首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Salmonella and Escherichia coli are two bacteria that are important causes of human and animal disease worldwide. Chlorate is converted in the cell to chlorite, which is lethal to these bacteria. An HPLC procedure was developed for the rapid analysis of chlorate (ClO3 ?), nitrate (NO3 ?), and nitrite (NO2 ?) ions in bovine ruminal fluid samples. Standard curves for chlorite, nitrite, nitrate, and chlorate were well defined linear curves with R2 values of 0.99846, 0.99106, 0.99854, and 0.99138, respectively. Concentrations of chlorite could not be accurately determined in bovine ruminal fluid because chlorite reacts with or binds a component(s) or is reduced to chloride in bovine ruminal fluid resulting in low chlorite measurements. A standard curve ranging from 25 to 150 ppm ClO3 ? ion was used to measure chlorate fortified into ruminal fluid. The concentration of chlorate was more rapidly lowered (P < 0.01) under anaerobic compared to aerobic incubation conditions. Chlorate alone or chlorate supplemented with the reductants sodium lactate or glycerol were bactericidal in anaerobic incubations. In anaerobic culture, the addition of sodium formate to chlorate-fortified ruminal fluid appeared to decrease chlorate concentrations; however, formate also appeared to moderate the bactericidal effect of chlorate against E. coli. Addition of the reductants, glycerol or lactate, to chlorate-fortified ruminal fluid did not increase the killing of E. coli at 24 h, but may be useful when the reducing equivalents are limiting as in waste holding reservoirs or composting systems required for intense animal production.  相似文献   

2.
ClO(4)(-) has recently been recognized as a widespread contaminant of surface and ground water. This research investigated chemolithotrophic perchlorate reduction by bacteria in soils and sludges utilizing inorganic electron-donating substrates such as hydrogen, elemental iron, and elemental sulfur. The bioassays were performed in anaerobic serum bottles with various inocula from anaerobic or aerobic environments. All the tested sludge inocula were capable of reducing perchlorate with H2 as electron donor. Aerobic activated sludge was evaluated further and it supported perchlorate reduction with Fe(0) and S(0) additions under anaerobic conditions. Heat-killed sludge did not convert ClO(4)(-), confirming the reactions were biologically catalyzed. ClO(4)(-) (3mM) was almost completely removed by the first sampling time on d 8 with H2 (> or = 0.37mMd(-1)), after 22d with S(0) (0.18mM d(-1)) and 84% removed after 37d with Fe(0) additions (0.085mMd(-1)). Perchlorate-reduction occurred at a much faster rate (1.12mMd(-1)), when using an enrichment culture developed from the activated sludge with S(0) as an electron donor. The enrichment culture also utilized S(2-) and S(2)O(3)(2-) as electron-donating substrates to support ClO(4)(-) reduction. The mixed cultures also catalyzed the disproportionation of S(0) to S(2-) and SO(4)(2-). Evidence is presented demonstrating that S(0) was directly utilized by microorganisms to support perchlorate-reduction. In all the experiments, ClO(4)(-) was stoichiometrically converted to chloride. The study demonstrates that microorganisms present in wastewater sludges can readily use a variety of inorganic compounds to support perchlorate reduction.  相似文献   

3.
This paper presents a study on the simultaneous removal of SO2, NO(x) and Hg (both Hg0 and Hg2+) from a simulated flue gas by oxidant injection in a bench-simulated wet limestone scrubber for a wide range of slurry pH. The slurry pH strongly influenced the chemical mechanism in the scrubber and, therefore, affected pollutant removal. This paper also examines the potential ClO2(gas) reemission from a developed multipollutant scrubber at different slurry pHs. To better understand the chemical mechanisms at each slurry pH and to apply a mass balance to the process, detailed product ion analyses were performed for all experiments. Ion analysis covered three different chlorine species (chlorite, chloride, chlorate), sulfate, nitrite and nitrate. Different NO(x) removal efficiencies and mechanisms were found in acidic and alkaline pHs in the multipollutant scrubber. The acidic solution was favorable for NO and Hg0 oxidation, but increasing the slurry pH above 7.0 was disadvantageous for NO and Hg oxidation/removal. However the rate of NO(x) absorption (by percentage) was higher for the alkaline solution.  相似文献   

