首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Determining the survival of zoonotic pathogens in livestock manure and runoff is critical for understanding the environmental and public health risks associated with these wastes. The occurrence and persistence of the bacterial pathogens Escherichia coli O157:H7 and Campylobacter spp. in a passive beef cattle feedlot runoff control-vegetative treatment system were examined over a 26-mo period. Incidence of the protozoans Cryptosporidium spp. and Giardia spp. was also assessed. The control system utilizes a shallow basin to collect liquid runoff and accumulate eroded solids from the pen surfaces; when an adequate liquid volume is attained, the liquid is discharged from the basin onto a 4.5-ha vegetative treatment area (VTA) of bromegrass which is harvested as hay. Basin discharge transported E. coli O157, Campylobacter spp., and generic E. coli into the VTA soil, but without additional discharge from the basin, the pathogen prevalences decreased over time. Similarly, the VTA soil concentrations of generic E. coli initially decreased rapidly, but lower residual populations persisted. Isolation of Cryptosporidium oocysts and Giardia cysts from VTA samples was infrequent, indicating differences in sedimentation and/or transport in comparison to bacteria. Isolation of generic E. coli from freshly cut hay from VTA regions that received basin discharge (12 of 30 vs. 1 of 30 control samples) provided evidence for the risk of contamination; however, neither E. coli O157 or Campylobacter spp. were recovered from the hay following baling. This work indicates that the runoff control system is effective for reducing environmental risk by containing and removing pathogens from feedlot runoff.  相似文献   

2.
The shift in land use patterns within many urban areas has the potential to influence the magnitude and nature of nonpoint-source pollution. The presence of pyrethroid insecticides in urban surface streams is of particular concern due to the broad spectrum toxicity of pyrethroids to aquatic organisms and the widespread use of pyrethroid products for agricultural and urban pest control. Sediment samples were collected throughout a mixed land use watershed in southern California during two sampling periods and analyzed for a suite of pyrethroids. Bifenthrin and fenpropathrin were found most frequently in the sediment samples, with the highest concentrations associated with sites adjacent to large commercial nurseries. Sediments from residential areas or residential-commercial mixed areas had fewer detections and significantly lower concentrations than the nursery runoff sediments. No apparent difference was found between wet and dry season concentrations, which may be attributed to the fact that the lack of flow under dry weather conditions rendered pyrethroid residues immobile. Organic carbon-normalized sediment concentrations were poorly correlated with the freely dissolved pore water concentrations measured by solid phase microextraction (SPME), suggesting factors other than sediment organic carbon content should be considered when relating concentrations to potential toxicities.  相似文献   

3.
The distribution of some heavy metals, namely Cd, Pb, Zn, Fe, Cu, Cr and Mn in epipellic sediments of Igbede, Ojo and Ojora rivers of Lagos was studied weekly in the early summer (November) of 2003. The levels of selected trace metals were determined using Atomic Absorption Spectrophotometer (UNICAM 969 AAS SOLAR). Trends in heavy metal burdens in the sediments revealed weekly variations in all the rivers assessed. Statistical analyses also showed different mean levels of trace metals in the aquatic environments, the distribution of which followed the sequence Fe > Zn > Mn > Pb > Cu > Cr > Cd, Fe > Zn > Cu > Mn > Pb > Cr > Cd and Fe > Zn > Mn > Cu > Cr > Pb > Cd in Igbede, Ojo and Ojora rivers respectively. Fe recorded the highest concentration levels (1,582.95 ± 96.57 μ g/g–1,910.34 ± 723.19 μ g/g) in all the sediments investigated while the Cd levels (0.06 ± 0.10 μ g/g–0.47 ± 0.36 μ g/g) were the lowest. Expectedly, trace metal concentrations in fine grain muddy sediments of the Igbede and Ojo coastline were much higher than those of Ojora which consist of coarse and sandy deposits covering the near shore area. Generally, the results obtained fell within tolerable limits stipulated by World Health Organization (WHO).  相似文献   

