首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The transfer of contaminant mass between the nonaqueous- and aqueous-phases is a process of central importance for the remediation of sites contaminated by dense nonaqueous-phase liquids (DNAPLs). This paper describes a comparison of the results obtained with various alternative DNAPL-aqueous-phase mass transfer models contained in the literature for predicting DNAPL source-zone depletion times in groundwater systems. These dissolution models were largely developed through laboratory column experiments. To gain insight into the implications of various representations of the local-scale kinetic as well as equilibrium DNAPL dissolution processes, aquifer heterogeneity and the complex architecture of a DNAPL source-zone, the aqueous-phase contaminant concentrations and mass fluxes arriving at a down-gradient compliance boundary are analyzed in a conditional stochastic framework. The hydrogeologic setting is a heterogeneous fluvial aquifer in Southwest Germany, referred to as the aquifer analog dataset, that was intensively characterized in three dimensions for hydrogeological parameters that include permeability, effective porosity, grain size, mineralogy and sorption coefficients. By embedding the various dissolution models into the compositional, multiphase flow model, CompFlow, the relative times predicted for complete depletion of a released DNAPL source due to natural dissolution are explored. Issues related to achieving environmental benefits through, for example, partial DNAPL-zone source removal via enhanced remedial technologies are also discussed. In this context, performance metrics in the form of peak aqueous-phase contaminant concentrations and mass fluxes arriving at a down-gradient compliance boundary are compared to each other. This is done for each of the alternative mass transfer models. A significant reduction in the fractional flux at a downstream location from the DNAPL source can be achieved by partial source-zone mass reduction; however, peak concentration levels at the same location remain much higher than the United States Environment Protection Agency (US-EPA) drinking water limits. Although groundwater quality was found to improve more rapidly for the equilibrium dissolution model, it is also shown that dissolution models that promote rapid DNAPL disappearance produce greater prediction uncertainty in the aqueous-phase flux reduction.  相似文献   

2.
Infiltration of PCE in a system containing spatial wettability variations   总被引:2,自引:0,他引:2  
A two-dimensional infiltration experiment was conducted to investigate and quantify the effect of spatial wettability variations on DNAPL migration and entrapment in saturated sands. Experimental observations of tetrachloroethylene (PCE) infiltration showed that organic-wet sand lenses acted as very effective capillary barriers, retaining PCE and inhibiting its downward migration. A multiphase numerical simulator was used to model this sand box experiment. The simulator incorporates wettability-modified van Genuchten and Brooks-Corey capillary pressure/saturation relationships as well as Burdine and Mualem relative permeability relationships. PCE mass distributions, estimated by image analysis of digital photographs taken during the infiltration event, were compared to simulation results. Although both relative permeability models were qualitatively able to predict the PCE retention in the organic-wet layers, simulations with the Mualem model failed to capture the observed rate of PCE migration. A traditional multiphase simulator, incorporating water-wet capillary retention relations, failed to predict both PCE pathways and retention behavior. This study illustrates the potential influence of subsurface wettability variations on DNAPL migration and entrapment and supports the use of modified capillary relations in conjunction with the Burdine model in multiphase flow simulators.  相似文献   

3.
Modeling field-scale cosolvent flooding for DNAPL source zone remediation   总被引:2,自引:1,他引:1  
A three-dimensional, compositional, multiphase flow simulator was used to model a field-scale test of DNAPL removal by cosolvent flooding. The DNAPL at this site was tetrachloroethylene (PCE), and the flooding solution was an ethanol/water mixture, with up to 95% ethanol. The numerical model, UTCHEM accounts for the equilibrium phase behavior and multiphase flow of a ternary ethanol-PCE-water system. Simulations of enhanced cosolvent flooding using a kinetic interphase mass transfer approach show that when a very high concentration of alcohol is injected, the DNAPL/water/alcohol mixture forms a single phase and local mass transfer limitations become irrelevant. The field simulations were carried out in three steps. At the first level, a simple uncalibrated layered model is developed. This model is capable of roughly reproducing the production well concentrations of alcohol, but not of PCE. A more refined (but uncalibrated) permeability model is able to accurately simulate the breakthrough concentrations of injected alcohol from the production wells, but is unable to accurately predict the PCE removal. The final model uses a calibration of the initial PCE distribution to get good matches with the PCE effluent curves from the extraction wells. It is evident that the effectiveness of DNAPL source zone remediation is mainly affected by characteristics of the spatial heterogeneity of porous media and the variable (and unknown) DNAPL distribution. The inherent uncertainty in the DNAPL distribution at real field sites means that some form of calibration of the initial contaminant distribution will almost always be required to match contaminant effluent breakthrough curves.  相似文献   

