首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Sediment contamination and three bioassays were used to determine the sediment quality four years after an oil spill (Prestige, 2002): the Microtox test, a 10-day bioassay using the amphipod Ampelisca brevicornis, and a polychaete 10-day toxicity test with the lugworm Arenicola marina. In addition, bioaccumulation of PAHs was examined in the polychaete after 10 days of exposure. The results obtained from the toxicity tests and bioaccumulation analyses were statistically compared to the sediment chemical data, in order to assess the bioavailability of the contaminants, their effects, and their relationship with the oil spill. The sediments studied were from two areas of the Galician Coast (NW Spain): the Bay of Corme-Laxe and the Cíes Island, located in the Atlantic Island National Park. The results point to a decrease in contamination with respect to previous studies and to the disappearance of the acute toxicity four years after the oil spill. However an important bioaccumulation of PAHs was detected in the organisms exposed to sediments from Corme-Laxe, suggesting that despite the recovery of the environmental quality of the area, effects in the biota might be occurring.  相似文献   

2.
Short-term whole sediment tests using the amphipod Corophium volutator and the polychaete Arenicola marina are now routinely used in Europe to assess the acute toxicity of marine sediments. However, there is still a need to develop longer-term assays which measure effects on sublethal endpoints that are more relevant to predicting impacts at the population level. The effect of increasing exposure times and measuring additional endpoints such as growth, on the sensitivity of these assays was investigated. The test compound used was the chemotherapeutant Ivermectin (IVM), used in aquaculture to treat sea lice infestations. IVM was found to be acutely toxic to both test organisms. Extending the lugworm test to 100 days increased sensitivity of survival by a factor of three; a significant reduction in casting rate was observed at concentrations an order of magnitude lower. This assay shows potential for detecting the sublethal effects of low concentrations of sediment contaminants. Increasing the exposure time did not seem to affect the sensitivity of the amphipod, but further method development is required.  相似文献   

3.
Methods of conducting a chronic sediment toxicity test with the estuarine amphipod Corophium volutator are described. They consist of a 49-day exposure, after which mortality, growth and reproduction are determined. Pilot experiments were used to optimize test design parameters such as temperature, duration, feeding and refreshing regimes, and effects of indigenous organisms. By way of further validation, the present study focused on the effects of four different parameters: oxygen saturation, salinity, ammonium and nitrite. These confounding factors might play an important role especially if the test is used for risk assessment of field-contaminated sediments. It is concluded that the present experimental design is well suited for chronic sediment exposures with C. volutator. The test can be performed at a broad range of salinity values, provided that controls are performed at the same salinity. Results further demonstrate that with the endpoints growth and reproduction this chronic test procedure is a factor 7-18 more sensitive to ammonium and nitrate than the standardized acute bioassay (endpoint mortality).  相似文献   

4.
Peters C  Ahlf W 《Chemosphere》2005,59(4):525-536
The acute whole sediment bioassay with the estuarine and marine amphipod Corophium volutator (Pallas) is broadly used within Europe. Hitherto, the test is carried out with field-collected animals. In order to provide a more standardized and continuously available test organism reproduction and growth experiments were performed for a period of one year in laboratory under simulated summer conditions (light/dark 16:8 at 15, 19, and 23 degrees C). C. volutator was the first time reproduced successfully in laboratory for several generations and independent from its natural life cycle also in winter. The females produced two to three broods with a mean number of 96 offspring. A mean growth rate of 0.07 mm per day was determined at 15 degrees C. The reproduction and growth experiments provide consequently the essential base for the development of a chronic toxicity test with C. volutator.  相似文献   