4.
An irrigation runoff study on a residential lawn was conducted in California, northeast of Sacramento, during the summer and fall of 2008 to investigate the contribution of turf uses of pyrethroids to residues in Californian urban creek sediments. This study examined how over irrigation (i.e., irrigation that produces runoff) in the summer season may transport recently applied pyrethroids. The study included liquid and granular applications of both bifenthrin [(2-methyl-3-phenyl-phenyl) methyl 3-(2-chloro-3,3,3-trifluoro-prop-1-enyl)-2,2-dimethyl-cyclopropane-1-carboxylate] and beta-cyfluthrin [Cyano(4-fluoro-3-phenoxyphenyl)methyl 3-(2,2-dichloroethenyl)-2,2-dimethyl-cyclopropanecarboxylate]. Generally, runoff did not occur at irrigation rates of 2.03 cm/h (0.8 in/h) but did occur when the irrigation rates were increased to about 3.81 cm/h (1.5 in/h), generating chemical losses in the first runoff event of up to 0.58 and 0.08% of applied for beta-cyfluthrin and bifenthrin, respectively. Chemical runoff losses dropped significantly between over-irrigation events with the third over-irrigation event chemical runoff losses representing 0.026 and 0.015% of applied for beta-cyfluthrin and bifenthrin, respectively. Runoff losses were generally less for liquid formulations than granular formulations but within a factor of three. Additionally, the study included a simulated winter rainstorm 8 wk after application. The low runoff losses from turf seen in this study suggest that other sources could be contributing to observed residues in urban streams. Other sources could include pyrethroids ending up on impervious surfaces, such as concrete driveways from off-target applications to turf, spills, and other poor handling practices, or pyrechroids applied directly to impervious surfaces for insect control.  相似文献   

5.
Temporal variation and persistence of bacteria in streams   总被引:1,自引:0,他引:1  
Better understanding of bacterial fate and transport in watersheds is necessary for improved regulatory management of impaired streams. Novel statistical time series analyses of coliform data can be a useful tool for evaluating the dynamics of temporal variation and persistence of bacteria within a watershed. For this study, daily total coliform data for the Little River in East Tennessee from 1 Oct. 2000 to 31 Dec. 2005 were evaluated using novel time series techniques. The objective of this study was to analyze the total coliform concentration data to: (i) evaluate the temporal variation of the total coliform, and (ii) determine whether the total coliform concentration data demonstrated any long-term or short-term persistence. For robust analysis and comparison, both time domain and frequency domain approaches were used for the analysis. In the time domain, an autoregressive moving average approach was used; whereas in the frequency domain, spectral analysis was applied. As expected, the analyses showed that total coliform concentrations were higher in summer months and lower in winter months. However, the more interesting results showed that the total coliform concentration exhibited short-term as well as long-term persistence ranging from about 4 wk to approximately 1 yr, respectively. Comparison of the total coliform data to hydrologic data indicated both runoff and baseflow are responsible for the persistence.  相似文献   

6.
The paper presents a geographic information system (GIS) model-based approach for analysis of potential contamination of soil and water by pyrethroids for the European continent. Pyrethroids are widely used pesticides and their chemical and toxicological characteristics suggest there may be concerns about human health and ecosystems, although so far there is no strong evidence indicating actual risk. However, little monitoring has been conducted and limited experimental information is available. We perform an assessment exercise that demonstrates how accessible information and GIS-based modeling allow to estimate the spatial distribution of chemical concentrations and fluxes at a screening level. The assessment highlights potential hot spots and the main environmental transport pathways, in a quick and simple way. By combining information on pesticide use, crop distribution and landscape and climate parameters we identify potential problem areas to help focusing monitoring campaigns. The approach presented here is simple and fast, and can be applied to virtually all pesticide classes used over a large domain, and is therefore suitable for the screening of large quantities of chemicals, of which the majority has not undergone any systematic environmental monitoring program. The method has been tested through benchmarking with other well-established models. However, further research is needed to evaluate it against experimental observations.  相似文献   