4.
The relationship between dense non-aqueous phase liquid (DNAPL) mass reduction and contaminant mass flux was investigated experimentally in four model source zones. The flow cell design for the experiments featured a segmented extraction well that allowed for analysis of spatially resolved flux information. This flux information was coupled with image analysis of the NAPL spatial distribution to investigate the relationship between flux and the up-gradient NAPL architecture. Results indicate that in the systems studied, the relationship between DNAPL mass reduction and contaminant mass flux was primarily controlled by the NAPL architecture. A specific definition of NAPL architecture was employed where the source zone is resolved into a collection of streamtubes with spatial variability in NAPL saturation along each streamtube integrated and transformed into an effective NAPL content for each streamtube. The distribution of NAPL contents among the streamtubes (NAPL architecture) controlled dissolution dynamics. Two simplified models, a streamtube model and an effective Damkohler number model, were investigated for their ability to simulate dissolution dynamics.  相似文献   

5.
We investigated, using model simulations, the changes occurring in the distribution of dense non-aqueous phase liquid (DNAPL) mass (Sn) within the source zone during depletion through dissolution, and the resulting changes in the contaminant flux distribution (J) at the source control plane (CP). Two numerical codes (ISCO3D and T2VOC) were used to simulate selected scenarios of DNAPL dissolution and transport in three-dimensional, heterogeneous, spatially correlated, random permeability fields with emplaced sources. Data from the model simulations were interpreted based on population statistics (mean, standard deviation, coefficient of variation) and spatial statistics (centroid, second moments, variograms). The mean and standard deviation of the Sn and J distributions decreased with source mass depletion by dissolution. The decrease in mean and standard deviation was proportional for the J distribution resulting in a constant coefficient of variation (CV), while for the Sn distribution, the mean decreased faster than the standard deviation. The spatial distributions exhibited similar behavior as the population distribution, i.e., the CP flux distribution was more stable (defined by temporally constant second moments and range of variograms) than the Sn distribution. These observations appeared to be independent of the heterogeneity of the permeability (k) field (variance of the log permeability field=1 and 2.45), correlation structure (positive vs. negative correlation between the k and Sn domains) and the DNAPL dissolution model (equilibrium vs. rate-limited), for the cases studied. Analysis of data from a flux monitoring field study (Hill Air Force Base, Utah) at a DNAPL source CP before and after source remediation also revealed temporal invariance of the contaminant flux distribution. These modeling and field observations suggest that the temporal evolution of the contaminant flux distribution can be estimated if the initial distribution is known. However, the findings are preliminary and broader implications to sampling strategies for remediation performance assessment need to be evaluated in additional modeling and experimental studies.  相似文献   

6.
Understanding the process of mass transfer from source zones of aquifers contaminated with organic chemicals in the form of dense non-aqueous phase liquids (DNAPL) is of importance in site management and remediation. A series of intermediate-scale tank experiments was conducted to examine the influence of aquifer heterogeneity on DNAPL mass transfer contributing to dissolved mass emission from source zone into groundwater under natural flow before and after remediation. A Tetrachloroethylene (PCE) spill was performed into six source zone models of increasing heterogeneity, and both the spatial distribution of the dissolution behavior and the net effluent mass flux were examined. Experimentally created initial PCE entrapment architecture resulting from the PCE migration was largely influenced by the coarser sand lenses and the PCE occupied between 30 and 60% of the model aquifer depth. The presence of DNAPL had no apparent effect on the bulk hydraulic conductivity of the porous media. Up to 71% of PCE mass in each of the tested source zone was removed during a series of surfactant flushes, with associated induced PCE mobilization responsible for increasing vertical DNAPL distributions. Effluent mass flux due to water dissolution was also found to increase progressively due to the increase in NAPL-water contact area even though the PCE mass was reduced. Doubling of local groundwater flow velocities showed negligible rate-limited effects at the scale of these experiments. Thus, mass transfer behavior was directly controlled by the morphology of DNAPL within each source zone. Effluent mass flux values were normalized by the up-gradient DNAPL distributions. For the suite of aquifer heterogeneities and all remedial stages, normalized flux values fell within a narrow band with mean of 0.39 and showed insensitivity to average source zone saturations.  相似文献   

