首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
利用臭氧曝气沸石生物滤池处理硝基苯废水,了解了该方法对废水中的硝基苯、氮和磷的去除效果,考察了水力停留时间的变化对污染物去除效果的影响。臭氧曝气沸石生物滤池与空气曝气沸石生物滤池相比,臭氧曝气生物滤池对硝基苯、COD、氨氮的去除效果优于空气曝气沸石生物滤池,对总磷的去除效果与空气曝气沸石生物滤池差别不大。当臭氧曝气沸石生物滤池的HRT=4 h、臭氧浓度为126 mg/L时,对初始浓度为100 mg/L的硝基苯污水去除率接近99%。在相同条件下,空气曝气沸石生物滤池对硝基苯的去除率仅为59%。在HRT=4 h、臭氧浓度为126 mg/L时,臭氧曝气沸石生物滤池与空气曝气沸石生物滤池对COD的去除率为94%和83%,对NH4+-N的去除率为64%和59%,对TP的去除率为42%和45%。  相似文献   

2.
采用超声波(US)/臭氧(O3)组合工艺降解乐果农药废水,考察了pH值、O3流量、反应时间、COD浓度对处理效果的影响。结果表明,采用变频、低功率(40 W)的US设备与O3组合使用,其处理效果比单独US和O3的处理效果好,二者具有明显的协同作用;通过模拟乐果农药废水确定实验参数,考察组合工艺对实际废水的处理效果,优化工艺参数并得出最佳的实验条件:处理水量为5 L、pH3、O3流量5.20 mg/L、反应时间150 min、废水初始COD浓度4 000 mg/L,COD去除率为29.06%,B/C比由0.20提高至0.35。这表明:在较低能耗和较短时间内,该组合工艺对农药废水具有良好的预处理效果,利于后续好氧生化处理。  相似文献   

3.
臭氧催化氧化-BAF组合工艺深度处理抗生素制药废水   总被引:1,自引:0,他引:1  
针对抗生素制药废水组分复杂、毒性强、难生物降解的特点,以Ce负载天然沸石作为催化剂(Ce/NZ),采用臭氧催化氧化-曝气生物滤池(BAF)组合工艺对抗生素制药废水二级生化处理出水进行深度处理。结果表明,Ce/NZ催化剂可显著改善臭氧预处理单元的处理效率,在臭氧进气浓度为50 mg·L−1、臭氧进气量为600 mL·min−1、催化剂用量为1 g·L−1、臭氧反应时间为120 min的条件下,臭氧催化氧化预处理对抗生素制药废水的COD去除率达到43%,平均COD由220 mg·L−1降至125 mg·L−1,BOD5/COD由0.12升至0.28,废水的可生化性得到显著提高。臭氧预处理单元出水采用BAF进行生化处理,在进水平均COD为125 mg·L−1、平均NH4+-N为12 mg·L−1、水力停留时间为4 h、气水比为4∶1的条件下,COD和NH4+-N的平均去除率分别为62%和64%。组合工艺处理后出水平均COD和NH4+-N分别为46 mg·L−1和4.1 mg·L−1,出水水质可以稳定达到《发酵类制药工业水污染物排放标准》(GB 21903-2008)。相较于单独BAF工艺,组合工艺出水COD和NH4+-N平均去除率分别提高了66%和15%,出水水质明显优于单独BAF工艺出水。  相似文献   

4.
以某化工厂的硝基苯生产废水为研究对象,在小试确定试验条件的基础上,采用双氧水强化微电解法对废水进行处理,探讨双氧水强化微电解法对废水处理的原理及处理工艺条件.实验结果表明:双氧水强化微电解法处理难降解有机废水,效果好,可以提高废水的生化性,为废水的后续处理提供了有利条件,是难生化有机废水处理的有效方法之一.  相似文献   

5.
臭氧处理高浓度有机废水   总被引:12,自引:0,他引:12  
结合目前高浓度有机废水处理中,使用生化处理工艺的污水处理系统时常遇到的高负荷冲击,从而使出水水质不稳定的问题,采用臭氧氧化的方法,并在不同的pH、臭氧投加量、初始浓度等状态下,通过试验研究某些特定废水的氧化降解过程,探讨其氧化机理,以利于今后的实验应用。  相似文献   