5.
Two marine invertebrates, the crab Carcinus maenas and the clam Ruditapes philippinarum, were used as bioindicator species to assess contamination when exposed in situ to sediment from different sites from four Spanish ports Cadiz (SW Spain), Huelva (SW Spain), Bilbao (NE Spain) and Pasajes (NE Spain). In an attempt to determine sediments toxicity, a combination of exposure biomarkers was analyzed in both species: metallothionein-like-proteins (MTLPs), ethoxyresorufin O-deethylase (EROD), glutathione S-transferase activity (GST), glutathione peroxidase (GPX) and glutathione reductase (GR). In parallel, physical and chemical characterization of the different sediments was performed and biological responses related to the contaminants. Significant induction of MTLPs was observed when organisms were exposed to metal contaminated sediments (port of Huelva), and EROD and GPX activities after exposure to sediments containing organic compounds (port of Bilbao and Pasajes). No significant interspecies differences were observed in biomarker responses except for the GST and GR.  相似文献   

6.
A suite of tests was conducted to evaluate and identify the cause or causes of toxicity in Passaic River sediments. Sediment toxicity was measured with three types of bioassays: a whole sediment bioassay with the marine amphipod, Ampelisca abdita, and interstitial water bioassays with A. abdita and the bioluminescent bacterium Vibrio fisheri (Microtox((R))). In addition, a Phase I Toxicity Identification Evaluation (TIE) was conducted to elucidate the cause of observed toxicity. Analytical concentrations of selected residues in whole sediment and interstitial water from the five sampling stations were considered in conjunction with the conclusions drawn from the toxicity tests and Phase I TIE results. Finally, a toxic units approach was used to evaluate the predicted toxicity of measured interstitial water residue concentrations. There was a lack of toxic response in the short-term interstitial water bioassays, indicating that oxidants, soluble forms of metals, and dissolved phase neutral organics were not likely toxicants. However, there was significant toxicity indicated by the whole sediment A. abidita bioassays. After 10 days, there was complete or near complete mortality in amphipods exposed to all of the sediment samples tested. Removal of interstitial water toxicity by filtration was common to all four stations that exhibited measurable initial toxicity. The observed toxicity characteristics are consistent with particle associated neutral organics. This conclusion is supported by toxicity removal via filtration, lack of toxicity in the Microtox((R)) assays, and the fact that whole sediments were more toxic than was interstitial water.  相似文献   

7.
Wang F  Goulet RR  Chapman PM 《Chemosphere》2004,57(11):1713-1724
The freshwater amphipod, Hyalella azteca, is widely used in laboratory sediment toxicity and bioaccumulation tests. However, its responses in the laboratory are probably very different from those in the field. A review of the literature indicates that in its natural habitat this species complex is primarily epibenthic, derives little nutrition from the sediments, and responds primarily to contaminants in the overlying water column (including water and food), not sediment or porewater. In laboratory sediment toxicity tests H. azteca is deprived of natural food sources such as algal communities on or above the sediments, and is subjected to constant light without any cover except that afforded by burial into the sediments. Under these constraining laboratory conditions, H. azteca has been reported to respond to sediment or porewater contamination. In nature, contamination of overlying water from sediment is less likely than in the laboratory because of the large, generally non-static sink of natural surface water. H. azteca does not appear to be the most appropriate test species for direct assessments of the bioavailability and toxicity of sediment contaminants, though it is probably appropriate for testing the toxicity of surface waters. Toxic and non-toxic responses will be highly conservative, though the latter are probably the most persuasive given the exposure constraints. Thus H. azteca is probably a suitable surrogate species for determining sediments that are likely not toxic to field populations; however, it is not suitable for determining sediments that are likely toxic to field populations.  相似文献   

8.
9.
Impacts of chemical contaminants associated with dumping of dredged urban river sediments at a coastal disposal area in Saronikos Gulf (Eastern Mediterranean) were investigated through a combined approach of sediment toxicity testing and active biomonitoring with caged mussels. Chemical analyses of aliphatic hydrocarbons (AHs), polycyclic aromatic hydrocarbons (PAHs), Cu, and Zn in combination with the solid phase Microtox® test were performed on sediments. Concentrations of PAHs, AHs, Cu, and Zn as well as multiple biomarkers of contaminant exposure and/or effects were measured in caged mussels. Sediments in the disposal and neighboring area showed elevated PAHs and AHs concentrations and were characterized as toxic by the solid-phase Microtox® test during and after dumping operations. Biomarker results in the caged mussels indicated sublethal effects mainly during dumping operations, concomitantly with high concentrations of PAHs and AHs in the caged mussel tissues. Cu and Zn concentrations in sediments and caged mussels were generally not elevated except for sediments at the site in the disposal area that received the major amount of dredges. High PAHs and AHs levels as well as sublethal effects in the caged mussels were not persistent after termination of operations. The combined bioassay–biomarker approach proved useful for detecting toxicological impacts of dredged river sediment disposal in sediments and the water column. Nevertheless, further research is needed to evaluate whether sediment toxicity will have long-term effects on benthic communities of the disposal area.  相似文献   