7.
While the capability of nanoscale zero-valent iron (NZVI) to dechlorinate organic compounds in aqueous solutions has been demonstrated, the ability of NZVI to remove dense non-aqueous phase liquid (DNAPL) from source zones under flow-through conditions similar to a field scale application has not yet been thoroughly investigated. To gain insight on simultaneous DNAPL dissolution and NZVI-mediated dechlorination reactions after direct placement of NZVI into a DNAPL source zone, a combined experimental and modeling study was performed. First, a DNAPL tetrachloroethene (PCE) source zone with emplaced NZVI was built inside a small custom-made flow cell and the effluent PCE and dechlorination byproducts were monitored over time. Second, a model for rate-limited DNAPL dissolution and NZVI-mediated dechlorination of PCE to its three main reaction byproducts with a possibility for partitioning of these byproducts back into the DNAPL was formulated. The coupled processes occurring in the flow cell were simulated and analyzed using a detailed three-dimensional numerical model. It was found that subsurface emplacement of NZVI did not markedly accelerate DNAPL dissolution or the DNAPL mass-depletion rate, when NZVI at a particle concentration of 10g/L was directly emplaced in the DNAPL source zone. To react with NZVI the DNAPL PCE must first dissolve into the groundwater and the rate of dissolution controls the longevity of the DNAPL source. The modeling study further indicated that faster reacting particles would decrease aqueous contaminant concentrations but there is a limit to how much the mass removal rate can be increased by increasing the dechlorination reaction rate. To ensure reduction of aqueous contaminant concentrations, remediation of DNAPL contaminants with NZVI should include emplacement in a capture zone down-gradient of the DNAPL source.  相似文献   

8.
Analytical solutions are developed for approximating the time-dependent contaminant discharge from DNAPL source zones undergoing dissolution and other decay processes. The source functions assume a power relationship between source mass and chemical discharge and can consider partial DNAPL source remediation (depletion) at any time after the initial DNAPL release. The source functions are used as a time-dependent boundary condition in an idealized chemical transport model to develop leading order approximations of the plume response to DNAPL source removal. The results suggest that partial DNAPL remediation does not tend to have a dramatic impact on the maximum extent of the plume if very low concentration values are used to define the plume boundaries. However, the solutions show that partial DNAPL removal from the source zone is likely to lead to large reductions in plume concentrations and mass, and it reduces the longevity of the plume. When the mass discharge from the source zone is linearly related to the DNAPL mass, it is shown that partial DNAPL depletion leads to linearly proportional reductions in the plume mass and concentrations.  相似文献   

9.
《Chemosphere》2013,90(11):1369-1375
Biodegradation of trichloroethene (TCE) near a Dense Non Aqueous Phase Liquid (DNAPL) can enhance the dissolution rate of the DNAPL by increasing the concentration gradient at the DNAPL-water interface. Two-dimensional flow-through sand boxes containing a TCE DNAPL and inoculated with a TCE dechlorinating consortium were set up to measure this bio-enhanced dissolution under anaerobic conditions. The total mass of TCE and daughter products in the effluent of the biotic boxes was 3–6 fold larger than in the effluent of the abiotic box. However, the mass of daughter products only accounted for 19–55% of the total mass of chlorinated compounds in the effluent, suggesting that bio-enhanced dissolution factors were maximally 1.3–2.2. The enhanced dissolution most likely primarily resulted from variable DNAPL distribution rather than biodegradation. Specific dechlorination rates previously determined in a stirred liquid medium were used in a reactive transport model to identify the rate limiting factors. The model adequately simulated the overall TCE degradation when predicted resident microbial numbers approached observed values and indicated an enhancement factor for TCE dissolution of 1.01. The model shows that dechlorination of TCE in the 2D box was limited due to the short residence time and the self-inhibition of the TCE degradation. A parameter sensitivity analysis predicts that the bio-enhanced dissolution factor for this TCE source zone can only exceed a value of 2 if the TCE self-inhibition is drastically reduced (when a TCE tolerant dehalogenating community is present) or if the DNAPL is located in a low-permeable layer with a small Darcy velocity.  相似文献   