4.
Zhao XH  Zhou PJ  Chen X  Dong YL  Jiang SY  Ding L 《Chemosphere》2011,83(4):422-428
As a new threat to environment all through the world, perchlorate (ClO(4)(-)) was predominantly a thyrotoxin, and its toxic manifestations in non-thyroid were also documented. However, little is known about the effects of ClO(4)(-) on cell and organelle. Therefore, the present study was designed to investigate the effects of ClO(4)(-) on hepatocytes and mitochondria isolated from Carassius auratus from the direct viewpoint of energy by using the microcalorimetric method. The metabolic thermogenic curves of hepatocytes and mitochondria at 25°C were obtained. And the thermokinetic parameters, such as growth rate constant (k), inhibitory ratio (I), maximum thermal power (P(max)) and total thermal effect (Q(total)) have been calculated. The results indicated that the toxicity of ClO(4)(-) on hepatocytes was relevant to the concentration of ClO(4)(-). However, 10-100mgL(-1)ClO(4)(-) stimulated the metabolic activity of mitochondria and the toxicity of ClO(4)(-) on mitochondria only occurrenced when treated with higher concentration of ClO(4)(-). This study shown that mitochondria has a major impact on the metabolic thermogenic of hepatocytes, but not the only factor. Meanwhile, it demonstrated that microcalorimetry was a powerful tool for understanding biological processes and studying on the toxic action of environmental contaminants in cell or subcellular level.  相似文献   

5.
Kim HS  Kang WH  Kim M  Park JY  Hwang I 《Chemosphere》2008,73(5):813-819
Reactive reductants of cement/Fe(II) systems in dechlorinating chlorinated hydrocarbons are unknown. This study initially evaluated reactivities of potential reactive agents of cement/Fe(II) systems such as hematite (alpha-Fe(2)O(3)), goethite (alpha-FeOOH), lepidocrocite (gamma-FeOOH), akaganeite (beta-FeOOH), ettringite (Ca(6)Al(2)(SO(4))(3)(OH)(12)), Friedel's salt (Ca(4)Al(2)Cl(2)(OH)(12)), and hydrocalumite (Ca(2)Al(OH)(6)(OH).3H(2)O) in reductively dechlorinating trichloroethylene (TCE) in the presence of Fe(II). It was found that a hematite/Fe(II) system shows TCE degradation characteristics similar to those of cement/Fe(II) systems in terms of degradation kinetics, Fe(II) dose dependence, and final products distribution. It was therefore suspected that Fe(III)-containing phases of cement hydrates in cement/Fe(II) systems behaved similarly to the hematite. CaO, which was initially introduced as a pH buffer, was observed to participate in or catalyze the formation of reactive reductants in the hematite/Fe(II) system, because its addition enhanced the reactivities of hematite/Fe(II) systems. From the SEM (scanning electron microscope) and XRD (X-ray diffraction) analyses that were carried out on the solids from hematite/Fe(II) suspensions, it was discovered that a sulfate green rust with a hexagonal-plate structure was probably a reactive reductant for TCE. However, SEM analyses conducted on a cement/Fe(II) system showed that hexagonal-plate crystals, which were presumed to be sulfate green rusts, were much less abundant in the cement/Fe(II) than in the hematite/Fe(II) systems. It was not possible to identify any crystalline minerals in the cement/Fe(II) system by using XRD analysis, probably because of the complexity of the cement hydrates. These observations suggest that major reactive reductants of cement/Fe(II) systems may differ from those of hematite/Fe(II) systems.  相似文献   

6.
Effects of pulp mill chlorate on Baltic Sea algae   总被引:1,自引:0,他引:1  
The long-term effects of pulp mill chlorate on different algal species of the Baltic Sea were studied in land-based model ecosystems simulating the littoral zone. Brown algae (Phaeophyta) exhibited an extraordinarily high sensitivity to chlorate and pulp mill effluents containing chlorate. All brown algal species ceased growth or showed major signs of toxicity at all concentrations tested, down to microgram per litre levels. EC50 levels for growth of Fucus vesiculosus were about 80-100 microg ClO3- litre(-1). Blue-green algae (Cyanophyta) were not deleteriously affected nor were green algae (Chlorophyta). The perennial and annual species of red algae (Rhodophyta) were also unaffected by the effluents. Diatoms did not show any sensitivity and phytoplankton (fresh- and brackish water) were particularly insensitive. A phanerogam, Zostera marina was also unaffected by the treatments.  相似文献   