10.
The solubility as a function of pH for metals in a reduced dredged sediment, subjected to different redox conditions, was studied in a laboratory experiment. The redox conditions imposed simulated (i) the undisturbed sediment (flooded), (ii) a dredged material stored in a confined pond (aerated once and then flooded), (iii) an upland stored dredged material (drained and dried), and (iv) an upland stored sediment subjected to tillage (drained, dried and mixed). Minor differences in the solubility as a function of pH were observed between the treatments after two weeks. After three months, the solubility of Cd, Cu, Pb and Zn increased strongly in the oxidized sediments. Leachability of Fe decreased, while Mn, Ni and Co were mostly unaffected. Both short- and long-term mobility of metals (except Fe) is expected to be lowest when a reduced sediment remains in reduced conditions. Studying the solubility as a function of pH may provide additional information on the chemical association of metals in sediments.  相似文献   

11.
Passive samplers are used to measure dissolved nonionic organic contaminants (NOCs) in environmental media. More recently, reverse polyethylene samplers (RePES) have been used with spiked sediments to recreate interstitial water exposure concentrations and observed toxicity. In the present study, RePES were used with field contaminated sediments. The RePES was not capable of recreating the pattern of toxicity with the amphipod and mysid observed with intact field sediments. Decreased survival in the RePES exposures as compared to the whole sediment exposures was most likely caused by an overexposure to NOCs due to a lack of surrogate black carbon in the RePES system. As an alternative, aqueous phase studies were performed in which polyethylene was allowed to equilibrate with slurries of intact sediments for 3 weeks. Three weeks was found to be an insufficient amount of time for the polyethylene to equilibrate with the sediment. An additional study demonstrated 3 months was sufficient for lower contaminant concentrations, but might not be an adequate amount of time for more highly contaminated sediments. The aqueous phase transfer approach may be useful if equilibration is sufficiently long, although this length of time may be impractical for use in certain applications, such as toxicity identification evaluations (TIEs).  相似文献   

12.
The Salinas River is the largest of the three rivers that drain into the Monterey Bay National Marine Sanctuary in central California. Large areas of this watershed are cultivated year-round in row crops and previous laboratory studies have demonstrated that acute toxicity of agricultural drainwater to Ceriodaphnia dubia is caused by the organophosphate (OP) pesticides chlorpyrifos and diazinon. In the current study, we used a combination of ecotoxicologic tools to investigate incidence of chemical contamination and toxicity in waters and sediments in the river downstream of a previously uncharacterized agricultural drainage creek system. Water column toxicity was investigated using a cladoceran C. dubia while sediment toxicity was investigated using an amphipod Hyalella azteca. Ecological impacts of drainwater were investigated using bioassessments of macroinvertebrate community structure. The results indicated that Salinas River water downstream of the agricultural drain is acutely toxic to Ceriodaphnia, and toxicity to this species was highly correlated with combined toxic units (TUs) of chlorpyrifos and diazinon. Laboratory tests were used to demonstrate that sediments in this system were acutely toxic to H. azteca, which is a resident genus. Macroinvertebrate community structure was moderately impacted downstream of the agricultural drain input. While the lowest macroinvertebrate abundances were measured at the station demonstrating the greatest water column and sediment toxicity and the highest concentrations of pesticides, macroinvertebrate metrics were more significantly correlated with bank vegetation cover than any other variable. Results of this study suggest that pesticide pollution is the likely cause of laboratory-measured toxicity in the Salinas River samples and that this factor may interact with other factors to impact the macroinvertebrate community in the system.  相似文献   

