首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT A critical examination of single gage site, monthly streamflow statistical characteristics for two southern Illinois rivers, an Oklahoma river and a Texas river was made using a digital computer at Northwestern University. High flow variability for the rivers was evident in that, for the rivers tested, 8 to 11 months had coefficients of variation in excess of unity. The gamma distribution was not as efficient as the normal distribution for fitting power or logarithmic transforms of the historical monthly flow data (i.e., F1-0, F0-5, F0-25, Fa125, F0.085, and log F). No single transform to a normal distribution was adequate for all twelve monthly flows, since definite seasonal grouping patterns were found for the four rivers examined. The highly variable flow in the low-flow season(s) indicated much more skewness than was typical of the remainder of the year. For the low-flow seasons, the higher-root (smaller exponent) transforms were particularly useful. Flows were generated from a linear regression model of lag one utilizing two or more transforms for the twelve periods. The definite seasonal patterns found historically were reproduced quite well in the generated streamflows. The effect of a change in data transform from one season to the next was insignificant after one month. Thus the use of different transforms within the year did not bias the results from the linear regression model appreciably, but did help in reproducing the seasonal distribution pattern. The technique seems especially well suited for rivers with highly variable flows.  相似文献   

2.
ABSTRACT: Suspended sediment samples were collected in west-side tributaries and the main stem of the San Joaquin River, California, in June 1994 during the irrigation season and in January 1995 during a winter storm. These samples were analyzed for 15 organochiorine pesticides to determine their occurrence and their concentrations on suspended sediment and to compare transport during the irrigation season (April to September) to transport during winter storm runoff (October to March). Ten organochiorine pesticides were detected during the winter storm runoff; seven during the irrigation season. The most frequently detected organochlorine pesticides during both sampling periods were p,p'-DDE, p,p'-DDT, p,p'-DDD, dieldrin, toxaphene, and chiordane. Dissolved samples were analyzed for three organochiorine pesticides during the irrigation season and for 15 during the winter storm. Most calculated total concentrations of p,p-DDT, chlordane, dieldrin, and toxaphene exceeded chronic criteria for the protection of freshwater aquatic life. At eight sites in common between sampling periods, suspended sediment concentrations and streamfiow were greater during the winter storm runoff - median concentration of 3,590 mg/L versus 489 mg(L and median streamfiow of 162 ft3/s versus 11 ft3/s. Median concentrations of total DDT (sum of p,p'-DDD, p,p-DDE, and p,p'-DDT), chlordane, dieldrin, and toxaphene on suspended sediment were slightly greater during the irrigation season, but instantaneous loads of organochlorine pesticides at the time of sampling were substantially greater during the winter storm. Estimated loads for the entire irrigation season exceeded estimated loads for the January 1995 storm by about 2 to 4 times for suspended transport and about 3 to 11 times for total transport. However, because the mean annual winter runoff is about 2 to 4 times greater than the runoff during the January 1995 storm, mean winter transport may be similar to irrigation season transport. This conclusion is tentative primarily because of insufficient information on long-term seasonal variations in suspended sediment and organochlorine concentrations. Nevertheless, runoff from infrequent winter storms will continue to deliver a significant load of sediment-bound organochiorine pesticides to the San Joaquin River even if irrigation-induced sediment transport is reduced. As a result, concentrations of organochlorine pesticides in San Joaquin River biota will continue to be relatively high compared to other regions of the United States.  相似文献   

