were quantified. Ortho-P, total-P, NH4+-N NO3 -N and TKN in surface water collected from streams feeding Lake Verret averaged 104, 340, 59, 185, and 1,060 mg 1?1, respectively. Lake Verret surface water concentrations of ortho-P, total-P, NH+-N, NO3?-N and TKN averaged 66, 191, 36, 66, and 1,292 μg 1?1. The higher N and P concentrations were located in areas of the lake receiving drainage. Nitrification and denitrification processes were significant in removing appreciable inorganic N from the system. In situ denitrification rates determined from acetylene inhibition techniques show the lake removes 560 mg N m?2 yr?1. Laboratory investigations using sediment receiving 450 μg NH+4-N (N-15 labeled) showed that the lake has the potential to remove up to 12.8 g N m?2 yr?1. Equilibrium studies of P exchanges between the sediment and water column established the potential or adsorption capacity of bottom sediment in removing P from the overlying water. Lake Verret sediment was found to adsorb P from the water column at concentrations above 50 μg P 1?1 and the adsorption rates were as great as 300 μg P cm?2 day?1 Using the 137C s dating techniques, approximately 18 g N m?2 yr?1 and 1.2 g P m?2 yr?1 were removed from the system via sedimentation. Presently elevated nutrient levels are found only in the upper reaches of the lake receiving nutrient input from runoff from streams draining adjacent agricultural areas. Nitrification, denitrification, and adsorption processes at the sediment water interface over a relatively short distance reduces the N and P levels in the water column. However, if the lake receives additional nutrient loading, elevated levels will likely cover a larger portion of the lake, further reducing water quality in the lake.  相似文献   

2.
Understanding sediment Escherichia coli levels (i.e., pathogen indicators) and their contribution to the water column during resuspension is critical for predicting in‐stream E. coli levels and the potential risk to human health. The U.S. Environmental Protection Agency's current water quality testing strategies, however, rely on water borne E. coli concentrations to assess stream E. coli levels and identify impaired waters. In this work, we conducted a scenario analysis using a range of flows, sediment/water bacteria fractions, and particle sizes to which E. coli attach to assess the impact of E. coli in streambed sediments on water column E. coli levels. We used simple sediment transport theory to calculate the potential total E. coli concentrations in a stream with and without the resuspension process. Results clearly indicate that inclusion of resuspending sediment attached E. coli is necessary for watershed assessments and data on sediment attached E. coli concentrations is much needed. When neglecting the streambed sediment E. coli concentrations, the model predicted average E. coli loads of 107 Colony Forming Units (CFU)/s; however, when streambed sediment E. coli concentrations were included in the model, the predictions ranged from 1010 to 1014 CFU/s. To evaluate the predictions, E. coli data in the streambed sediment and the water column were monitored in Squaw Creek, Iowa. Comparisons between measured and predicted E. coli loads yielded an R2‐value of 0.85.  相似文献   

3.
ABSTRACT: Principal U.S. phosphate production is from central Florida where mining, processing, and waste disposal practices intimately associate the industry with water resouces. Available radium-226 data from 1966 and from 1973–1976 in mined and unmined mincralized areas and nonmineralized areas in the primary study area in Polk, Hardee, Hillsborough, Manatee, and De Soto counties were studied using log-normal probability plots and nonparametric statistical tests for significant difference as functions of time, depth, and location. Plots of radium in the water table and Floridan aquifers for mineralized and nonmineralized areas indicate that neither phosphate mineralization nor the industry is a probable factor. For the Lower Floridan aquifer, three separate radium populations are indicated with geometric means of 0.7, 3, and 10 pCi/1. Geometric mean radium-226 content of the water table aquifer is 0.17 pCi/1. Radium in the Floridan aquifer in Manatee and Sarasota Counties is elevated relative to that in the water table and in other areas of Florida. For Sarasota County, geometric mean radium content of the water table is 15 pCi/l versus 7.5 pCi/l in the Floridan. Potential sources include shallow phosphate sediments and monazite sands and possibly crystalline basement rocks or other strata unrelated to phosphatic zones of current economic interest. The existing radium-226 data base is rather marginal in terms of number and spatial distribution of analyses, particularly for the water table and Upper Floridan aquifer. Existing radium data do not substantiate widespread contamination of ground water as a result of the phosphate industry. However, local contamination associated with specific operations has occurred.  相似文献   