13.
Water and sediment samples were collected in the lower Paraná delta at four sites with different levels of exposure to pollution to evaluate the anthropogenic impact through chemical analyses and mortality bioassays. Individual polychlorinated biphenyls, chlorinated pesticides, aliphatic hydrocarbons, polycyclic aromatic hydrocarbons, and heavy metals were measured in waters, porewaters and sediments. The same three phases were also subjected to toxicity assays with straight-hinged juveniles of Corbicula fluminea. Concentrations of several pollutants were above levels recommended for the protection of aquatic life: in waters, Zn, Cu and Cr were 1.6-4.9 times higher, whereas in the sediments Cr was 1.8-3.6, and benzo(a)pyrene was 2.8-5.6 times higher. Pollutant concentrations followed a clear geographic pattern with highest values in the densely populated area of the Reconquista and Luján rivers, lower levels in the San Antonio, and lowest loadings in the remote Paraná de las Palmas. This gradient was adequately matched by the pattern of mortality rates of C. fluminea early juveniles, which were highest in the Reconquista-Luján (40-93%) and lowest (and not significantly different from the control) in the Paraná (3.3-23%). Mortality rates also increased from surface waters (3.3-53%), to porewaters (12-73%), to sediments (23-93%). Although toxicity was probably mainly due to dissolved contaminants, agreement between chemical and biological evidence of pollution was best for the sediment compartment, whereas porewater and surface water showed a higher degree of variability.  相似文献   

14.
Guidance concerning recommended storage times for sediments to be used in toxicity tests generally has not been based upon systematically collected experimental data. The objective of this study was to better define the effects of storage time on toxicity of a series of freshwater sediments. Sixteen sediments with varying types of contaminants were collected, homogenized and stored at 4 degrees C in 1 liter aliquots, which were periodically tested for toxicity to the amphipod Hyalella azteca and the midge Chironomus tentans after storage times of up to 101 weeks. The sediments ranged from non-toxic to extremely toxic (100% mortality) in 10-day assays, with several of the samples displaying an intermediate degree of toxicity (e.g. partial mortality, reduced growth). Biological responses in most of the samples did not vary with time relative to their statistical relationship to control values; samples identified initially as toxic (or non-toxic) tended to remain toxic (or non-toxic) regardless of when they were tested. The variations that were observed in biological responses over time generally were not systematic; that is, there were no apparent trends in samples becoming more (or less) toxic in the 10-day assays. This suggests that the source of at least some of the temporal changes in toxicity were due to inherent biological variability of the assays used to assess the sediments, rather than the effects of storage. In C. tentans tests with the least toxic sediments, among-replicate variability tended to be greater in initial assays than in tests with samples that had been stored for some period of time. This may have been due to the presence of indigenous competitive or predatory organisms that did not survive during prolonged storage.  相似文献   

15.
The environmental impact and recovery associated with the long and uninterrupted disposal of large volumes of moderately contaminated dredged material from the port of Rotterdam was studied at nearby dumping sites in the North Sea. Observations were made on sediment contamination, ecotoxicity, biomarker responses and benthic community changes shortly after dumping at the 'North' site had ceased and at the start of disposal at the new dumping site 'Northwest'. During the period of dumping, very few benthic invertebrates were found at the North site. Concentrations of cadmium, mercury, polychlorinated biphenyls (PCBs), polyaromatic hydrocarbons (PAHs) and tributyltin (TBT) in the fine sediment fraction (<63 microm) from this site were 2-3 times higher than at the reference site. In four different bioassays with marine invertebrates the sediments showed no acute toxic effects. In tissue (pyloric caeca) of resident starfish Asterias rubens, residual levels of mercury, zinc, PCBs and dioxin-like activity were never more than twice those at the reference site. Four different biomarkers (DNA integrity, cytochrome P450 content, benzo[a]pyrene hydroxylase activity and acetylcholinesterase inhibition) were used on the starfish tissues, but no significant differences were found between North and the reference site. Minor pathological effects were observed in resident dab Limanda limanda. One year after dumping had ceased at the North site, a significant increase in the species richness and abundance of benthic invertebrates and a concomitant decrease in the fine sediment fraction of the seabed were observed. After 8.2 million m3 of moderately contaminated dredged material had been dumped at the new dumping site Northwest, the species richness and abundance of benthic invertebrates declined over an area extending about 1-2 km eastwards. This correlated with a shift in sediment texture from sand to silt. The contamination of the fine sediment fraction at the Northwest location doubled. It is concluded that marine benthic resources at and around the dumping sites have been adversely affected by physical disturbance (burial, smothering). However, no causal link could be established with sediment-associated contaminants from the dredged spoils.  相似文献   