7.
Minimizing herbicide runoff and mobility in the soil and thus potential contamination of water resources is a national concern. Metribuzin [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)-one] and atrazine [2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine] dynamics in surface soils and in runoff waters were studied on six 0.2-ha sugarcane (Saccharum spp.) plots of a Commerce silt loam (fine-silty, mixed, superactive, nonacid, thermic Fluvaquentic Endoaquept) during three growing seasons under different best management practices. Metribuzin was applied in the spring as a postemergence herbicide and atrazine was applied following winter harvest. Both herbicides were applied on top of the sugarcane rows as 0.6- or 0.9-m band width application, or broadcast application, where the entire area was treated. Maximum effluent concentrations were measured from the broadcast treatment and ranged from 600 to 1100 microg L(-1) for atrazine and 250 to 450 microg L(-1) for metribuzin. Atrazine runoff losses were highest for the broadcast treatment (2.8-11% of that applied) and lowest for the 0.6-m band treatment (1.9-7.6%), with a similar trend for metribuzin losses. Measured extractable herbicides from the surface soil exhibited a sharp decrease with time and were well described with a simple first-order decay model. For atrazine, estimates for the decay rate (lambda) were higher than for metribuzin. Results based on laboratory adsorption-desorption (kinetic-batch) measurements were consistent with field observations. The distribution coefficients (Kd) for atrazine exhibited stronger retention over time in comparison with metribuzin on the Commerce soil. Moreover, discrepancies between adsorption isotherm and desorption indicated slower release and that hysteresis was more pronounced for atrazine compared with metribuzin.  相似文献   

8.
Continual application of mineral fertilizer and manures to meet crop production goals has resulted in the buildup of soil P concentrations in many areas. A rainfall simulation study was conducted to evaluate the effect of the application of P sources differing in water-soluble P (WSP) concentration on P transport in runoff from two grassed and one no-till soil (2 m(2) plots). Triple superphosphate (TSP)-79% WSP, low-grade single superphosphate (LGSSP)-50% WSP, North Carolina rock phosphate (NCRP)-0.5% WSP, and swine manure (SM)-30% WSP, were broadcast (100 kg total P ha(-1)) and simulated rainfall (50 mm h(-1) for 30 min of runoff) applied 1, 7, 21, and 42 d after P source application. In the first rainfall event one d after fertilizer application, dissolved reactive P (DRP) and total P (TP) concentrations of runoff increased (P < 0.05) for all soils with an increase of source WSP; with DRP averaging 0.27, 0.50, 14.66, 41.69, and 90.47 mg L(-1); and total P averaging 0.34, 0.61, 19.05, 43.10, and 98.06 mg L(-1) for the control, NCRP, SM, LGSSP, and TSP, respectively. The loss of P in runoff decreased with time for TSP and SM, such that after 42 d, losses from TSP, SM, and LGSSP did not differ. These results support that P water solubility in P sources may be considered as an indicator of P loss potential.  相似文献   

9.
Phosphorus (P) often limits the eutrophication of streams, rivers, and lakes receiving surface runoff. We evaluated the relationships among selected soil P availability indices and runoff P fractions where manure, whey, or commercial fertilizer applications had previously established a range of soil P availabilities on a Portneuf silt loam (coarse-silty, mixed, superactive, mesic Durinodic Xeric Haplocalcid) surface-irrigated with Snake River water. Water-soluble P, Olsen P (inorganic and organic P), and iron-oxide impregnated paper-extractable P (FeO-Ps) were determined on a 0.03-m soil sample taken from the bottom of each furrow before each irrigation in fall 1998 and spring 1999. Dissolved reactive phosphorus (DRP) in a 0.45-microm filtered runoff sample, and iron-oxide impregnated paper-extractable P (FeO-Pw), total P, and sediment in an unfiltered runoff sample were determined at selected intervals during a 4-h irrigation on 18.3-m field plots. The 1998 and 1999 data sets were combined because there were no significant differences. Flow-weighted average runoff DRP and FeO-Pw concentrations increased linearly as all three soil P test concentrations increased. The average runoff total P concentration was not related to any soil P test but was linearly related to sediment concentration. Stepwise regression selected the independent variables of sediment, soil lime concentration, and soil organic P extracted by the Olsen method as related to average runoff total P concentration. The average runoff total P concentration was 1.08 mg L(-1) at a soil Olsen P concentration of 10 mg kg(-1). Soil erosion control will be necessary to reduce P losses in surface irrigation runoff.  相似文献   