3.
Benthic chlorophyll a (BChl a) and environmental factors that influence algal biomass were measured monthly from February through October in 22 streams from three agricultural regions of the United States. At‐site maximum BChl a ranged from 14 to 406 mg/m2 and generally varied with dissolved inorganic nitrogen (DIN): 8 out of 9 sites with at‐site median DIN >0.5 mg/L had maximum BChl a >100 mg/m2. BChl a accrued and persisted at levels within 50% of at‐site maximum for only one to three months. No dominant seasonal pattern for algal biomass accrual was observed in any region. A linear model with DIN, water surface gradient, and velocity accounted for most of the cross‐site variation in maximum chlorophyll a (adjusted R2 = 0.7), but was no better than a single value of DIN = 0.5 mg/L for distinguishing between low and high‐biomass sites. Studies of nutrient enrichment require multiple samples to estimate algal biomass with sufficient precision given the magnitude of temporal variability of algal biomass. An effective strategy for regional stream assessment of nutrient enrichment could be based on a relation between maximum BChl a and DIN based on repeat sampling at sites selected to represent a gradient in nutrients and application of the relation to a larger number of sites with synoptic nutrient information.  相似文献   

4.
Bougeard, Morgane, Jean‐Claude Le Saux, Nicolas Pérenne, Claire Baffaut, Marc Robin, and Monique Pommepuy, 2011. Modeling of Escherichia coli Fluxes on a Catchment and the Impact on Coastal Water and Shellfish Quality. Journal of the American Water Resources Association (JAWRA) 1‐17. DOI: 10.1111/j.1752‐1688.2011.00520.x Abstract: The simulation of the impact of Escherichia coli loads from watersheds is of great interest for assessing estuarine water quality, especially in areas with shellfish aquaculture or bathing activities. For this purpose, this study investigates a model association based on the Soil and Water Assessment Tool (SWAT) coupled with a hydrodynamic model (MARS 2D; IFREMER). Application was performed on the catchment and estuary of Daoulas area (France). The daily E. coli fluxes simulated by SWAT are taken as an input in the MARS 2D model to calculate E. coli concentrations in estuarine water and shellfish. Model validation is based on comparison of frequencies: a strong relationship was found between calculated and measured E. coli concentrations for river quality (r2 = 0.99) and shellfish quality (r2 = 0.89). The important influence of agricultural practices and rainfall events on the rapid and large fluctuations in E. coli fluxes from the watershed (reaching three orders of magnitude in <24 hours) is one main result of the study. Response time in terms of seawater quality degradation ranges from one to two days after any important rainfall event (greater than 10 mm/day) and the time for estuary to recover good water quality also mainly depends on the duration of the rainfall. In the estuary, three effects (rainfall, tidal dilution, and manure spreading) have been identified as important influences.  相似文献   

5.
Summary Seasonal rainerosivity is important in the structure and dynamics of Mediterranean ecosystems. The present paper contributes to the quantitative assessment of RUSLE's monthly erosion index in a data-scarce Mediterranean region. Therefore, a regionalized relationship for estimating monthly erosion index (EI30-month) from only three rainfall parameters has been obtained. Knowledge of the seasonal and annual distribution of erosivity index, permit soil and water conservationists to make improved designs for erosion control, water harvesting or small hydraulic structures. Although a few long data sets were used in the analysis, validation with established monthly erosivity index values from other Italian locations, suggest that the model presented (r2 = 0.973) is robust. It is recommended to monthly erosivity estimates when experimental data-scarce rainfall become available.  相似文献   

6.
Hagström, Johannes A., Mario R. Sengco, and Tracy A. Villareal, 2010. Potential Methods for Managing Prymnesium parvum Blooms and Toxicity, With Emphasis on Clay and Barley Straw: A Review. Journal of the American Water Resources Association (JAWRA) 46(1):187-198. DOI: 10.1111/j.1752-1688.2009.00402.x Abstract: Harmful algal bloom (HAB) control and mitigation is a complex problem in ecosystem management. Phytoplankton play an important role in aquatic ecosystems as primary producers and food sources for many commercially important shellfish and there are limited options for targeting just a single species within the community. Chemical treatments (e.g., algaecides), rotting barley straw, nitrogen and phosphorus manipulation, and clay and/or flocculants are but a few techniques tested or used to reduce fish kills or shellfish contamination during a HAB event. Prymnesium parvum control has focused on the use of chemicals, nutrient manipulation, and clay flocculation. However, many HAB control methods have been rejected due to their effects on ecosystems, high costs, or limited effects on target organisms. For example, rotting barley straw (Hordeum vulgare) is considered to be an environmentally friendly alternative, but has been found to have very different results on the phytoplankton community depending on the dominating taxa and is ineffective against P. parvum and dinoflagellate blooms. Clay flocculation is a useful control/mitigation technique during fish kills in marine aquaculture sites in South Korea and can be effective in freshwater if the correct combination of clay and flocculent is used. Toxins produced by P. parvum and Karenia brevis also bind to phosphatic clay, thereby removing and/or neutralizing the toxins, but there is concern that the clay will have a negative effect on sessile organisms. Some shellfish suffer high mortalities and significant impacts on somatic and reproductive tissue growth at high clay loads; however, benthic communities appear to be unchanged after five years of clay treatment in South Korea. There are likely site-specific and ecosystem-specific characteristics that make generalizations about control options difficult and require careful assessment of options at each location.  相似文献   