6.
湖北西北部某工业园已建成污水处理厂(反应沉淀/水解酸化/MBR工艺)以处理合成制药废水为主,由于其预处理段处理效果难以满足后续MBR工艺要求,导致出水水质不能达到国家相关标准,急需升级改造。针对该合成制药废水污染物成分复杂、污染当量大、冲击负荷高、可生物降解性差以及水量水质变化大等特点,采用铁碳微电解/水解酸化两级预处理工艺对该制药废水进行强化预处理,并建立两级预处理/MBR工艺进行小试实验,实验结果表明,铁碳投加量为400 g·L-1,铁碳质量比为4:5,HRT=3 h,pH=4,曝气量为3 L·min-1时,一级预处理效果较好,铁碳微电解对COD去除率达47.50%,废水可生化性由0.23提升到0.38;二级预处理水解酸化将废水可生化性由0.38提升至0.46,促使MBR工艺运行效果大幅提升,最终出水达到《化学合成类制药工业水污染排放标准》(GB 21904-2008)。  相似文献   

7.
以铁板为阴极,石墨为阳极,吸附饱和的活性炭粒子为填充材料,研究了复极性三维电极法处理硝基苯废水时各因素对处理效率的影响。通过单因素实验确定了复极性三维电极法处理硝基苯废水的最佳操作条件为:电解电压20V,反应时间60min,活性炭填充量25g/L,电极板间距4cm,废水初始pH值6~7,电解质的投加量0.8g/L。此条件下废水的硝基苯去除率达到80%以上,COD去除率达到50%以上,显示出良好的处理效果。  相似文献   

8.
微波强化微电解技术处理硝基苯废水   总被引:1,自引:0,他引:1  
研究了微波强化微电解组合工艺处理硝基苯废水。研究结果表明,在Fe/C比为3,进水pH=3,微波功率640W,微波辐射时间4 min和曝气量为2.5 L/min的最佳条件下,废水COD、色度和浊度去除率分别达到94.7%、95.6%和90.3%。同时,与单一微波辐射和单一微电解相比,该方法处理效果明显优于这二种方法。实验还采用GC-MS分析方法研究了单一微电解及微波强化微电解法处理硝基苯废水的中间降解产物和降解机理。  相似文献   

9.
生化-臭氧-曝气生物滤池组合工艺处理制药园区综合废水   总被引:2,自引:0,他引:2  
针对某制药工业园区综合废水污染物成分复杂、难降解、毒性大、色度深等特点,提出了水解酸化/好氧-臭氧-曝气生物滤池(H/O-O3-BAF)的工艺流程。通过现场实验研究对处理流程以及各个处理单元的运行参数进行了优化。系统稳定运行期间,处理出水化学需氧量(COD)小于50mg/L,色度小于4倍,出水水质达到《城镇污水处理厂污染物排放标准》(GB18918—2002)中一级A标准。发光菌毒性的测试表明,该工艺流程可有效削减废水中的生物毒性。  相似文献   

10.
臭氧氧化法处理印染废水   总被引:1,自引:0,他引:1  
印染废水是引起水质污染的重要方面,因此印染废水处理是一个值得重视的问题。我们采用的臭氧氧化法处理印染废水取得了令人满意的结果,处理后脱色率可达99%以上,COD去除率近90%,废水脱色迅速,处理费用较低,因此是一种处理印染废水较理想的方法。一、实验用主要仪器与步骤仪器:XFZ-5(A)型臭氧发生器,WM-5型空气压缩机,立式废水反应器。步骤:取废水1000ml,将pH值调至6~7,置于废水反应器,通入臭氧,气体流量控制在0.2m~3/h(此时臭氧浓度约22mg/l,臭氧产量约4.8g/h),工作压为0.5kg/cm~2,至废水脱色呈无色,然后对废水进行分析。  相似文献   

11.
采用厌氧折流板反应器(ABR)中温处理含硝基苯废水,研究了工艺条件和硝基苯的降解特点.试验结果表明:在进水COD浓度为2088 mg/L,硝基苯浓度为16.8 mg/L,反应温度为35℃,停留时间为24 h条件下,ABR能有效处理硝基苯废水,COD去除率为86.4%,硝基苯去除率为91.1%;在厌氧条件下,硝基苯降解为苯胺,但苯胺很难再进一步分解;硝基苯的去除历程推断为先吸附后分解.  相似文献   