10.
Surface runoff losses of copper and zinc in sandy soils   总被引:1,自引:0,他引:1  
Increased anthropogenic inputs of Cu and Zn in soils have caused considerable concern relative to their effect on water contamination. Copper and Zn contents in surface soil directly influence the movement of Cu and Zn. However, minimal information is available on runoff losses of Cu and Zn in agricultural soils, and soil-extractable Cu and Zn in relation to runoff water quality. Field experiments were conducted in 2001 to study dissolved Cu and Zn losses in runoff in Florida sandy soils under commercial citrus and vegetable production and the relationship between soil-extractable Cu and Zn forms and dissolved Cu and Zn concentrations in runoff water. Five extraction methods were compared for extracting soil available Cu and Zn. Concentrations of dissolved Cu and Zn in runoff were measured and runoff discharge was monitored. Mean dissolved Cu in field runoff water was significantly correlated with the extractable Cu obtained only by 0.01 mol L(-1) CaCl2, Mehlich 1, or DTPA-TEA methods. Dissolved Zn in runoff water was only significantly correlated with extractable Zn by 0.01 mol L(-1) CaCl2. The highest correlations to dissolved Cu in runoff were obtained when soil-available Cu was extracted by 0.01 mol L(-1) CaCl2. The results indicate that 0.01 mol L(-1) CaCl2-extractable Cu and Zn are the best soil indexes for predicting readily released Cu and Zn in the sandy soils. Both runoff discharge and 0.01 mol L(-1) CaCl2-extractable Cu and Zn levels had significant influences on Cu and Zn loads in surface runoff.  相似文献   

11.
Manure application can lead to excessive soil test P levels in surface soil, which can contribute to increased P concentration in runoff. However, manure application often results in reduced runoff and sediment loss. Research was conducted to determine the residual effects of previously applied compost, plowing of soil with excessive soil test P, and application of additional compost after plowing on volume of runoff and loss of sediment and P in runoff. The research was conducted in 2004 and 2005 under natural rainfall events with plots of 11-m length where low-P and high-P compost had been applied during April 1998 to January 2001. During this initial application period, Bray-P1 in the surface 5-cm of depth was increased from 14 to 553 mg kg(-1) for the high-P compost. Inversion plowing in the spring of 2004 greatly decreased P levels in the surface soil and over the following year reduced runoff by 35% and total P losses by 51% compared with the unplowed compost treatments. Sediment loss was increased with plowing compared with the unplowed compost applied treatments but less than with the no-compost treatment. The application of additional compost after plowing increased surface soil P and dissolved reactive P (DRP) in runoff but did not increase particulate P in runoff. Unplowed compost-amended soil continued to reduce sediment loss but exhibited increased DRP loss even 5 yr after the last application. Plowing to invert excessively high-P surface soil was effective in reducing runoff and DRP loss.  相似文献   

12.
Field-scale relationships between soil test phosphorus (STP) and flow-weighted mean concentrations (FWMCs) of dissolved reactive phosphorus (DRP) and total phosphorus (TP) in runoff are essential for modeling phosphorus losses, but are lacking. The objectives of this study were (i) to determine the relationships between soil phosphorus (STP and degree of phosphorus saturation (DPS)) and runoff phosphorus (TP and DRP) from field-sized catchments under spring snowmelt and summer rainfall conditions, and (ii) to determine whether a variety of depths and spatial representations of STP improved the prediction of phosphorus losses. Runoff was monitored from eight field-scale microwatersheds (2 to 248 ha) for 3 yr. Soil test phosphorus was determined for three layers (0 to 2.5 cm, 0 to 5 cm, and 0 to 15 cm) in spring and fall and the DPS was determined for the surface layer. Average STP (0 to 15 cm) ranged from 3 to 512 mg kg(-1), and DPS (0 to 2.5 cm) ranged from 5 to 91%. Seasonal FWMCs ranged from 0.01 to 7.4 mg L(-1) DRP and from 0.1 to 8.0 mg L(-1) TP. Strong linear relationships (r2=0.87 to 0.89) were found between the site mean STP and the FWMCs of DRP and TP. The relationships had similar extraction coefficients, intercepts, and predictive power among all three soil layers. Extraction coefficients (0.013 to 0.014) were similar to those reported for other Alberta studies, but were greater than those reported for rainfall simulation studies. The curvilinear DPS relationship showed similar predictive ability to STP. The field-scale STP relationships derived from natural conditions in this study should provide the basis for modeling phosphorus in Alberta.  相似文献   