7.
Nitrite (NO(2)(-)), a highly reactive chemical species, accumulates in coastal waters as a result of pollution with nitrogenous waste and/or an imbalance in the bacterial processes of nitrification and denitrification. The present study probed the impact of nitrite (NO(2)(-)) on the metabolism of polycyclic aromatic hydrocarbons (PAHs) in fish. In a laboratory experiment, exposure of euryhaline fish, Oreochromis mossambicus to industrial effluents containing PAHs in the presence of NO(2)(-) enhanced the cytochrome P450-dependent biotransformation activity determined as 7-ethoxyresorufin-O-deethylase (EROD), by nearly 36% compared to the value observed in the absence of NO(2)(-) (50.2 +/- 6.74 pmol resorufin min(-1) g(-1) liver). Fixed wavelength fluorescence measurements in bile revealed maximum enhancement to have occurred in the metabolites of benzo[a]pyrene, a carcinogenic PAH. Lasting, sublethal physiological deterioration was apparent in fish exposed simultaneously to an oil refinery effluent and NO(2)(-), from the unremittingly decreasing liver somatic index, even after the withdrawal of the contaminants.  相似文献   

8.
The rate coefficient for the reaction of nitrite with hypochlorite and hypochlorous acid has been studied using spectrophotometric measurements. The reaction rate has been determined in a wide range of H(+) concentration (5< or =-log[H(+)]< or =11). The kinetics were carried out as a function of NO(2)(-), H(+) and total hypochlorite ([HOCl](total)=[HOCl]+[ClO(-)]+[ClNO(2)]) concentrations. The observed overall rate law is described by: -d[HClO](T)dt=[a[NO(2)(-)](2)+b[NO(2)(-)]][H(+)](2)c+d[H(+)]+e[NO(2)(-)][H(+)](2)[HOCl](total)At T=298 K and in Na(2)SO(4) at an ionic strength (I=1.00 M), we obtained using a nonlinear fitting procedure: a=(1.83+/-0.36)x10(7) s(-1), b=(1.14+/-0.23)x10(5) Ms(-1), c=(1.12+/-0.17)x10(-13) M, d=(1.43+/-0.29)x10(-6) M(2) and e=(1.41+/-0.28)x10(3) M where the errors represent 2sigma. According to the overall rate law, a/b=k(1)/k(3), b/e=k(3), c=K(w), d/c=K(a), d=K(a)K(w) and e=K(1)K(a). In Na(2)SO(4) at an ionic strength (I=1.00 M), the values of K(1) and K(a) are (1.1+/-0.1)x10(-4) and 1.28x10(7) M(-1), respectively. A mechanism is proposed for the NO(2)(-) oxidation which involves the reversible initial step: NO(2)(-)+HOCl left harpoon over right harpoon ClNO(2)+OH(-) (K(1)), while ClNO(2) undergoes the two parallel reactions: attack by NO(2)(-) (k(1)) and hydrolysis (k(3)). ClNO(2) and N(2)O(4) are proposed as important intermediates as they control the mechanism. The rate coefficients k(1) and k(3) have been determined at different ionic strengths in NaCl and Na(2)SO(4). The influence of the ionic strength and ionic environment has been studied in this work.  相似文献   

9.
Bioremediation potential of a perchlorate-enriched sewage sludge consortium   总被引:1,自引:0,他引:1  
Bardiya N  Bae JH 《Chemosphere》2005,58(1):83-90
The purpose of this work was to explore the reductive bioremediation potential of a perchlorate-enriched facultative anaerobic consortium. Rapid perchlorate reduction and bacterial growth were observed up to 1.84 g l(-1) of perchlorate, but not at 3.82 g l(-1) due to the toxicity. The specific growth rate of the mixed consortium was 0.1 h(-1). The consortium co-reduced perchlorate and nitrate with acetate as e- donor and carbon source. The presence of nitrate slowed down the perchlorate reduction rate. The other e- acceptors utilized include oxygen, chlorate, Cr(VI), and selenate. Over 95% of the 16 mg l(-1) of added Cr(VI) was reduced within 24 h of incubation with a high-density perchlorate-grown consortium. However, the consortium failed to couple growth with reduction of nitrite, sulfate, thiosulfate, and sulfite. During the search for autotrophic perchlorate reduction, many consortia from very diverse natural sources could not use sulfur compounds such as thiosulfate as e- donor.  相似文献   