4.
Water Footprint of the Palestinians in the West Bank1   总被引:1,自引:0,他引:1  
Abstract: Water in the West Bank of Palestine is a key issue due to its limited availability. Water is used from own sources for domestic, industrial, and agricultural purposes. Moreover, water is consumed in its virtual form through consumption of imported goods, such as crops and livestock, the production of which used water in the country of production. In addition, wastewater in many parts of the West Bank is disposed off without treatment into the wadis, deteriorating the quality of the water resources in the area and, therefore, further reducing the quantity of good quality water available. This paper calculates the water footprint for the West Bank. The consumption component of the water footprint of the West Bank was found to be 2,791 million m3/year. Approximately 52% of this is virtual water consumed through imported goods. The West Bank per capita consumption component of the water footprint was found to be 1,116 m3/cap/year, while the global average is 1,243 m3/cap/year. Out of this number 50 m3/cap/year was withdrawn from water resources available in the area. Only 16 m3/cap/year (1.4%) was used for domestic purposes. This number is extremely low and only 28% of the global average and 21% of the Israeli domestic water use. The contamination component of the water footprint was not quantified but was believed to be many times larger than the consumption component. According to the official definition of water scarcity, the West Bank is suffering from a severe water scarcity. Therefore, there is a need for a completely new approach towards water management in the West Bank, whereby return flows are viewed as a resource and that is geared towards a conservation oriented approach of “use, treat, and reuse.”  相似文献   

5.
ABSTRACT: Effects of aquatic macrophytes are not considered in most standard water quality models. This study used field measurements and water quality models to help determine the effects of aquatic macrophytes on dissolved oxygen (DO) concentrations in a shallow tailwater reservoir. Installation of a hydropower plant and macrophytes (primarily Potamogeton and Chara) in a large shallow portion of the lake are possible causes of reduced DO levels in the tailwater reservoir. A water quality model (WASP5) was used to quantify the various DO sources and sinks and to evaluate the effects of the hydropower operations on DO levels in the lake. It was found that the macrophytes in Lake Ogallala had a significant effect on the DO levels in the lake. At an average macrophyte density of about 6,360 g/m2 (wet weight) in 2000, the DO fluctuated daily from about 3 mg/l to about 12 mg/l. At an average macrophyte density of about 2,120 g/m2 (wet weight) in 2002, the DO fluctuated from about 5 mg/l to about 9 mg/l daily. The model predicted that the DO would remain near 5 mg/l without macrophytes. The photo‐synthetic and respiration rates developed in the model (4.4 mg/g‐hr and 1.4 mg/g‐hr, respectively) agree well with literature values.  相似文献   

6.
Abstract: Water‐quality standards have been placed on fecal indicator organisms such as Escherichia coli in an attempt to limit the concentrations in water bodies. Cattle can be a significant source of bacteria to water systems, particularly when they are allowed direct access to streams. A flume study was conducted to quantify the effect and understand the transport of E. coli from directly deposited cattle manure. Five steady‐state flows, ranging from 0.00683 to 0.0176 m3/s, were studied and loads from a single cowpie exceeded the U.S. Environmental Protection Agency’s recommended water‐quality standards (235 CFU/100 ml) at each flow over the hour study period. Average E. coli concentrations ranged from 102 to 105 CFU/100 ml over the hour sampling period for all flows. High spatial variations in E. coli concentrations were often seen at each sampling time, with higher concentrations typically at the bottom of the flume. E. coli resuspension was initially greater at 0.5 min after deposition, for the lowest flow (105 CFU/m2/s); however, resuspension rates became similar over time, on the order of 103 CFU/m2/s. This study demonstrates that the concentrations of E. coli can vary over the water column, and therefore grab samples may inaccurately measure bacteria concentrations and loads in streams. In addition, resuspension rates were often high, so the incorporation of this process into water‐quality models is important for bacteria prediction.  相似文献   