13.
Benzothiazole (BT) is a natural and synthetic compound occurring in aquatic sediments and wastewater. The purpose of this work was to investigate BT biogeochemistry in controlled Eh/pH microcosms (CEPMs) containing estuarine sediments of different particle sizes (coarse, intermediate, fine) under oxidized and reduced conditions vs. killed controls, and tide simulation mesocosms (TSMs) containing plants and meiofauna under well-drained (oxidized), consistently saturated/flooded (reduced), and tidal (alternating oxidized/reduced) conditions. Benzothiazole was transformed into complex product mixtures under all conditions. Benzothiazole transformation rates in CEPMs were slower under reduced conditions vs. oxidized conditions in the fine- and intermediate-grain sediments, but the same in the coarse sediment. Quiescent (unstirred) CEPMs showed greatly reduced BT transformation rates in all sediments, with half-lives on the order of 2200 to >4000 h (unstirred) vs. 640 to 1000 h in the continuously stirred systems. The TSM data showed that tidal and drained systems processed BT at identical rates, far exceeding those observed in statically flooded (reduced) TSMs. Mixing was found to be a more significant variable in BT transformation rate than either Eh or sediment particle size breakdown, with constant stirring increasing observed degradation appreciably. Otherwise, BT was transformed more readily on sediments of high surface area under oxidized conditions vs. coarser sediments and those under reducing electrochemical conditions.  相似文献   

14.
The loss of phosphorus (P) in runoff from agricultural soils may accelerate eutrophication in lakes and streams as well as degrade surface water quality. Limited soil specific data exist on the relationship between runoff P and soil P. This study investigated the relationship between runoff dissolved reactive phosphorus (DRP) and soil P for three Oklahoma benchmark soils: Richfield (fine, smectitic, mesic Aridic Argiustoll), Dennis (fine, mixed, active, thermic Aquic Argiudoll), and Kirkland (fine, mixed, superactive, thermic Udertic Paleustoll) series. These soils were selected to represent the most important agricultural soils in Oklahoma across three major land resource areas. Surface soil (0-15 cm) was collected from three designated locations, treated with diammonium phosphate (18-46-0) to establish a wide range of water-soluble phosphorus (WSP) (3.15-230 mg kg(-1)) and Mehlich-3 phosphorus (M3P) (27.8-925 mg kg(-1)). Amended soils were allowed to reach a steady state 210 d before simulated rainfall (75 mm h(-1)). Runoff was collected for 30 min from bare soil boxes (1.0 x 0.42 m and 5% slope) and analyzed for DRP and total P. Soil samples collected immediately before rainfall simulation were analyzed for the following: M3P, WSP, ammonium oxalate P saturation index (PSI(ox)), water-soluble phosphorus saturation index (PSI(WSP)), and phosphorus saturation index calculated from M3P and phosphorus sorption maxima (P(sat)). The DRP in runoff was highly related (p < 0.001) to M3P for individual soil series (r2 > 0.92). Highly significant relationships (p < 0.001) were found between runoff DRP and soil WSP for the individual soil series (r2 > 0.88). Highly significant relationships (p < 0.001) existed between DRP and different P saturation indexes. Significant differences (p < 0.05) among the slopes of the regressions for the DRP-M3P, DRP-WSP, DRP-PSI(ox), DRP-PSI(WSP), and DRP-P(sat) relationships indicate that the relationships are soil specific and phosphorus management decisions should consider soil characteristics.  相似文献   