7.
ABSTRACT: River solute loads have seldom been measured in very large, complex drainage basins, nor have the methods of calculating loads been critically examined. For sites in the Saskatchewan River Basin, Canada, rating curves were poor predictors of solute loads because correlations between discharge and total solutes concentration were weak (R2 < 0.05 in most cases) and suffered from hysteresis. In contrast, the interval method produced reliable estimates in all seasons and sites tested, and was little affected by sampling schedule. The limit of precision (SE) for estimates of mean annual or seasonal solute load was 10–15 percent of the mean (5 percent in very small basins), reached with 10 years or more of data. Two-thirds or more of total annual solute load was transported during the open-water season, but the proportion carried during winter increased from 8 percent to 34 percent from the upstream to the downstream end of the basin, due to reservoirs retaining and mixing water. Annual loads of total solutes varied from 6.2 × 104 tonnes in foothills tributaries to almost 4.0 × 106 tonnes in the Saskatchewan River near the mouth. But, on an areal basis, the mountain and foothills region was the dominant solute source, producing 43–97 tonnes/km2/yr, compared with only 3–22 tonnes/km2/yr for prairie rivers. This difference is a consequence of greater rainfall and, hence, more rapid erosion in the mountains.  相似文献   

8.
ABSTRACT: One component of the filamentous algal community of a northern fen ecosystem in central Michigan was studied under conditions of nutrient enrichment by secondarily treated sewage effluent during one growing season. The productivity of Cladophora spp. measured by continuous flow bioassay was 2.6 g dry weight m day at the site of effluent addition compared to 0.085 g m day at the control site. Under conditions of nutrient enrichment, uptake by bioassay Cladophora spp. averaged 12 mg m?2day?1for phosphorus and 55 mg m?2day?1for nitrogen, compared to 0.01 mg m?2 day?1and 0.16 mg m?2day?1for phosphorus and nitrogen, respectively, in the control area. At the end of the growing season approximately 4.3 g N m?2 and 0.96 g P m?2were immobilized in Cladophora algal biomass. Algal growth temporarily immobilized 3.0 percent of the nitrogen and 1.0 percent of the phosphorus added as sewage effluent. Gross productivity of surface water in the fen averaged 1.5 g O2m?2day?1at the nutrient enriched site, compared to 0.5 g O2 m?2day?1at the control area. Gross productivity, community respiration and reaeration constant values in the fen were similar to data collected by other researchers in shallow water aquatic systems, but only at the fertilized sites.  相似文献   

9.
ABSTRACT: A model for estimating seasonal fecal coliform concentrations in the Tchefuncte River as a function of river discharge was developed. Data on fecal coliform concentration were obtained from the Louisiana Department of Health and Hospitals and were available for a period of 15 years (1975 through 1992) from three locations. Stream flow data were obtained from a gaging station of the U. S. Geological Survey at Folsom, Louisiana. These data were available for 49 years (1943 through 1991). The climate of the area is characterized by different precipitation/runoff mechanisms for the summer and winter seasons. The division for seasons used in this analysis was May through October (summer season), and November through April (winter season). Because of the combined effects of climatic mechanisms causing precipitation and the seasonal variation of evapotranspiration, runoff is greater in the winter season resulting in higher fecal coliform counts in the Tchefuncte River. Statistical analysis revealed a statistically significant relationship between fecal coliform concentration and discharge for each season, at each of three sites on the Tchefuncte River.  相似文献   