7.
Rowe, Mark P., 2011. Rain Water Harvesting in Bermuda. Journal of the American Water Resources Association (JAWRA) 47(6):1219–1227. DOI: 10.1111/j.1752‐1688.2011.00563.x Abstract: Roof‐top rain water harvesting is mandated by law for all buildings in Bermuda and is the primary source of water for domestic supply. The average rate at which rain water is harvested at the typical house with four occupants is, however, insufficient to meet average demand. While just over one‐third of households have access to supplementary water either from mains pipelines or private wells, the majority rely on deliveries from water “truckers” (tankers) to augment their rain water supply. Assuming a reasonably constant daily demand, there is a linear relationship between the “maximum optimum capacity” of a water storage tank and the size of the rain water catchment area, which depends on the characteristics of the rainfall at a given geographic location. A simple spreadsheet model was developed to simulate tank storage levels for various combinations of catchment area, tank capacity, and demand, with an input of actual daily rainfall data for a study period of nearly three years. It was found that for typical cycles of rainfall surpluses and deficits in Bermuda, the tank capacity which there is no benefit in exceeding — the “optimum maximum capacity”— is 0.37 m3 of storage capacity per 1 m2 of catchment area. Furthermore, it was concluded that many domestic water storage tanks in Bermuda are larger than necessary, especially so where there is a significant imbalance between rain water supply and demand.  相似文献   

8.
ABSTRACT: Water hyacinth (Eichhornia crassipes L.) has shown to be effective in the treatment of municipal wastewater in a pilot study begun in January 1989 by the Pima County Wastewater Management Department and researchers associated with The University of Arizona's Office of Arid Lands Studies in the Sonoran Desert near Tucson. The influent pumped into the pilot facility's six raceways (ponds) typically has been treated secondary effluent diverted from a conventional treatment facility, although primary effluent from the same facility also has been treated. The Secondary Influent Treatment System has met the Arizona Department of Environmental Quality (ADEQ) tertiary standard for BOD5 and TSS of 10 mg/l for every month of its operation since March 1990; the Primary Influent Treatment System met the ADEQ secondary standard for BOD5 and TSS of 30 mg/1 for most of the 10 months it was in operation.  相似文献   

9.
Abstract: In the karstic lower Flint River Basin, limestone fracturing, jointing, and subsequent dissolution have resulted in the development of extensive secondary permeability and created a system of major conduits that facilitate the exchange of water between the Upper Floridan aquifer and Flint River. Historical streamflow data from U.S. Geological Survey gaging stations located in Albany and Newton, Georgia, were used to quantify ground‐water and surface‐water exchanges within a 55.3 km section of the Flint River. Using data from 2001, we compared estimates of ground‐water flux using a time adjustment method to a water balance equation and found that these independent approaches yielded similar results. The associated error was relatively large during high streamflow when unsteady conditions prevail, but much lower during droughts. Flow reversals were identified by negative streamflow differences and verified with in situ data from temperature sensors placed inside large spring conduits. Long‐term (13 years) analysis showed negative streamflow differentials (i.e., a losing stream condition) coincided with high river stages and indicated that streamflow intrusion into the aquifer could potentially exceed 150 m3/s. Although frequent negative flow differentials were evident, the Flint River was typically a gaining stream and showed a large net increase in flow between the two gages when examined over the period 1989‐2003. Ground‐water contributions to this stream section averaged 2‐42 m3/s with a mean of 13 m3/s. The highest rate of ground‐water discharge to the Flint River occurred during the spring when regional ground‐water levels peaked following heavy winter and spring rains and corresponding rates of evapotranspiration were low. During periods of extreme drought, ground‐water contributions to the Flint River declined.  相似文献   