15.
Characteristic levels of metal ions in post dredged sediment and dredged sediments materials of a municipal creek in the Niger Delta show that significant concentrations of heavy metals are found to be accumulated more on the surface (0–15cm depth) of the dredged material as compared to the sub surface (15–30cm) and post dredged sediments. The distribution patterns were in the following order Fe > Mn > Zn > Cu > Pb > Ni > Cd and Fe > Mn > Zn > Pb > Cu > Ni > Cd for the post dredged sediment and dredged sediment materials respectively. The levels of the various metals were far below the EPA screening levels for open water disposal, consequently total levels of heavy metal found in these sediments pose no problem by open-water or upland disposal  相似文献   

16.
Loss of soil nutrients in runoff accelerates eutrophication of surface waters. This study evaluated P and N in surface runoff in relation to rainfall intensity and hydrology for two soils along a single hillslope. Experiments were initiated on 1- by 2-m plots at foot-slope (6%) and mid-slope (30%) positions within an alfalfa (Medicago sativa L.)-orchardgrass (Dactylis glomerata L.) field. Rain simulations (2.9 and 7.0 cm h(-1)) were conducted under wet (spring) and dry (late-summer) conditions. Elevated, antecedent soil moisture at the foot-slope during the spring resulted in less rain required to generate runoff and greater runoff volumes, compared with runoff from the well-drained mid-slope in spring and at both landscape positions in late summer. Phosphorus in runoff was primarily in dissolved reactive form (DRP averaged 71% of total P), with DRP concentrations from the two soils corresponding with soil test P levels. Nitrogen in runoff was mainly nitrate (NO3-N averaged 77% of total N). Site hydrology, not chemistry, was primarily responsible for variations in mass N and P losses with landscape position. Larger runoff volumes from the foot-slope produced higher losses of total P (0.08 kg ha(-1)) and N (1.35 kg ha(-1)) than did runoff from the mid-slope (0.05 total P kg ha(-1); 0.48 kg N ha(-1)), particularly under wet, spring-time conditions. Nutrient losses were significantly greater under the high intensity rainfall due to larger runoff volumes. Results affirm the critical source area concept for both N and P: both nutrient availability and hydrology in combination control nutrient loss.  相似文献   

17.
Sorption and desorption characteristics of propiconazole (1-[[2-(2,4-dichlorophenyl)-4-propyl-1,3-dioxolan-2-yl]methyl]-1H-1,2,4-triazole) to different particle/aggregate-size fractions of agricultural runoff material were investigated. Emphasis was put on clay and colloidal size fractions to evaluate their role as potential sorbents and carriers for this pesticide. The runoff material was separated into size fractions ranging from 2 mm to ca. 15 nm by wet sieving, sedimentation, centrifugation, and membrane ultrafiltration. Each fraction was characterized by its organic C content and C/N ratio. Distinctive sorption properties of clay-sized particles and colloids were investigated. The obtained size fractions differed significantly in their organic C concentration, C/N ratio, and sorption properties to propiconazole. Organic matter was mainly associated in aggregates >2 microm. Binding of propiconazole to this coarse fraction made up 80% of the sorbed propiconazole. The distribution coefficient between solid and aqueous phases increased with decreasing particle size. The colloidal fraction (<0.16 microm) exhibited the highest sorbtivity, with a distribution coefficient of 113 L kg(-1), which was more than four times higher than that in the bulk sample (27 L kg(-1)). The fraction <2 microm represented 8% of the total sample weight, but contributed to 20% of the sorbed propiconazole. Strong hysteresis was observed for the sorption-desorption of propiconazole on the runoff material. Under dilution very little sorbed propiconazole will be released into the water phase. Due to its high sorbtivity and mobility and the strong sorption-desorption hysteresis, particles in the fraction <2 microm can be important carriers of propiconazole in runoff suspensions with high sediment load.  相似文献   