10.
Abstract: The effects of streamflows on temporal variation in stream habitat were analyzed from the data collected 6‐11 years apart at 38 sites across the United States. Multiple linear regression was used to assess the variation in habitat caused by streamflow at the time of sampling and high flows between sampling. In addition to flow variables, the model also contained geomorphic and land use factors. The regression model was statistically significant (p < 0.05; R2 = 0.31‐0.46) for 5 of 14 habitat variables: mean wetted stream depth, mean bankfull depth, mean wetted stream width, coefficient of variation of wetted stream width, and the percent frequency of bank erosion. High flows between samples accounted for about 16% of the total variation in the frequency of bank erosion. Streamflow at the time of sampling was the main source of variation in mean stream depth and contributed to the variation in mean stream width and the frequency of bank erosion. Urban land use (population change) accounted for over 20% of the total variation in mean bankfull depth, 15% of the total variation in the coefficient of variation of stream width, and about 10% of the variation in mean stream width.  相似文献   

11.
Angradi, Ted R., David W. Bolgrien, Matt A. Starry, and Brian H. Hill, 2012. Modeled Summer Background Concentration of Nutrients and Suspended Sediment in the Mid‐Continent (USA) Great Rivers. Journal of the American Water Resources Association (JAWRA) 48(5): 1054‐1070. DOI: 10.1111/j.1752‐1688.2012.00669.x Abstract: We used regression models to predict summer background concentration of total nitrogen (N), total phosphorus (P), and total suspended solids (TSS), in the mid‐continent great rivers: the Upper Mississippi, the Lower Missouri, and the Ohio. From multiple linear regressions of water quality indicators with land use and other stressor variables, we determined the concentration of the indicators when the predictor variables were all set to zero — the y‐intercept. Except for total P on the Upper Mississippi River, we could predict background concentration using regression models. Predicted background concentration of total N was about the same on the Upper Mississippi and Lower Missouri Rivers (430 μg l?1), which was lower than percentile‐based values, but was similar to concentrations derived from the response of sestonic chlorophyll a to great river total N concentration. Background concentration of total P on the Lower Missouri (65 μg l?1) was also lower than published and percentile‐based concentrations. Background TSS concentration was higher on the Lower Missouri (40 mg l?1) than the other rivers. Background TSS concentration on the Upper Mississippi (16 mg l?1) was below a threshold (30 mg l?1) designed to protect aquatic vegetation. Our model‐predicted concentrations for the great rivers are an attempt to estimate background concentrations for water quality indicators independent from thresholds based on percentiles or derived from stressor‐response relationships.  相似文献   

12.
We used invertebrate bioassessment, habitat analysis, geographic information system analysis of land use, and water chemistry monitoring to evaluate tributaries of a degraded northeast Nebraska, USA, reservoir. Bimonthly invertebrate collections and monthly water chemistry samples were collected for two years on six stream reaches to identify sources contributing to reservoir degradation and test suitability of standard rapid bioassessment methods in this region. A composite biotic index composed of seven commonly used metrics was effective for distinguishing between differentially impacted sites and responded to a variety of disturbances. Individual metrics varied greatly in precision and ability to discriminate between relatively impacted and unimpacted stream reaches. A modified Hilsenhoff index showed the highest precision (reference site CV = 0.08) but was least effective at discriminating among sites. Percent dominance and the EPT (number of Ephemeroptera, Plecoptera, and Trichoptera taxa) metrics were most effective at discriminating between sites and exhibited intermediate precision. A trend of higher biotic integrity during summer was evident, indicating seasonal corrections should differ from other regions. Poor correlations were evident between water chemistry variables and bioassessment results. However, land-use factors, particularly within 18-m riparian zones, were correlated with bioassessment scores. For example, there was a strong negative correlation between percentage of rangeland in 18-m riparian zones and percentage of dominance in streams (r 2 = 0.90, P < 0.01). Results demonstrate that standard rapid bioassessment methods, with some modifications, are effective for use in this agricultural region of the Great Plains and that riparian land use may be the best predictor of stream biotic integrity.  相似文献   