10.
There has been widespread interest in using compost to improve the hydrologic functions of degraded soils at construction sites for reducing runoff and increasing infiltration. The objective of this study was to determine the effects of compost amendment rate on saturated hydraulic conductivity (Ks) and water retention in order to identify target compost rates for enhancing soil hydrologic functions. Samples were prepared with three soil textures (sandy loam, silt loam, and sandy clay loam), amended with compost at 0%, 10%, 20%, 30%, 40%, and 50%. All soils were tested at a porosity of 0.5 m3/m3, and the sandy loam was further tested at high (0.55 m3/m3) and low (0.4 m3/m3) porosities. The Ks and water retention data were then used to model infiltration with HYDRUS-1D. With increasing compost amendment rate, Ks and water retention of the mixtures generally increased at the medium porosity level, with more compost needed in heavier soils. As porosity decreased in the sandy loam soil, the amount of compost needed to improve Ks rose from 20% to 50%. Water distribution in pore fractions (gravitational, plant-available, and unavailable water) depended on texture, with only the highest compost rates increasing plant-available water in one soil. Results suggest soil texture should be taken into consideration when choosing a compost rate in order to achieve soil improvement goals. Hydrologic benefits may be limited even at a high rate of compost amendment if soil is compacted.  相似文献   

11.
Regression relationships were developed between summer mean total phosphorus (P) concentrations in near-surface water and both chlorophyll a concentrations and Secchi disc transparency for Puget Sound region lakes. Total P concentrations in the lakes studied ranged from 7 to 66 μ/L. The relationship between total P and chlorophyll a, based on data from 69 lakes, explained 57 percent of the variance in chlorophyll a. Predicted chlorophyll a concentrations and 95 percent confidence intervals ranged from 1 +3-0.5μg/L for 7 μg/L P to about +35-10μ/L for 66 μ/L P. The relationship between total P and Secchi disc, based on data from 71 lakes, explained 53 percent of the variance in Secchi disc. Predicted Secchi disc transparencies and 95 percent confidence intervals ranged from 5.5 +5.5-3.0 m for 7 μ/L P to 1.4 +1.5-0.7 m for 66 μ/L P.  相似文献   

12.
ABSTRACT: Transport of agricultural chemicals in runoff and recharge waters from snowmelt and soil thawing may represent a significant event in terms of annual contaminant loadings in temperate regions. Improved understanding of the melt dynamics of shallow snowpacks is necessary to fully assess the implications for water quality. The objective of this study was to measure the energy balance components of a corn (Zea mays L.) stubble field during the melting of its snowcover. Net radiation (Rn), soil (G), sensible (H), and latent (Q) heat fluxes were measured in a field near Ames, Iowa, during the winter of 1994–1995. Energy consumed by melting including change in energy storage of the snowpack was determined as the residual of the measured energy balance. There was continuous snowcover at the field site for 71 days (maximum depth = 222 mm) followed by an open period of 11 days before additional snowfall and a second melt period. The net radiation and snow melt/energy storage change (5) terms dominated the energy balance during both measurement intervals. Peak daily sensible and latent heat fluxes were below 100 W m?2 on all days except the last day of the second melt period. There was good agreement between predicted and measured values of H and Q during the melting of an aged snow layer but poorer agreement during the melt of fresh snow. Both snowpacks melted rapidly and coincident changes in soil moisture storage were observed. Improved estimates of Q and H, especially for partially open surfaces, will require better characterization of the surface aerodynamic properties and spatially-representative surface temperature measurements.  相似文献   

13.
ABSTRACT: An index of residential water efficiency - a “W-Index” - can serve as a measure of effectiveness of water conservation features in the home. The index provides a calculated numerical value for each dwelling unit, derived from the number and kind of water-saving features present, including indoor and outdoor water savers and water harvesting or recycling systems. A W-Index worksheet, devised for on-site evaluation of single-family residences in the Tucson, Arizona, region shows that a nonconserving residence with all the water-using features would use 151,000 gallons per year or 148 gallons per capita per day (gpcpd), while the fully conserving model would use 35,300 gallons per year or 35 gpcpd and with water harvesting and graywater recycling systems would have a maximum W-Index of W-160. A Tucson water conservation demonstration home, Casa del Agua, received a rating of W-139, and field tests of about 30 homes in new Tucson subdivisions show values ranging from W-75 to W-100, indicating the incorporation of some water conservation in current new models. By adjustment of some climatic or water-use parameters, the W-Index format can be applied to various types of dwelling units or to other urban areas. The W-Index can be used by individual homeowners or builders to evaluate water efficiency of residential units, or by water providers or water management agencies as a device for promoting and achieving water conservation goals.  相似文献   