12.
厌氧折流板反应器处理硝基苯废水的研究   总被引:4,自引:0,他引:4  
采用厌氧折流板反应器(ASR)中温处理含硝基苯废水,研究了工艺条件和硝基苯的降解特点.试验结果表明:在进水COD浓度为2088mg/L,硝基苯浓度为16.8mg/L,反应温度为35℃,停留时间为24h条件下,ABR能有效处理硝基苯废水,COD去除率为86.4%,硝基苯去除率为91.1%;在厌氧条件下,硝基苯降解为苯胺,但苯胺很难再进一步分解;硝基苯的去除历程推断为先吸附后分解。  相似文献   

13.
超声、臭氧处理石化污水厂剩余活性污泥研究   总被引:3,自引:0,他引:3  
采用超声波和臭氧处理石化污水处理厂的剩余活性污泥,促进其脱水和破解。实验结果表明,小功率超声对污泥脱水效果较好,最佳超声条件为:输出电压70 V,超声时间2 min;污泥抽滤后的含水率在试验范围内随臭氧量的增加而降低,最佳臭氧剂量为0.05 g O3/g SS。经超声处理过的臭氧化污泥要比没经超声处理过的含水率低约1%。在传统的絮凝方法下,加上超声和臭氧可以使污泥含水率再降低2%以上,减少絮凝剂用量近40%;臭氧和超声联合比单独臭氧对污泥破解效果更显著,污泥可减量约25%。臭氧投量较少时,超声破解效果更明显。  相似文献   

14.
电-Fenton法处理制药中间体废水的研究   总被引:6,自引:3,他引:3  
采用电-Fenton法对麻醉药瑞芬太尼合成过程中的中间体1-苄基-4-氨甲酰基-4-苯胺基哌啶(简称酰胺,AMIDE)模拟废水进行了降解研究,结果表明,在以石墨为阴极、铁为阳极的模式下,当pH为3、电解电压为3 V、投加H_2O_2浓度为10 mmol/L时,室温下电解浓度为20 mg/L的酰胺废水60 min后,酰胺的去除率高于99%,TOC去除60%。通过紫外光谱(UV)、红外光谱(IR)及HPLC检测酰胺的降解产物,说明电-Fenton法能使废水中目标化合物的环结构破坏,快速而完全地转化为小分子,但不能使其全部矿化。本研究可为电-Fenton法在处理该类药物合成废水中的实际应用提供重要的理论依据。  相似文献   

15.
以钛酸丁酯为钛源,掺杂铜(CuCl2)制备交联剂.制得柱状Ti/Cu交联累托石,结合其吸附特性并通过其在光催化氧化条件下处理含硝基苯有机废水.在pH=9,交联累托石用量为30 g/L,一根20 W紫外灯光辐照2 h的处理条件下,硝基苯由73.81 mg/L降至3.17 mg/L,去除率达到95.71%,优于GB-8978-1996三级标准,用其处理含硝基苯工业废水,COD去除率为83.73%,由4800 mg/L降至530.4 mg/L,硝基苯去除率达92.3l%,由10.32 mg/L降至0.79 mg/L,小于GB-8978-1996-级标准.  相似文献   

16.
水解酸化/好氧生化/Fenton氧化工艺处理制药废水的研究   总被引:3,自引:0,他引:3  
进行了"水解酸化/好氧生化/Fenton氧化"工艺处理制药废水的试验研究,研究表明,该工艺的处理效果显著.水温为45~55℃时,经过16~20 h的水力停留时间,水解酸化可将废水的B/C比提高至0.30~0.35;好氧生化选用AB法,2~3 h曝气后的A段COD去除率可达到65%以上,7~9 h曝气后的B段COD去除率可达到40%以上;经过5~6 h的Fenton反应后,出水水质指标符合一级排放标准的要求.  相似文献   

17.
小麦秸秆生物碳质吸附剂对硝基苯的吸附性能   总被引:5,自引:3,他引:5  
在炭化温度为300℃下,用小麦秸秆制备生物碳质吸附剂,研究生物碳质吸附剂对硝基苯废水的吸附性能.考察了pH值、温度、吸附时间和吸附剂投加量对吸附效果的影响,分析了吸附剂在水中对硝基苯的吸附机理.结果表明,在pH值为7,温度为25℃,吸附时间为8h,吸附剂投加量为3 g/L条件下,生物碳质吸附剂对硝基苯的去除率达到90%.等温吸附曲线符合Freundlich方程,最大吸附量约为92.37 mg/g.定量描述了分配作用与表面吸附对生物碳质总的吸附作用的贡献,炭化后的小麦秸秆非极性增强,使硝基苯与其的极性更为匹配,引起分配作用增大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号