10.
The effect of a soil amendment on ammonium nitrogen transformation and nitrogen retention in broiler manure was evaluated. Prior to incubation, broiler manure was mixed with autoclaved soil or non-autoclaved soil in different ratios to make 1 kg mixtures; broiler manure:non-autoclaved soil=9:1, 5:5, and 1:9 or broiler manure:autoclaved soil=9:1, 5:5, and 1:9. The non-autoclaved soil treatment reduced either numerically or significantly NH(4)(+)-N concentration compared to the autoclaved soil treatment during the 8-wk incubation. Total-N concentration of the non-autoclaved soil treatments was lower than the autoclaved soil treatments from 4 to 8 wk. The lowest manure to non-autoclaved soil treatment (M:S=1:9) had considerably more nitrite and nitrate; however, the higher ratio manure to non-autoclaved soil treatments (M:S=9:1 and 5:5) had slightly higher total nitrite and nitrate levels compared to the same ratio of autoclaved soil treatments. The moisture level of the 9:1, 5:5, and 1:9 M:S treatments were approximately 70, 45, and 30%, respectively. The results indicated that nitrifying bacteria in the non-autoclaved soil reduced the ammonium nitrogen concentrations of poultry manure by converting NH(3) or NH(4)(+) to NO(2)(-) or NO(3)(-). However, the higher moisture levels in treatments with greater manure to soil ratios (M:S=9:1 and 5:5) created anaerobic conditions that allowed for denitrification and greater N losses.  相似文献   

11.
Kiso Y  Jung YJ  Kuzawa K  Seko Y  Saito Y  Yamada T  Nagai M 《Chemosphere》2006,64(11):1949-1954
A spot test for aqueous nitrate and nitrite for controlling nitrogen removal performance in small-scale wastewater treatment facilities is proposed. In this method, NO(2)(-) ion in water samples was allowed to react with sulfanilic acid and 1-naphthol to form an anionic azo dye. The resulting colored solution was introduced onto a mini column (similar to a gas detecting tube) packed with PVC particles coated with benzyl cetyl dimethyl ammonium chloride (BCDMA) and biphenyl. The NO(2)(-)-N concentration was determined visually by measuring the color band length (CBL) in the column. The CBL correlates linearly with nitrite concentration in the 4-20 mg-N l(-1) range. The concentration of nitrite+nitrate was determined after reduction to nitrite with zinc. The concentration of NO(3)(-)-N species was calculated by difference. This method was used to visually determine the concentrations of NO(2)(-)-N and (NO(2)(-)+NO(3)(-))-N in domestic wastewater samples with maximum suspended solid (SS) and chemical oxygen demand (COD) concentrations of 114 mg l(-1) and 73.9 mg l(-1), respectively.  相似文献   

12.
Cheung KH  Gu JD 《Chemosphere》2003,52(9):1523-1529
An enrichment consortium and an isolate (isolate TKW) of sulfate-reducing bacteria (SRB) have been obtained from metal-contaminated marine sediments of Tokwawan, Hong Kong SAR. These bacteria are capable of reducing highly toxic and soluble hexavalent chromium (Cr6+) enzymatically into less toxic and insoluble trivalent chromium (Cr3+) under anaerobic conditions. The enrichment consortium almost completely (98.5%) reduced 0.6 mM Cr6+ in 168 h and the rate of reduction was 0.5 g (Cr6+) g(protein)(-1)h(-1). In comparison, with Cr6+ as the sole electron acceptor (as a surrogate for SO4(2-)), isolate TKW reduced 94.5% of the initially added Cr6+ (0.36 mM) in 288 h, with the rate of 0.26 g (Cr6+) g(protein)(-1)h(-1). Adsorption by these bacteria was not the major mechanism contributing to the transformation or removal of Cr6+. The biomass and Cr3+ in the cultures increased simultaneously with the reduction of Cr6+. These indigenous SRB might have potential application in bioremediation of metal contaminated sediments.  相似文献   