14.
Lin, Zhulu, 2011. Estimating Water Budgets and Vertical Leakages for Karst Lakes in North‐Central Florida (United States) Via Hydrological Modeling. Journal of the American Water Resources Association (JAWRA) 1‐16. DOI: 10.1111/j.1752‐1688.2010.00513.x Abstract: Newnans, Lochloosa, and Orange Lakes are closely hydrologically connected karst lakes located in north‐central Florida, United States. The complex karst hydrology in this region poses a great challenge to the hydrological modeling that is essential to the development of Total Maximum Daily Loads for these lakes. We used a Hydrological Simulation Program – Fortran model coupled with the parallel Parameter ESTimation model calibration and uncertainty analysis software to estimate effectively the hydrological interactions between the lakes and the underlying upper Floridan aquifer and the water budgets for these three lakes. The net results of the lake‐groundwater interactions in Newnans and Orange Lakes are that both lakes recharge the underlying upper Floridan aquifer, with the recharge rate of the latter one magnitude greater than that of the former. However, for Lochloosa Lake, the net lake‐groundwater interaction is that the lake gains water from groundwater in a significant amount, approximately 40% of its total terrestrial water input. The annual average vertical leakages estimated for Newnans, Lochloosa, and Orange Lakes are 6.0 × 106, ?8.9 × 106, and 44.4 × 106 m3, respectively. The average vertical hydraulic conductance (Kv/b) of the units between a lake bottom and the underlying upper Floridan aquifer in this region are also estimated to be from 1.26 × 10?4 to 1.01 × 10?3 day?1.  相似文献   

15.
Harmful algal blooms (HABs) diminish the utility of reservoirs for drinking water supply, irrigation, recreation, and ecosystem service provision. HABs decrease water quality and are a significant health concern in surface water bodies. Near real-time monitoring of HABs in reservoirs and small water bodies is essential to understand the dynamics of turbidity and HAB formation. This study uses satellite imagery to remotely sense chlorophyll-a concentrations (chl-a), phycocyanin concentrations, and turbidity in two reservoirs, the Grand Lake O′ the Cherokees and Hudson Reservoir, OK, USA, to develop a tool for near real-time monitoring of HABs. Landsat-8 and Sentinel-2 imagery from 2013 to 2017 and from 2015 to 2020 were used to train and test three different models that include multiple regression, support vector regression (SVR), and random forest regression (RFR). Performance was assessed by comparing the three models to estimate chl-a, phycocyanin, and turbidity. The results showed that RFR achieved the best performance, with R2 values of 0.75, 0.82, and 0.79 for chl-a, turbidity, and phycocyanin, while multiple regression had R2 values of 0.29, 0.51, and 0.46 and SVR had R2 values of 0.58, 0.62, and 0.61 on the testing datasets, respectively. This paper examines the potential of the developed open-source satellite remote sensing tool for monitoring reservoirs in Oklahoma to assess spatial and temporal variations in surface water quality.  相似文献   

