首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 93 毫秒
1.
采用活性焦吸附—曝气生物滤池(BAF)工艺对煤气化废水生化出水进行深度处理。在活性焦投加量2g/L、吸附时间2 h、BAF生化停留时间4 h的条件下,总COD去除率为85.4%,最终出水平均COD为45.2 mg/L,满足后续双膜法回用工艺要求(COD≤50 mg/L)。活性焦对致色的大分子有机物具有较好的吸附效果,吸附后废水的色度从300倍降至60倍,同时耗氧速率加快,可生化性提高。活性焦的吸附以物理吸附为主,吸附出水没有急性毒性。三维荧光光谱显示:各单元对于酚类的去除均有贡献,小分子组分中的酚类几乎全被去除。  相似文献   

2.
仝坤  宋启辉  王东  任雯  张明栋 《化工环保》2017,37(6):661-666
为解决稠油废水的达标排放问题,构建了半饱和褐煤活性焦(HSLAC)预吸附—生物降解—褐煤活性焦吸附组合工艺处理稠油废水的中试装置(5 m3/h)。稠油废水经已吸附生化出水的HSLAC吸附预处理后,生物降解出水COD均值大幅降至82.49 mg/L,总出水COD均值为39.22 mg/L,实现了出水达标(COD≤50 mg/L)。三维荧光光谱分析表明,经HSLAC吸附预处理后,生化出水中溶解性有机碳浓度较未经吸附预处理时大幅降低,石油类和腐殖质是生化难降解的有机物。HSLAC预吸附可大幅降低处理成本。  相似文献   

3.
罗倩仪  谢文玉  钟理 《化工环保》2014,34(6):535-538
采用两级移动床生物膜反应器(MBBR)预处理高挥发酚含量的石化厂汽提净化水,考察了HRT和DO对废水中挥发酚和COD去除效果的影响。实验结果表明:在两级MBBR总HRT为10 h、MBBR中部废水DO 为1~3 mg/L的条件下, 装置连续运行处理ρ(挥发酚)=110~201 mg/L、COD=644~1 827 mg/L、BOD5/COD=0.15~0.69的废水,两级MBBR处理后出水平均ρ(挥发酚)为17.6 mg/L,挥发酚去除率达87.9%;平均COD为745 mg/L,COD去除率为32.7%;出水BOD5/COD平均为0.68,表明经过两级MBBR处理后,废水的可生化性有所提高,有利于废水的后续生化处理。  相似文献   

4.
采用半饱和褐煤活性焦(HSLAC)预吸附—4级固定化生物滤池(I-BFs)降解—褐煤活性焦(LAC)吸附组合工艺处理超稠油废水。实验结果表明:组合工艺能达到出水COD≤50 mg/L的排放标准;4级I-BFs可完全去除有机酸、酯、呋喃类有机物,部分去除酚类物质,不能去除酰胺类物质,可将大分子有机物降解为小分子烷烃;I-BFs对疏水性有机碳和中性有机物有较高的去除率和去除量,较难去除腐殖质和腐殖质降解产物;4级I-BFs反应器内优势菌为类杆菌(Bacteroides sp.)、假单胞菌(Pseudomonas sp.)、异养反硝化菌(Thermomonassp.)、鞘脂单胞菌科(Sphingomonadaceae sp.)、鞘氨醇单胞菌(Sphingomonas sp.)和根瘤菌(Rhizobium sp.)。  相似文献   

5.
王飞 《化工环保》2016,36(4):439-442
以活性焦为吸附剂,采用预吸附—水解酸化—曝气生物固定床滤池—后吸附组合工艺中试处理稠油采出水。试验结果表明,当预吸附进水COD为408.6~526.7 mg/L、预吸附池活性焦泥回流量为25%(w)、水解酸化池上升流速为0.22 m/h、曝气生物固定床滤池气水体积比为10∶1、后吸附池投加新活性焦2 kg时,组合工艺对稠油采出水COD的去除率达到90.0%,出水COD均值为46.2 mg/L,出水水质满足DB 21/1627—2008《辽宁省污水综合排放标准》。  相似文献   