10.
Biodegradation of trichloroethene (TCE) near a Dense Non Aqueous Phase Liquid (DNAPL) can enhance the dissolution rate of the DNAPL by increasing the concentration gradient at the DNAPL-water interface. Two-dimensional flow-through sand boxes containing a TCE DNAPL and inoculated with a TCE dechlorinating consortium were set up to measure this bio-enhanced dissolution under anaerobic conditions. The total mass of TCE and daughter products in the effluent of the biotic boxes was 3-6 fold larger than in the effluent of the abiotic box. However, the mass of daughter products only accounted for 19-55% of the total mass of chlorinated compounds in the effluent, suggesting that bio-enhanced dissolution factors were maximally 1.3-2.2. The enhanced dissolution most likely primarily resulted from variable DNAPL distribution rather than biodegradation. Specific dechlorination rates previously determined in a stirred liquid medium were used in a reactive transport model to identify the rate limiting factors. The model adequately simulated the overall TCE degradation when predicted resident microbial numbers approached observed values and indicated an enhancement factor for TCE dissolution of 1.01. The model shows that dechlorination of TCE in the 2D box was limited due to the short residence time and the self-inhibition of the TCE degradation. A parameter sensitivity analysis predicts that the bio-enhanced dissolution factor for this TCE source zone can only exceed a value of 2 if the TCE self-inhibition is drastically reduced (when a TCE tolerant dehalogenating community is present) or if the DNAPL is located in a low-permeable layer with a small Darcy velocity.  相似文献   

11.
An earlier field experiment at Canadian Forces Base Borden by Brewster and Annan [Geophysics 59 (1994) 1211] clearly demonstrated the capability of ground penetrating radar (GPR) reflection profiling to detect and monitor the formation of DNAPL layers in the subsurface. Their experiment involved a large volume release (770 L) of tetrachloroethylene into a portion of the sand aquifer that was hydraulically isolated from groundwater flow by sheet pile walls. In this study, we evaluated the ability of GPR profiling to detect and monitor much smaller volume releases (50 L). No subsurface confining structure was used in this experiment; hence, the DNAPL impacted zone was subjected to the natural groundwater flow regime. This condition allowed us to geophysically monitor the DNAPL mass loss over a 66 month period. Reflectivity variations on the GPR profiles were used to infer the presence and evolution of the solvent layers. GPR imaging found significant reflectivity increases due to solvent layer formation during the two week period immediately after the release. These results demonstrated the capacity of GPR profiling for the detection and monitoring of lesser volume DNAPL releases that are more representative of small-scale industrial spills. The GPR imaged solvent layers subsequently reduced in both areal extent and reflectivity after 29 months and almost completely disappeared by the end of the 66 month monitoring period. Total DNAPL mass estimates based on GPR profiling data indicated that the solvent mass was reduced to 34%-36% of its maximum value after 29 months; only 4%-9% of the solvent mass remained in the study area after 66 months. These results are consistent with independent hydrogeological estimates of remaining DNAPL mass based on the downgradient monitoring of the dissolved solvent phase. Hence, we have concluded that the long-term GPR reflectivity changes of the DNAPL layers are likely the result from the dissolution of chlorinated solvents residing in those layers. The long-term monitoring results demonstrated that GPR profiling is a promising non-invasive method for use at DNAPL contaminated sites in sandy aquifers where temporal information about immiscible contaminant mass depletion due to either natural flow or remediation is needed. However, our results also indicated that the GPR signature of older DNAPL impacted zones may not differ greatly from the uncontaminated background if significant mass reduction due to dissolution has occurred.  相似文献   