13.
Goal, Scope and Background Chlorite (ClO2ˉ) is a primary decomposition product when chlorine dioxide (ClO2) is added during water treatment; therefore the toxic effects of both compounds on aquatic organisms are possible. Limited data are available concerning their toxicity to fish. The aim of this study was to investigate sensitivity of rainbow trout to acute and chronic toxicity of chlorine dioxide and chlorite, and to estimate the Maximum-Acceptable-Toxicant-Concentration (MATC) of those compounds in fish. Methods The acute and chronic toxicity of chlorine dioxide and chlorite to larval and adult rainbow trout was investigated in 96-hour to 20-day laboratory exposures evaluating the wide range spectrum of biological indices under semi-static conditions. Results and Discussion Median lethal concentration (96-hour LC50) values derived from the tests were: 2.2 mg/l for larvae; 8.3 mg/l for adult fish and 20-day LC50 for larvae was 1.6 mg/l of chlorine dioxide, respectively. Chlorite was found to be from 48 to 18 times less acutely toxic to larvae and adult fish, correspondingly. Both chemical compounds induced similar toxic effects in rainbow trout larvae during chronic tests (they affected cardio-respiratory and growth parameters), but chlorine dioxide had a higher toxic potency than chlorite. A significant decrease in the heart rate and respiration frequency of larvae was established. However, within an increase in exposure duration recovery of cardio-respiratory responses was seen to have occurred in larvae exposed to chlorite. Meanwhile, in larvae exposed to chlorine dioxide, a significant decrease in cardio-respiratory responses remained during all 20-day chronic bioassays. Chlorine dioxide also more strongly affected growth parameters of rainbow trout larvae at much lower test concentrations. Decreased rate of yolk-sack resorption occurred only in the tests with chlorine dioxide. Conclusions Maximum-Acceptable-Toxicant-Concentration (MATC) of 0.21 mg/l for chlorine dioxide and of 3.3 mg/l for chlorite to fish was derived from chronic tests based on the most sensitive parameter of rainbow trout larvae (growth rate). According to substance toxicity classification accepted for Lithuanian inland waters, chlorine dioxide and chlorite can be referred to substances of \moderate\ toxicity to fish. Recommendations and Outlook Due to its very reactive nature, chlorine dioxide is rapidly (in a few hours) reduced to chlorite, which is persistent also as a biocide but 16 times less toxic to fish, according to MATC. Therefore, it is much more likely that fish will be exposed to chlorite than to chlorine dioxide in natural waters. Presently accepted, the Maximum-Permitted-Concentration of total residual chlorine (TRC) in waste-water discharging into receiving waters is 0.6 mg/l. If this requirement will not be exceeded, it is unlikely that fish would be exposed to lethal or even to sublethal concentrations of chlorine dioxide or chlorite. Furthermore, chlorine dioxide does not generate toxic nitrogenous (chloramines) or carcinogenic organic residuals (trihalomethanes). All these properties make chlorine dioxide a more promising biocide than chlorine.  相似文献   

14.
Biodegradation of crystal violet by a Shewanella sp. NTOU1   总被引:2,自引:0,他引:2  
Chen CH  Chang CF  Ho CH  Tsai TL  Liu SM 《Chemosphere》2008,72(11):1712-1720
A bacterial isolate, strain NTOU1, originally isolated from the cooling system in an oil refinery could decolorize and detoxify crystal violet under anaerobic conditions. The strain was characterized and identified as a member of Shewanella decolorationis based on Gram staining, morphology characters, biochemical tests, the 16S rRNA gene and the gyrase subunit beta gene (gyrB). The optimum pH value and temperature for decolorization of crystal violet by this strain under anaerobic conditions were pH 8-9 and 30-40 degrees C, respectively. Formate (20 mM) was the best electron donor. Addition of ferric citrate did not inhibit decolorization of crystal violet, the addition of thiosulfate, ferric oxide, or manganese oxide slightly decreased decolorization, while addition of nitrite (20 mM) inhibited the decolorization of crystal violet. By supplementing the medium with formate and ferric citrate and cultivating it under optimum pH and temperature, this strain could remove crystal violet, at a concentration of 1500 mg l(-1), at the rate of 298 mg l(-1) h(-1) (during decolorization the OD(600) of the cell culture increased from approximately 0.6 to approximately 1.2). GC/MS analysis of the degradation products of crystal violet detected the presence of N,N'-bis(dimethylamino) benzophenone (Michler's Ketone), [N,N-dimethylaminophenyl] [N-methylaminophenyl] benzophenone, N,N-dimethylaminobenzaldehyde, N,N-dimethylaminophenol, and 4-methylaminophenol. These results suggest that crystal violet was biotransformed into N,N-dimethylaminophenol and Michler's Ketone prior to further degradation of these intermediates. This paper proposes a probable pathway for the degradation of crystal violet by this Shewanella sp. Cytotoxicity and antimicrobial tests showed that the process of decolorization also detoxify crystal violet.  相似文献   