6.
采用两相厌氧+A/O工艺处理腈纶和丙烯酰胺混合废水。实验结果表明:在混合进水中V(腈纶废水)∶V(丙烯酰胺废水)=1、产酸反应器HRT为20 h、产甲烷反应器HRT为36 h、A/O池HRT为24 h、DO为4~5 mg/L、混凝池进水COD为(4 000±300) mg/L的条件下,总COD去除率为87%~89%,A/O池出水COD低于500 mg/L,出水达到GB 8978—1996《污水综合排放标准》中的三级标准;在混凝池进水BOD5/COD为0.20~0.30的条件下,产甲烷反应器出水BOD5/COD为0.55~0.65,说明两相厌氧可明显提高废水的可生化性。  相似文献   

7.
采用臭氧氧化与曝气生物滤池(BAF)组合工艺深度处理某石化污水厂二级生化处理出水。实验结果表明:气水比对BAF单元的COD去除影响不大,BAF单元的COD去除率为15%~48%;NH3-N去除率随气水比的增大而显著增大,当气水比由3#x02236;1增至5#x02236;1时,NH3-N去除率增大不明显;随气水比增大,TN去除率逐渐减小,PO43--P去除率呈现先增大后减小的趋势;当气水比为3#x02236;1时,PO43--P的去除率最高;经BAF单元处理后,出水中#x003c1;(NH3-N)为0.4~2.0mg/L,TN为8.0~15.8mg/L,#x003c1;(PO43--P)为1.1~2.3mg/L。  相似文献   

8.
采用缺氧—好氧—催化臭氧氧化工艺处理某石化厂的含盐废水。实验结果表明:在进水COD为200~350 mg/L的条件下,经生化处理后的出水COD稳定在50~60 mg/L,COD去除率稳定在75%左右;在臭氧投加量为4.5 g/L、V(催化剂Ⅱ)∶V(废水)=1.5∶1的条件下,进行连续催化臭氧氧化后出水COD稳定在20 mg/L以下,COD去除率大于70%,满足DB 61/224—2011《黄河流域(陕西段)污水综合排放标准》。表征结果显示,催化剂表面含有铜元素,比表面积为250.815 m2/g,吸水率为60.9%,经过滤可去除废水中残留的催化剂。  相似文献   

9.
赵雪娜 《化工环保》2016,36(2):189-192
对模拟碳纤维生产废水进行“厌氧-好氧”静态小试,根据COD的去除效果确定该碳纤维废水的可生化性。采用“二级厌氧-微氧-好氧”组合工艺进行动态中试,考察废水的处理效果及系统的抗冲击性能。试验结果表明:该工艺对碳纤维生产废水的处理效果较好;系统具有厌氧池出水pH增大的特点,且抗冲击能力较强;在厌氧池水温为28~38 ℃、好氧池水温不低于15 ℃、废水流量为100 L/h、进水COD为660 mg/L、进水ρ(氨氮)为4.9 mg/L的条件下,出水COD稳定在50 mg/L以下,ρ(氨氮)稳定在5 mg/L以下,能够满足GB 8978-1996《污水综合排放标准》的要求。  相似文献   

10.
Fenton氧化-生物接触氧化工艺处理甲醛和乌洛托品废水   总被引:8,自引:3,他引:5  
采用Fenton氧化一生物接触氧化工艺处理含甲醛和乌洛托品的模拟废水(简称废水),在H2O2(体积分数30%)加入量2.5g/L、H2O2与Fe^2+质量浓度比3.75、反应时间3h、不调节废水初始pH的Fenton氧化预处理最佳操作条件下,废水COD从1000mg/L左右降至300mg/L,COD去除率达72%。原废水完全无法直接进行生化处理,经Fenton氧化预处理后其BOD,/COD约为0.5,易于生化处理。Fenton氧化一生物接触氧化工艺处理废水,生物接触氧化停留时间为12h时,废水COD去除率高达94%,处理后出水COD小于70mg/L,处理效果很好。  相似文献   