12.
Nanoscale zero-valent iron (nZVI) has received considerable attention as a potential in situ remediation technology for treating chlorinated solvent source zones. Experimental and mathematical modeling studies were conducted to investigate the performance of nZVI in the transformation of tetrachloroethene (PCE) entrapped as a dense nonaqueous phase liquid (DNAPL). Injection of a 60 g/L suspension of nZVI into a column containing 20-30 mesh Ottawa sand and PCE-DNAPL at a residual saturation of 5.5% resulted in a uniform distribution of nZVI and minimal displacement of PCE. Subsequent flushing with 267 pore volumes of water containing 3mM CaCl(2) at a Darcy velocity of 0.75 m/day resulted in steady-state effluent concentrations of PCE near the solubility limit (ca. 200mg/L) and production of dissolved-phase ethene (10-30 mg/L). Over the duration of the experiment, approximately 30% of the initial PCE-DNAPL mass reacted to form ethene, 50% was eluted as dissolved-phase PCE, and 20% remained in the column as PCE-DNAPL. To further explore the implications of the nZVI column results, a multiphase transport model was developed that incorporated rate-limited PCE-DNAPL dissolution and reactions with nZVI. Using a fitted pseudo first-order transformation rate coefficient of 1.421/h, the model accurately captured observed trends in effluent concentrations of PCE and ethene and overall mass balance. A model sensitivity study reveals a strong dependence of treatment effectiveness on system characteristics. The sensitivity analysis suggests that an increase in the extent of PCE transformation is facilitated by decreasing flow rate, emplacement of nZVI down-gradient of the DNAPL source zone, and decreasing length of the DNAPL source zone. These findings indicate that, although emplacement of high concentrations of nZVI within a PCE-DNAPL source zone can result in substantial transformation of the parent compound, careful attention to design parameters (e.g. flow rate, location and amount nZVI delivered) will be required to achieve complete conversion to benign reaction products.  相似文献   

13.
A 91-m transect was set up in an irrigated field near Las Cruces, New Mexico to obtain soil water tension and water content data to investigate their spatial variability. A total of 455 sampling points were monitored along a grid consisting of 91 stations placed 1 m apart by 5 depths per station (at 0.3, 0.6, 0.9, 1.2 and 1.5 m below the surface). Post-irrigation tension and wetness measurements were recorded over 45 days at 11 time periods. Soil water tension was measured with tensiometers using a hand-held pressure transducer. A neutron probe was used to obtain volumetric water content. Using the observed wetness and tension data, unsaturated hydraulic conductivity values were derived (using a cubic spline function to estimate the gradient), and an exponential model was used to fit the calculated conductivity-tension curves to obtain hydraulic conductivity parameter values. The spatial and temporal variability of wetness, tension, saturated hydraulic conductivity and pore-size distribution parameters, and texture at the 0.3-m depth were examined using geostatistical techniques.The exponential model was found to inadequately describe the hydraulic conductivity/tension relationship for the full range of tension, particularly in the tension range near saturation. The derived values of the saturated hydraulic conductivity parameter were much greater than expected and do not correspond to reasonable saturated hydraulic conductivity values.All of the soil parameters studied exhibited large spatial variability horizontally and vertically in the field. Ranges of dependence determined from semivariogram analysis over the 44-day drainage period are 3–32 m for wetness, 6–34 m for soil water tension, 5–35 m for natural log of saturated hydraulic conductivity parameters, 5–11 m for pore-size distribution parameter, and 8–24 m for percent sand, silt and clay at the 0.3 m depth. An alternate hole-effect model is suggested to describe the texture semivariograms.It was determined that the variance of volumetric water content generally increased at each depth over the measured time periods, which is consistent with certain past field studies and a stochastic analysis of unsaturated flow in heterogeneous soils. Future research is recommended relating soil texture to soil hydrologic parameters with the goal of predicting soil behavior with less extensive sampling schemes.  相似文献   

14.
The effectiveness of removal of nonaqueous phase liquids (NAPLs) from the entrapment source zone of the subsurface has been limited by soil heterogeneity and the inability to locate all entrapped sources. The goal of this study was to demonstrate the uncertainty of degree of source removal associated with aquifer heterogeneity. In this demonstration, source zone NAPL removal using surfactant-enhanced dissolution was considered. Model components that simulate the processes of natural dissolution in aqueous phase and surfactant-enhanced dissolution were incorporated into an existing code of contaminant transport. The dissolution modules of the simulator used previously developed Gilland-Sherwood type phenomenological models of NAPL dissolution to estimate mass transfer coefficients that are upscaleable to multidimensional flow conditions found at field sites. The model was used to simulate the mass removal from 10 NAPL entrapment zone configurations based on previously conducted two-dimensional tank experiments. These entrapment zones represent the NAPL distribution in spatially correlated random fields of aquifer hydraulic conductivity. The numerical simulations representing two-dimensional conditions show that effectiveness of mass removal depends on the aquifer heterogeneity that controls the NAPL entrapment and delivery of the surfactant to the locations of entrapped NAPLs. Flow bypassing resulting from heterogeneity and the reduction of relative permeability due to NAPL entrapment reduces the delivery efficiency of the surfactant, thus prolonging the remediation time to achieve desired end-point NAPL saturations and downstream dissolved concentrations. In some extreme cases, the injected surfactant completely bypassed the NAPL source zones. It was also found that mass depletion rates for different NAPL source configurations vary significantly. The study shows that heterogeneity result in uncertainties in the mass removal and achievable end-points that are directly related to dissolved contaminant plume development downstream of the NAPL entrapment zone.  相似文献   