13.
Abstract: Tree basal growth in response to flooding regime was evaluated at a 5.2‐ha bottomland forest along the Olentangy River in central Ohio. Tree‐ring analysis was used to develop a 14‐year basal area increment (BAI) (cm2/year) series for 42 canopy trees (representing 10 species) throughout the bottomland. Mean annual BAI was evaluated relative to the frequency and duration of bankfull (>70 m3/s) and high‐flood (>154 m3/s) river discharge for a given water year (October 1‐September 30) and growing season (April 1‐September 30). A significant polynomial relationship was detected between the number of days of high‐flood river discharge over a combined two‐year period (Year i + Year i ? 1) and mean annual BAI. No significant relationships were detected when only the concurrent‐year or previous‐year flood regimes were considered or when growing season was considered. A similar relationship was detected when duration of high‐flood discharge days and BAI were both evaluated in two‐year increments (Year i + Year i ? 1). Mean annual BAI was most influenced by boxelder (Acer negundo) which was the dominant species and exhibited strong agreement with the overall BAI series. In each case, the resulting parabolic curve of tree basal growth in response to flooding suggests an optimal number of flooding days, a response to perturbation consistent with the subsidy‐stress model. Dendrochronology may be a useful tool for managers looking to restore environmental flows to regulated rivers.  相似文献   

14.
ABSTRACT: Models for the prediction of chlorophyll a concentrations were developed and tested using data on 223 Florida lakes. A statistical analysis showed that the best model was log (Chl a) =?2.49 + 0.269 log (TP) + 1.06 log (TN) or log (Chl a) =?2.49 + 1.06 log (TN/TP) + 1.33 log (TP) where Chl a is the chlorophyll a concentration (mg m-3), TP is the total phosphorus concentration (mg m-3) and TN is the total nitrogen concentration (mg m-3). The model yields unbiased estimates of chlorophyll a concentrations over a wide range of lake types and has a 95 percent confidence interval of 29–319 percent of the calculated chlorophyll a concentrations. Other models, especially the published Dillon-Rigler and Jones-Bachmann phosphorus-chlorophyll models, are less precise when applied to Florida lakes. The data support the hypothesis that nitrogen is an important limiting nutrient in hypereutrophic lakes.  相似文献   

15.
Over the past thirty years, Xishuangbanna in Southwestern China has seen dramatic changes in land use where large areas of tropical forest and fallow land have been converted to rubber and tea plantations. In this study we evaluated the effects of land use and slope on soil properties in seven common disturbed and undisturbed land-types. Results indicated that all soils were acidic, with pH values significantly higher in the 3- and 28-year-old rubber plantations. The tropical forests had the lowest bulk densities, especially significantly lower from the top 10?cm of soil, and highest soil organic matter concentrations. Soil moisture content at topsoil was highest in the mature rubber plantation. Soils in the tropical forests and abandoned cultivated land had inorganic N (IN) concentrations approximately equal in NH4 +-N and NO3 ?-N. However, soil IN pools were dominated by NH4 +-N in the rubber and tea plantations. This trend suggests that conversion of tropical forest to rubber and tea plantations increases NH4 +-N concentration and decreases NO3 ?-N concentration, with the most pronounced effect in plantations that are more frequently fertilized. Soil moisture content, IN, NH4 +-N and NO3 ?-N concentrations within all sites were higher in the rainy season than in the dry season. Significant differences in the soil moisture content, and IN, NH4 +-N and NO3 ?-N concentration was detected for both land uses and sampling season effects, as well as interactions. Higher concentrations of NH4 +-N were measured at the upper slopes of all sites, but NO3 ?-N concentrations were highest at the lower slope in the rubber plantations and lowest at the lower slopes at all other. Thus, the conversion of tropical forests to rubber and tea plantations can have a profound effect on soil NH4 +-N and NO3 ?-N concentrations. Options for improved soil management in plantations are discussed.  相似文献   