16.
ABSTRACT: The Powder River Basin in Wyoming has become one of the most active areas of coalbed methane (CBM) development in the western United States. Extraction of methane from coalbeds requires pumping of aquifer water, which is called product water. Two to ten extraction wells are manifolded into one discharge point and product water is released into nearby unlined holding ponds. The objective of this study was to evaluate the chemistry, salinity, and sodicity of CBM product water at discharge points and associated holding ponds as a function of watershed. The product water samples from the discharge points and associated holding ponds were collected from the Cheyenne River (CHR), Belle Fourche River (BFR), and Little Powder River (LPR) watersheds during the summers of 1999 and 2000. These samples were analyzed for pH, electrical conductivity (EC), total dissolved solids (TDS), alkalinity, sodium (Na), calcium (Ca), magnesium (Mg), potassium (K), sulfate (SO42‐), and chloride (C1‐). From the chemical data, practical sodium adsorption ratio (SARp) and true sodium adsorption ratio (SARt) were calculated for the CBM discharge water and pond water. The pH, EC, TDS, alkalinity, Na, Ca, Mg, K, SARp, and SARt of CBM discharge water increased significantly moving north from the CHR watershed to the LPR watershed. CBM discharge water in associated holding ponds showed significant increases in EC, TDS, alkalinity, Na, K, SARp, and SARt moving north from the CHR to the LPR watershed. Within watersheds, the only significant change was an increase in pH from 7.21 to 8.26 between discharge points and holding ponds in the LPR watershed. However, the LPR and BFR exhibited larger changes in mean chemistry values in pH, salinity (EC, TDS), and sodicity (SAR) between CBM product water discharges and associated holding ponds than the CHR watershed. For instance, the mean EC and TDS of CBM product water in LPR increased from 1.93 to 2.09 dS/m, and froml,232 to 1,336 mg/L, respectively, between discharge and pond waters. The CHR exhibited no change in EC, TDS, Na, or SAR between discharge water and pond water. Also, while not statistically significant, mean alkalinity of CBM product water in BFR and LPR watersheds decreased from 9.81 to 8.01 meq/L and from 19.87 to 18.14 meq/L, respectively, between discharge and pond waters. The results of this study suggest that release of CBM product water onto the rangelands of BFR and LPR watersheds may precipitate calcium carbonate (CaCO3) in soils, which in turn may decrease infiltration and increase runoff and erosion. Thus, use of CBM product water for irrigation in LPR and BFR watersheds may require careful planning based on water pH, EC, alkalinity, Na, and SAR, as well as local soil physical and chemical properties.  相似文献   

17.
We examined the physiological and morphological response patterns of plains cottonwood [Populus deltoides subsp. monilifera (Aiton) Eck.] to acute water stress imposed by groundwater pumping. Between 3 and 27 July 1996, four large pumps were used to withdraw alluvial groundwater from a cottonwood forest along the South Platte River, near Denver, Colorado, USA. The study was designed as a stand-level, split-plot experiment with factorial treatments including two soil types (a gravel soil and a loam topsoil over gravel), two water table drawdown depths (∼0.5 m and >1.0 m), and one water table control (no drawdown) per soil type. Measurements of water table depth, soil water potential (Ψs), predawn and midday shoot water potential (Ψpd and Ψmd), and D/H (deuterium/hydrogen) ratios of different water sources were made in each of six 600-m2 plots prior to, during, and immediately following pumping. Two additional plots were established and measured to examine the extent to which surface irrigation could be used to mitigate the effects of deep drawdown on P. deltoides for each soil type. Recovery of tree water status following pumping was evaluated by measuring stomatal conductance (g s ) and xylem water potential (Ψxp) on approximately hourly time steps from before dawn to mid-afternoon on 11 August 1996 in watered and unwatered, deep-drawdown plots on gravel soils. P. deltoides responded to abrupt alluvial water table decline with decreased shoot water potential followed by leaf mortality. Ψpd and percent leaf loss were significantly related to the magnitude of water table declines. The onset and course of these responses were influenced by short-term variability in surface and ground water levels, acting in concert with physiological and morphological adjustments. Decreases in Ψpd corresponded with increases in Ψmd, suggesting shoot water status improved in response to stomatal closure and crown dieback. Crown dieback caused by xylem cavitation likely occurred when Ψpd reached −0.4 to −0.8 MPa. The application of surface irrigation allowed trees to maintain favorable water status with little or no apparent cavitation, even in deep-drawdown plots. Two weeks after the partial canopy dieback and cessation of pumping, g s and Ψxp measurements indicated that water stress persisted in unwatered P. deltoides in deep-drawdown plots.  相似文献   