15.
Soil structure critically affects the hydrological behaviour of soils. In this paper, we examined the impact of areal heterogeneity of hydraulic properties of a structured soil on soil ensemble behaviour for various soil water flow processes with different top boundary conditions (redistribution and drainage plus evaporation and infiltration). Using a numerical solution of the Richards' equation in a stochastic framework, the ensemble characteristics and flow dynamics were studied for drying and wetting processes observed during a time interval of ten days when a series of relatively intense rainfall events occurred. The effects of using unimodal and bimodal interpretative models of hydraulic properties on the ensemble hydrological behaviour of the soil were illustrated by comparing predictions to mean water contents measured over time in several sites at field scale. Although the differences between unimodal and bimodal fitting are not significant in terms of goodness of fit, the differences in process predictions are considerable with the bimodal soil simulating water content measurements much better than unimodal soil. We also investigated the relative contribution of the soil variability of each parameter on the variance of the water contents obtained as the main output of the stochastic simulations. The variability of the structural parameter, weighting the two pore space fractions in the bimodal interpretative model, has the largest contribution to water content variance. The contribution of each parameter depends only partly on the coefficient of variation, much more on the sensitivity of the model to the parameters and on the flow process being observed. We observed that the contribution of the retention parameters to uncertainty increases during drainage processes; the opposite occurs with the hydraulic conductivity parameters.  相似文献   

16.
A vertically-integrated analytical model for dissolved phase transport is described that considers a time-dependent DNAPL source based on the upscaled dissolution kinetics model of Parker and Park with extensions to consider time-dependent source zone biodecay, partial source mass reduction, and remediation-enhanced source dissolution kinetics. The model also considers spatial variability in aqueous plume decay, which is treated as the sum of aqueous biodecay and volatilization due to diffusive transport and barometric pumping through the unsaturated zone. The model is implemented in Excel/VBA coupled with (1) an inverse solution that utilizes prior information on model parameters and their uncertainty to condition the solution, and (2) an error analysis module that computes parameter covariances and total prediction uncertainty due to regression error and parameter uncertainty. A hypothetical case study is presented to evaluate the feasibility of calibrating the model from limited noisy field data. The results indicate that prediction uncertainty increases significantly over time following calibration, primarily due to propagation of parameter uncertainty. However, differences between the predicted performance of source zone partial mass reduction and the known true performance were reasonably small. Furthermore, a clear difference is observed between the predicted performance for the remedial action scenario versus that for a no-action scenario, which is consistent with the true system behavior. The results suggest that the model formulation can be effectively utilized to assess monitored natural attenuation and source remediation options if careful attention is given to model calibration and prediction uncertainty issues.  相似文献   

17.
The migration of Dense, Non-Aqueous Phase Liquid (DNAPL) and dissolved phase contamination through a fractured heterogeneous porous medium has been investigated through the use of a multiphase compositional model. The sensitivity of the timescales of migration and the distribution of contaminant in the subsurface to the mean permeability, the variance of the permeability, and the degree of fracturing of the domain were examined. It was found that increasing the mean permeability of the domain allowed the DNAPL to penetrate deeper into the subsurface, while decreasing the mean permeability caused the DNAPL to pool at shallower depths. The presence of fractures within the system was found to control the infiltration only in the most fractured domain. Moment analysis of the nonwetting phase showed that large-scale movement had ceased after approximately 9 years (maximum duration of the source-on condition was approximately 4.5 years). This tended to be due to a redistribution of the DNAPL towards a residual configuration, as was evidenced by the gradual trending of average nonwetting phase saturations within the domain to a static value. The dissolved phase plume was found to migrate at essentially the same rate as the nonwetting phase, due to the reduced relative permeability of lenses containing DNAPL, and due to diffusive losses of mass to the matrix of fractured clay and silty-clay lenses. Some exceptions to this were found when the DNAPL could not overcome the displacement pressure of a lens, and could not by-pass the lens due to the lack of available driving force after the source had been shut off.  相似文献   