18.
Recent work has shown that a significant portion of the total loss of phosphorus (P) from agricultural soils may occur via subsurface drainflow. The aim of this study was to compare the concentrations of different P forms in surface and subsurface runoff, and to assess the potential algal availability of particulate phosphorus (PP) in runoff waters. The material consisted of 91 water-sample pairs (surface runoff vs. subsurface drainage waters) from two artificially drained clayey soils (a Typic Cryaquept and an Aeric Cryaquept) and was analyzed for total suspended solids (TSS), total phosphorus (TP), dissolved molybdate-reactive phosphorus (DRP), and anion exchange resin-extractable phosphorus (AER-P). On the basis of these determinations, we calculated the concentrations of PP, desorbable particulate phosphorus (PPi), and particulate unavailable (nondesorbable) phosphorus (PUP). Some water samples and the soils were also analyzed for 137Cs activity and particle-size distribution. The major P fraction in the waters studied was PP and, on average, only 7% of it was desorbable by AER. However, a mean of 47% of potentially bioavailable P (AER-P) consisted of PPi. The suspended soil material carried by drainflow contained as much PPi (47-79 mg kg-1) as did the surface runoff sediment (45-82 mg kg-1). The runoff sediments were enriched in clay-sized particles and 137Cs by a factor of about two relative to the surface soils. Our results show that desorbable PP derived from topsoil may be as important a contributor to potentially algal-available P as DRP in both surface and subsurface runoff from clayey soils.  相似文献   

19.
Intensively managed golf courses are perceived by the public as possibly adding nutrients to surface waters via surface transport. An experiment was designed to determine the transport of nitrate N and phosphate P from simulated golf course fairways of 'Tifway' bermudagrass [Cynodon dactylon (L.) Pers.]. Fertilizer treatments were 10-10-10 granular at three rates and rainfall events were simulated at four intervals after treatment (hours after treatment, HAT). Runoff volume was directly related to simulated rainfall amounts and soil moisture at the time of the event and varied from 24.3 to 43.5% of that added for the 50-mm events and 3.1 to 27.4% for the 25-mm events. The highest concentration and mass of phosphorus in runoff was during the first simulated rainfall event at 4 HAT with a dramatic decrease at 24 HAT and subsequent events. Nitrate N concentrations were low in the runoff water (approximately 0.5 mg L-1) for the first three runoff events and highest (approximately 1-1.5 mg L-1) at 168 HAT due to the time elapsed for conversion of ammonia to nitrate. Nitrate N mass was highest at the 4 and 24 HAT events and stepwise increases with rate were evident at 24 HAT. Total P transported for all events was 15.6 and 13.8% of that added for the two non-zero rates, respectively. Total nitrate N transported was 1.5 and 0.9% of that added for the two rates, respectively. Results indicate that turfgrass management should include applying minimum amounts of irrigation after fertilizer application and avoiding application before intense rain or when soil is very moist.  相似文献   

20.
Fecal contamination of water resources is evaluated by the enumeration of the fecal coliforms and Enterococci. However, the enumeration of these indicators does not allow us to differentiate between the sources of fecal contamination. Therefore, it is important to use alternative indicators of fecal contamination to identify livestock contamination in surface waters. The concentration of fecal indicators (, enteroccoci, and F-specific bacteriophages), microbiological markers (Rum-2-bac, Pig-2-bac, and ), and chemical fingerprints (sterols and stanols and other chemical compounds analyzed by 3D-fluorescence excitation-matrix spectroscopy) were determined in runoff waters generated by an artificial rainfall simulator. Three replicate plot experiments were conducted with swine slurry and cattle manure at agronomic nitrogen application rates. Low amounts of bacterial indicators (1.9-4.7%) are released in runoff water from swine-slurry-amended soils, whereas greater amounts (1.1-28.3%) of these indicators are released in runoff water from cattle-manure-amended soils. Microbial and chemical markers from animal manure were transferred to runoff water, allowing discrimination between swine and cattle fecal contamination in the environment via runoff after manure spreading. Host-specific bacterial and chemical markers were quantified for the first time in runoff waters samples after the experimental spreading of swine slurry or cattle manure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号