18.
A sub‐model for the Soil and Water Assessment Tool (SWAT) is developed to predict Escherichia coli levels in the streambed sediment as well as in the water column. New formulations to estimate the levels of E. coli in streambed sediment and the water column are derived. These equations include calculations of E. coli resuspension from the streambed sediment to the water column, E. coli deposition from the water column to the streambed sediment, E. coli growth in the streambed sediment and the water column, and instream E. coli routing. These formulations were programmed in FORTRAN and integrated into SWAT. The modified SWAT model was applied to Squaw Creek Watershed, Iowa, to predict E. coli levels in the stream. Escherichia coli concentrations in the streambed sediment and the water column were monitored extensively in this watershed, and observations were used to verify the model predictions. The model proposed here can predict E. coli concentrations in streambed sediment as well as in the water column. Approximately 58% of the predictions of E. coli levels in the bed sediment were within 1 order of magnitude from the observed value, and in the water column 83% of the predictions of E. coli levels were within 1 order of magnitude. Results suggest that the proposed model will help predictions of instream bacterial contamination.  相似文献   

19.
This study is to evaluate the future potential impact of climate change on the water quality of Chungju Lake using the Water Quality Analysis Simulation Program (WASP). The lake has a storage capacity of 2.75 Gm3, maximum water surface of 65.7 km2, and forest‐dominant watershed of 6,642 km2. The impact on the lake from the watershed was evaluated by the Soil and Water Assessment Tool (SWAT). The WASP and SWAT were calibrated and validated using the monthly water temperatures from 1998 to 2003, lake water quality data (dissolved oxygen, total nitrogen [T‐N], total phosphorus [T‐P], and chlorophyll‐a [chl‐a]) and daily dam inflow, and monthly stream water quality (sediment, T‐N, and T‐P) data. For the future climate change scenario, the MIROC3.2 HiRes A1B was downscaled for 2020s, 2050s, and 2080s using the Change Factor statistical method. The 2080s temperature and precipitation showed an increase of +4.8°C and +34.4%, respectively, based on a 2000 baseline. For the 2080s watershed T‐N and T‐P loads of up to +87.3 and +19.6%, the 2080s lake T‐N and T‐P concentrations were projected to be 4.00 and 0.030 mg/l from 2.60 and 0.016 mg/l in 2000, respectively. The 2080s chl‐a concentration in the epilimnion and the maximum were 13.97 and 52.45 μg/l compared to 8.64 and 33.48 μg/l in 2000, respectively. The results show that the Chungju Lake will change from its mesotrophic state of 2000 to a eutrophic state by T‐P in the 2020s and by chl‐a in the 2080s. Editor's note: This paper is part of a featured series on Korean Hydrology. The series addresses the need for a new paradigm of river and watershed management for Korea due to climate and land use changes.  相似文献   

20.
Surface water and air volatile organic compound (VOC) data from 10 U.S. Geological Survey monitoring sites were used to evaluate the potential for direct transport of VOCs from the atmosphere to urban streams. Analytical results of 87 VOC compounds were screened by evaluating the occurrence and detection levels in both water and air, and equilibrium concentrations in water (Cws) based on the measured air concentrations. Four compounds (acetone, methyl tertiary butyl ether, toluene, and m‐ & p‐xylene) were detected in more than 20% of water samples, in more than 10% of air samples, and more than 10% of detections in air were greater than long‐term method detection levels (LTMDL) in water. Benzene was detected in more than 20% of water samples and in more than 10% of air samples. Two percent of benzene detections in air were greater than one‐half the LTMDL in water. Six compounds (chloroform, p‐isopropyltoluene, methylene chloride, perchloroethene, 1,1,1‐trichloroethane, and trichloroethene) were detected in more than 20% of water samples and in more than 10% of air samples. Five VOCs, toluene, m‐ & p‐xylene, methyl tert‐butyl ether (MTBE), acetone, and benzene were identified as having sufficiently high concentrations in the atmosphere to be a source to urban streams. MTBE, acetone, and benzene exhibited behavior that was consistent with equilibrium concentrations in the atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号