16.
The Alqueva reservoir created the largest artificial lake of Western Europe in 2010. Since then, the region has faced challenges due to land-use changes that may increase the risk of erosion and shorten the lifetime of the reservoir, increasing the need to promote land management sustainability. This paper investigates the aspect of seasonality of soil erosion using a comprehensive methodology that integrates the Revised Universal Soil Loss Equation (RUSLE) approach, geographic information systems, geostatistics, and remote-sensing. An experimental agro-silvo pastoral area (typical land-use) was used for the RUSLE factors update. The study confirmed the effect of seasonality on soil erosion rates under Mediterranean conditions. The highest rainfall erosivity values occurred during the autumn season (433.6 MJ mm ha?1 h?1), when vegetation cover is reduced after the long dry season. As a result, the autumn season showed the highest predicted erosion (9.9 t ha?1), contributing 65 % of the total annual erosion. The predicted soil erosion for winter was low (1.1 t ha?1) despite the high rainfall erosivity during that season (196.6 MJ mm ha?1 h?1). The predicted annual soil loss was 15.1 t ha?1, and the sediment amount delivery was 4,314 × 103 kg. Knowledge of seasonal variation would be essential to outline sustainable land management practices. This model will be integrated with World Overview of Conservation Approaches and Technologies methods to support decision-making in that watershed, and it will involve collaboration with both local people and governmental institutions.  相似文献   

17.
New comprehensive numerically solved 1D and 2D absorption rate/kinetics models have been developed, for the first time, to interpret the experimental kinetic data obtained with a laminar jet apparatus for the absorption of carbon dioxide (CO2) in CO2 loaded mixed solutions of mixed amine system of methyldiethanolamine (MDEA) and monoethanolamine (MEA). Three MDEA/MEA weight ratios ranging from 27/03 to 23/07, over a concentration range of 2.316–1.996 kmol/m3 for MDEA and of 0.490–1.147 kmol/m3 for MEA were studied. The models take into account the coupling between chemical equilibrium, mass transfer, and the chemical kinetics of all possible chemical reactions involved in the CO2 reaction with MDEA/MEA solvent. The partial differential equations of the 1D model were solved by two numerical techniques; the finite difference method (FDM) based on in-house coded Barakat–Clark scheme and the finite element method (FEM) based on COMSOL software. The FEM comprehensive model was then used to solve the set of partial differential equations in the 2D cylindrical coordinate system setting. Both FDM and FEM produced very accurate results for both the 1D and 2D models, which were much better than our previously published simplified model. The reaction rate constant obtained for MEA blended into MDEA at 298–333 K was kMEA = 5.127 × 108 exp(−3373.8/T). In addition, the 2D model, for the first time, has provided the concentration profiles of all the species in both the radial and axial directions of the laminar jet, thereby enabling an understanding of the correct sequence in which the reaction steps involved in the reactive absorption of CO2 in aqueous mixed amines occur.  相似文献   