18.
Aquifer heterogeneity (structure) and NAPL distribution (architecture) are described based on tracer data. An inverse modelling approach that estimates the hydraulic structure and NAPL architecture based on a Lagrangian stochastic model where the hydraulic structure is described by one or more populations of lognormally distributed travel times and the NAPL architecture is selected from eight possible assumed distributions. Optimization of the model parameters for each tested realization is based on the minimization of the sum of the square residuals between the log of measured tracer data and model predictions for the same temporal observation. For a given NAPL architecture the error is reduced with each added population. Model selection was based on a fitness which penalized models for increasing complexity. The technique is demonstrated under a range of hydrologic and contaminant settings using data from three small field-scale tracer tests: the first implementation at an LNAPL site using a line-drive flow pattern, the second at a DNAPL site with an inverted five-spot flow pattern, and the third at the same DNAPL site using a vertical circulation flow pattern. The Lagrangian model was capable of accurately duplicating experimentally derived tracer breakthrough curves, with a correlation coefficient of 0.97 or better. Furthermore, the model estimate of the NAPL volume is similar to the estimates based on moment analysis of field data.  相似文献   

19.
Aquifer heterogeneity (structure) and NAPL distribution (architecture) are described based on tracer data. An inverse modelling approach that estimates the hydraulic structure and NAPL architecture based on a Lagrangian stochastic model where the hydraulic structure is described by one or more populations of lognormally distributed travel times and the NAPL architecture is selected from eight possible assumed distributions. Optimization of the model parameters for each tested realization is based on the minimization of the sum of the square residuals between the log of measured tracer data and model predictions for the same temporal observation. For a given NAPL architecture the error is reduced with each added population. Model selection was based on a fitness which penalized models for increasing complexity. The technique is demonstrated under a range of hydrologic and contaminant settings using data from three small field-scale tracer tests: the first implementation at an LNAPL site using a line-drive flow pattern, the second at a DNAPL site with an inverted five-spot flow pattern, and the third at the same DNAPL site using a vertical circulation flow pattern. The Lagrangian model was capable of accurately duplicating experimentally derived tracer breakthrough curves, with a correlation coefficient of 0.97 or better. Furthermore, the model estimate of the NAPL volume is similar to the estimates based on moment analysis of field data.  相似文献   

20.
The destruction of a carbon tetrachloride DNAPL and a chloroform DNAPL was investigated in reactions containing 0.5 mL of DNAPL and a solution of modified Fenton's reagent (2M H2O2 and 5mM iron(III)-chelate). Carbon tetrachloride and chloroform masses were followed in the DNAPLs, the aqueous phases, and the off gasses. In addition, the rate of DNAPL destruction was compared to the rate of gas-purge dissolution. Carbon tetrachloride DNAPLs were rapidly destroyed by modified Fenton's reagent at 6.5 times the rate of gas purge dissolution, with 74% of the DNAPL destroyed within 24h. Use of reactions in which a single reactive oxygen species (hydroxyl radical, hydroperoxide anion, or superoxide radical anion) was generated showed that superoxide is the reactive species in modified Fenton's reagent responsible for carbon tetrachloride DNAPL destruction. Chloroform DNAPLs were also destroyed by modified Fenton's reagent, but at a rate slower than the rate of gas purge dissolution. Reactions generating a single reactive oxygen species demonstrated that chloroform destruction was the result of both superoxide and hydroxyl radical activity. Such a mechanism of chloroform DNAPL destruction is in agreement with the slow but relatively equal reactivity of chloroform with both superoxide and hydroxyl radical. The results of this research demonstrate that modified Fenton's reagent can rapidly and effectively destroy DNAPLs of contaminants characterized by minimal reactivity with hydroxyl radical, and should receive more consideration as a DNAPL cleanup technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号