15.
In this study, removing sulfur dioxide (SO2), nitrogen oxides (NO(x)), and mercury (Hg) from simulated flue gas was investigated in two laboratory-sized bubbling reactors that simulated an oxidizing reactor (where the NO and Hg(0) oxidation reactions are expected to occur) and a wet limestone scrubber, respectively. A sodium chlorite solution was used as the oxidizing agent. The sodium chlorite solution was an effective additive that enhanced the NO(x), Hg, and SO2 capture from the flue gas. Furthermore, it was discovered that the location of the sodium chlorite application (before, in, or after the wet scrubber) greatly influences which pollutants are removed and the amount removed. This effect is related to the chemical conditions (pH, absence/presence of particular gases) that are present at different positions throughout the flue gas cleaning system profile. The research results indicated that there is a potential to achieve nearly zero SO2, NO(x), and Hg emissions (complete SO2, NO, and Hg removals and -90% of NO(x) absorption from initial values of 1500 ppmv of SO2, 200 ppmv of NO(x), and 206 microg/m3 of Hg(0)) from the flue gas when sodium chlorite was applied before the wet limestone scrubber. However applying the oxidizer after the wet limestone scrubber was the most effective configuration for Hg and NO(x) control for extremely low chlorite concentrations (below 0.002 M) and therefore appears to be the best configuration for Hg control or as an additional step in NO(x) recleaning (after other NO(x) control facilities). The multipollutant scrubber, into which the chlorite was injected simultaneously with the calcium carbonate slurry, appeared to be the least expensive solution (when consider only capital cost), but exhibited the lowest NO(x) absorption at -50%. The bench-scale test results presented can be used to develop performance predictions for a full- or pilot-scale multipollutant flue gas cleaning system equipped with wet flue gas desulfurization scrubber.  相似文献   

16.
A combined anaerobic/aerobic sludge digestion system was studied to determine the effect of aerobic solids retention time (SRT) on its solids and nitrogen removal efficiencies. After the anaerobic digester reached steady state, effluent from the anaerobic digester was fed to aerobic digesters that were operated at 2- to 5-day SRTs. The anaerobic system was fed with a mixture of primary and secondary sludge from a local municipal wastewater treatment plant. Both systems were fed once per a day. The aerobic reactor was continuously aerated with ambient air, maintaining dissolved oxygen level at 1.1 +/- 0.3 mg/L. At a 4-day or longer SRT, more than 11% additional volatile solids and 90% or greater ammonia were removed in the aerobic digester, while 32.8 mg-N/L or more nitrite/nitrate also was measured. Most total Kjeldahl nitrogen removal was via ammonia removal, while little organic nitrogen was removed in the aerobic digester.  相似文献   

17.
The paper focuses on the production of H2O2 by photocatalysis over ZnO in an aerated aqueous phase. The presence of different reductants that increase the H2O2 production in the aqueous phase is analysed; particular attention is paid to nitrite, which has been shown to be the reductant that produces the most significant increments in the H2O2 production. The photocatalytic anodic decomposition of ZnO in the presence of the different reductants is also investigated. From the results obtained, the relevance of the ZnO photocatalysis in the formation of environmental hydrogen peroxide is estimated.  相似文献   