18.
A study has been made of the relationships between the characteristics of the riparian vegetation (floristic composition, structure and diversity) and the spatial–temporal variation of the quality of the stream waters in a basin under a semiarid Mediterranean climate in the southeastern Iberian Peninsula. The plant communities of the high reaches present greater specific richness and diversity (S mean= 7.0 ± 3.4 and Hmean= 2.0 ± 0.7) than do those of the middle and low reaches (S mean= 4.5 ± 1.6 and Hmean= 1.8 ± 0.6). One zone reached the highest specific richness (S= 12, H′= 3.2), which, apart from being situated in the intermediate stretch of the basin, represents a transitional state (ecotone) between the Salix and Tamarix communities. The characteristics of the waters analyzed indicate very high rates of erosion and runoff due to the nature of the soils (easily eroded marls) and to agricultural expansion and mining since the 16th century. The present-day riparian vegetation is not adequate to absorb the nitrates added to the basin by crop fertilization, reaching extremely high values, particularly during the dry period (between 1.2 and 42.5 mg/liter). Sewage dumping at three sampling stations did not appear to affect the specific composition of the woody vegetation. In the zones with watercourses, water salinity was low during the period of greater water flow, but considerably higher in the dry season (the upper limit was some 1.2 mS/m), resulting in a predominance of salt cedars over willows. Three types of saltcedar areas were distinguished: subhalophilous, which barely changes its chemical composition over the season; halophilous, which develops over strongly mineralized waters and markedly alters in chemical composition during the dry season; and hyperhalophilous, where salinity is extraordinarily high and quite constant throughout the year. A direct relationship was found between the dominance of Tamarix africana and abundance of NaCl.  相似文献   

19.
A data analysis of three major Korean cities was conducted to assess roadside inhalable particulate matter 10 μm or smaller in aerodynamic diameter (PM10), including temporal and meteorological variations, over a recent period of 4 to 6 years. The yearly roadside PM10 concentrations presented a well-defined increasing trend or no trend depending on the roadside monitoring station. Most mean values exceeded or approximated the Korean standard of 70 μg/m3 per year for PM10. A representative roadside diurnal trend was characterized by a distinct morning maximum. In most cases, the Sunday roadside concentrations were similar to or somewhat lower than the weekday concentrations, and the PM10 concentrations presented a well-defined seasonal variation, with the maximum concentration in March. The monthly maximum concentrations observed in March were most likely attributable to Asian dust storms. In two metropolitan cities (Seoul and Busan), the frequency of days with roadside PM10 concentrations exceeding the standard of 150μg/m3 per 24 h was much lower for the roadside monitoring stations than for the residential monitoring station, whereas in the third city (Daegu), this result was reversed. Interestingly, the average maximum concentrations observed for the roadside sites in Seoul and Busan during March were higher than those for the residential sites, suggesting that the roadside concentrations responded more to the dust storms than the residential areas. The relationship between the pollutant concentrations and five important meteorological parameters (solar radiation, wind speed, air temperature, relative humidity, and precipitation) showed that the number and type of meteorological variables included in the equations varied according to the monitoring station or season. Finally, the current results confirmed that attention should be given to the PM10 exposure of residents living near roadways.  相似文献   

20.
Abstract: A parametric regression model was developed for assessing the variability and long‐term trends in pesticide concentrations in streams. The dependent variable is the logarithm of pesticide concentration and the explanatory variables are a seasonal wave, which represents the seasonal variability of concentration in response to seasonal application rates; a streamflow anomaly, which is the deviation of concurrent daily streamflow from average conditions for the previous 30 days; and a trend, which represents long‐term (inter‐annual) changes in concentration. Application of the model to selected herbicides and insecticides in four diverse streams indicated the model is robust with respect to pesticide type, stream location, and the degree of censoring (proportion of nondetections). An automatic model fitting and selection procedure for the seasonal wave and trend components was found to perform well for the datasets analyzed. Artificial censoring scenarios were used in a Monte Carlo simulation analysis to show that the fitted trends were unbiased and the approximate p‐values were accurate for as few as 10 uncensored concentrations during a three‐year period, assuming a sampling frequency of 15 samples per year. Trend estimates for the full model were compared with a model without the streamflow anomaly and a model in which the seasonality was modeled using standard trigonometric functions, rather than seasonal application rates. Exclusion of the streamflow anomaly resulted in substantial increases in the mean‐squared error and decreases in power for detecting trends. Incorrectly modeling the seasonal structure of the concentration data resulted in substantial estimation bias and moderate increases in mean‐squared error and decreases in power.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号