11.
董梅  周惠良  郭玉琼 《化工环保》2016,36(3):288-292
采用H_2O_2溶液对兰炭末进行改性,并将改性后的兰炭末用于硝基苯生产废水(COD为560 mg/L)的吸附处理。对改性前后的兰炭末进行了表征,考察了吸附效果的影响因素,并对吸附前后改性兰炭末的燃烧热进行了测定。表征结果显示,兰炭末经改性后比表面积和孔径均增大。实验结果表明:在改性兰炭末投加量为0.2 g/m L、吸附时间为180 min、吸附温度为30℃的条件下,废水的COD去除率为93.4%,处理出水达到GB 8978—1996《污水综合排放标准》中规定的排放标准;改性兰炭末对废水中COD的吸附过程符合准二级动力学方程和Freundlich等温吸附模型;吸附后的改性兰炭末燃烧热值增大。  相似文献   

12.
用海泡石处理采油废水   总被引:1,自引:0,他引:1  
孙恩呈  商平  梁岩 《化工环保》2008,28(1):59-62
用海泡石吸附法处理采油废水,考察了处理时间、海泡石加入量和采油废水pH对采油废水COD去除率的影响,并通过正交实验优化了采油废水处理工艺条件。通过正交实验得到的采油废水处理最佳工艺条件为:处理时间6h,粒径为150μm的海泡石加入量200g/L,采油废水pH9。在该条件下处理采油废水,COD去除率达到91%,处理后出水的COD为34.71mg/L,小于GB8978-1996((污水综合排放标准》中的一级标准(60mg/L)。  相似文献   

13.
以含油浮渣为原料制备含碳吸附剂,并用于含油污水的处理。用比表面分析仪和SEM技术对吸附剂进行表征。通过正交实验和单因素实验考察吸附剂加入量、吸附时间及温度、污水pH对污水处理效果的影响。表征结果显示,含碳吸附剂碳元素含量高达90%(w)以上,表面粗糙,孔径分布以中孔为主,比表面积477.5 m2/g,碘吸附值376.48 mg/g。实验结果表明:在吸附温度30℃及时间60 min、含碳吸附剂加入量20 g/L、污水pH为7的最佳实验条件下,处理初始COD为502.12 mg/L、石油类质量浓度45.31 mg/L.的含油污水,COD和石油类的去除率分别为91.51%和87.1%,处理后的COD和石油类质量浓度分别为42.62 mg/L和5.83 mg/1,达到GB 8978—1996《污水综合排放标准》中的二级排放标准;含碳吸附剂的污水处理效果优于术质活性炭。  相似文献   

14.
范飞  田小军  梁琪  王伟  赵磊 《化工环保》2021,41(2):168-172
以聚甲醛废水经传统生化工艺处理后的一级好氧出水、二级好氧出水和二沉池出水为研究对象,混凝后采用非均相Fenton催化氧化工艺对其进行深度处理,并与铁碳微电解—均相Fenton氧化组合工艺和传统Fenton氧化工艺对比,考察了3种工艺的COD去除效果、铁泥产量和运行成本.实验结果表明:非均相Fenton催化氧化工艺具有更...  相似文献   

15.
树脂吸附法处理分散蓝NKF脱磺母液   总被引:6,自引:0,他引:6  
对NDA-9大孔吸附树脂吸附法处理分散蓝NKF生产过程中产生的脱磺母液(废水)进行了研究。在试验条件下,废水经吸附处理后COD由7500mg/L以上降至700mg/L以下,去除率达90%以上,树脂的脱附率大于98%。吸附出水经Fenton试剂氧化处理后,出水COD降至100mg/L以下,去除率达98%以上。  相似文献   

16.
采用吸附-Fenton氧化-絮凝法处理对硝基苯胺生产废水(简称废水),研究了吸附剂、脱附温度、絮凝剂等因素对处理效果的影响.经实验确定的最佳工艺条件为:DM301大孔树脂加入量5.0 g/L,吸附时间20 h,Fenton氧化pH 3.0,H_20_2加入量0.3 moL/L,m(Fe):m(H_20_2)=6,絮凝阴离子型聚丙烯酰胺加入量20 mg/L.在此条件下对COD为2 780 mg/L、色度为185倍和pH为12.2的废水进行处理,出水的COD、色度和pH分别为169 mg/L、10倍和6.5,COD去除率和色度去除率分别达到93.9%和94.5%.DM301树脂在10~25次重复使用后对硝基苯胺的平均总去除率为47.7%,对硝基苯胺的平均回收率为37.9%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号