18.
The soluble carbohydrate concentration of ruminal fluid, as affected by dietary forage content (DFC) and/or ruminally undegradable intake protein content (UIPC), was determined. Four ruminally cannulated steers, in a 4 × 4 Latin square design, were offered diets containing high (75 % of DM) or low (25 % of DM) DFC and high (6 % of DM) or low (5 % of DM) UIPC, in a 2 × 2 factorial arrangement. Zinc-treated SBM was the primary UIP source. Soluble hexose concentration (145.1 μM) in ruminal fluid (RF) of steers fed low DFC diets exhibited a higher trend (P = 0.08) than that (124.5 μM) of steers fed high DFC diets. UIPC did not modulate (P = 0.54) ruminal soluble hexose concentrations. Regardless of diet, soluble hexose concentration declined immediately after feeding and did not rise until 3 h after feeding (P < 0.0001). Cellobiose (≈90 %) and glucose (≈10 %) were the major soluble hexoses present in RF. Maltose was not detected. Soluble glucose concentration (13.0 μM) was not modified by either UIPC (P = 0.40) nor DFC (P = 0.61). However, a DFC by post-prandial time interaction was detected (P = 0.02). Pentose concentrations were greater (P = 0.02) in RF of steers fed high DFC (100.2 μM) than steers fed low DFC (177.0 μM). UIPC did not influence (P = 0.35) soluble pentose concentration. The identity of soluble pentoses in ruminal fluid could not be determined. However, unsubstituted xylose and arabinose were excluded. These data indicate that: (i) soluble carbohydrate concentrations remain in ruminal fluid during digestion and fermentation; (ii) slight diurnal changes began after feeding; (iii) DFC influences the soluble carbohydrate concentration in RF; and (iv) UIPC of these diets does not affect the soluble carbohydrate concentration of RF.  相似文献   

19.
Basic physical-chemical properties of five bromine and chlorine containing mixed halogenated dimethyl bipyrroles (HDBPs) were determined using established methods. Subcooled liquid vapour pressures (P(o)(L,25)), aqueous solubilities (S(w,25)), and octanol/water partition coefficients (K(ow)) were determined using the gas chromatography-retention time, generator column, and slow-stirring methods, respectively. Henry's Law constants (H25) were estimated using experimentally-derived P(o)(L) and S(w,25) data. Values of all four properties were generally similar to those reported for other polyhalogenated aromatic compounds [P(o)(L,25) = (7.55-191) x 10(-6) Pa; S(w,25) = (1.0-1.9) x 10(-5) g/l; log K(ow) = 6.4-6.7; H25 = 0.0020-0.14 Pa m3/mol]. The effect of replacing a chlorine with a bromine atom significantly decreased P(o)(L,25) (log P(o)(L,25) = -0.4197 (# bromine atoms) - 2.643, p<0.01) and H25 (log H25 = -0.508 (# bromine atoms) + 0.394, p<0.02). There were no significant effects of bromine/chlorine substitution on S(w,25) or K(ow). A simple Level I equilibrium partitioning model predicted the environmental behaviour of HDBPs to be similar to a tetrabrominated diphenyl ether. Only slight differences in behaviour amongst HDBP congeners were predicted since substitution of a bromine for a chlorine (Cl/Br substitution) atom had less effect than H/Cl or H/Br substitution on P(o)(L,25), S(w,25), H25, and K(ow).  相似文献   

20.
Abstract

The objective of this study was to evaluate the efficacy of oral sodium chlorate administration on reducing total coliform populations in ewes. A 30% sodium chlorate product or a sodium chloride placebo was administered to twelve lactating Dorper X Blackbelly or Pelibuey crossbred ewes averaging 65 kg body weight. The ewes were adapted to diet and management. Ewes were randomly assigned (4/treatment) to one of three treatments which were administered twice daily by oral gavage for five consecutive days: a control (TC) consisting of 3 g sodium chloride/animal/d, a T3 treatment consisting of 1.8 g of sodium chlorate/animal/d, and a T9 treatment consisting of 5.4 g sodium chlorate/animal/d; the latter was intended to approximate a lowest known effective dose. Ruminal samples collected by stomach tube and freshly voided fecal samples were collected daily beginning 3 days before treatment initiation and for 6 days thereafter. Contents were cultured quantitatively to enumerate total coliforms. There were no significant differences in total coliform numbers (log10 cfu/g) in the feces between treatments (P = 0.832). There were differences (P < 0.02) in ruminal coliform counts (log10 cfu/mL) between treatments (4.1, 4.3 and 5.0 log10/mL contents in TC, T3 and T9 Treatments, respectively) which tended to increase from the beginning of treatment until the 5th day of treatment (P < 0.05). Overall, we did not obtain the expected results with oral administration of sodium chloride at the applied doses. By comparing the trends in coliform populations in the rumen contents in all treatments, there was an increase over the days. The opposite trend occurred in the feces, due mainly to differences among rumen contents and feces in ewes administered the T9 treatment (P = 0.06). These results suggest that the low chlorate doses used here were suboptimal for the control of coliforms in the gastrointestinal tract of ewes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号