16.

Background, aim and scope  

Polluted sediments in rivers may be transported by the river to the sea, spread over river banks and tidal marshes or managed, i.e. actively dredged and disposed of on land. Once sedimented on tidal marshes, alluvial areas or control flood areas, the polluted sediments enter semi-terrestrial ecosystems or agro-ecosystems and may pose a risk. Disposal of polluted dredged sediments on land may also lead to certain risks. Up to a few years ago, contaminated dredged sediments were placed in confined disposal facilities. The European policy encourages sediment valorisation and this will be a technological challenge for the near future. Currently, contaminated dredged sediments are often not valorisable due to their high content of contaminants and their consequent hazardous properties. In addition, it is generally admitted that treatment and re-use of heavily contaminated dredged sediments is not a cost-effective alternative to confined disposal. For contaminated sediments and associated disposal facilities used in the past, a realistic, low cost, safe, ecologically sound and sustainable management option is required. In this context, phytoremediation is proposed in the literature as a management option. The aim of this paper is to review the current knowledge on management, (phyto)remediation and associated risks in the particular case of sediments contaminated with organic and inorganic pollutants.  相似文献   

17.
There is strong interest in developing tools to link chemical concentrations of contaminants to the potential for observing sediment toxicity that can be used in initial screening-level sediment quality assessments. This paper presents new approaches for predicting toxicity in sediments, based on 10-day survival tests with marine amphipods, from sediment chemistry, by means of the application of Partial Least Squares-Discriminant Analysis (PLS-DA) and Counter-propagation Artificial Neural Networks (CP-ANNs) to large historical databases of chemical and toxicity data. The exploration of the internal structure of the developed models revealed inherent limitations of predicting toxicity from common chemical analyses of bulk contaminant concentrations. However, the results obtained in the validation of these models combined relevant values of non-error classification rate, sensitivity and specificity of, respectively, 76, 87 and 73% with PLS-DA and 92, 75 and 97% with CP-ANNs, outperforming the results reported for previous approaches.  相似文献   

18.
Nendza M 《Chemosphere》2002,48(8):865-883
An inventory of marine biotest methods for the evaluation of dredged material and sediments was compiled on behalf of the Federal Environmental Agency of Germany. Relevant assays were identified from the literature and experts from several countries contributed to a questionnaire survey on established and developing procedures. The biotest methods are applicable to whole sediment, sediment suspension, sediment elutriate, porewater and/or sediment extract. The endpoints cover acute and long-term toxicity, bioaccumulation, endocrine effects, toxic effects on reproduction, carcinogenicity and mutagenicity. Comparative analyses and evaluation of the biotest methods were conducted with regard to their sensitivity, specificity, applicability (regional specificity, availability and suitability of the test organisms), variability (physicochemical factors, natural factors and factors related to sampling and testing), cost-effectiveness, aspects of animal ethics, standardization (guidelines, intercalibration) and application for monitoring purposes in the areas of the OSPAR and Helsinki Conventions. The available information was integrated to rate the validity of the methods, their relevance for assessing impacts on ecosystems and the suitability of the methods for the evaluation of marine sediments and dredged material. Based on the rating of the individual bioassays, a tiered testing is suggested in a hierarchical approach representing a variety in taxa, biological processes and exposure routes, thereby covering the cellular, species, population and community level with a wide discriminatory and sensitivity range. The toxicological significance and complexity increases with the tiers: (1) screening and detection of impacts, (2) characterization of toxic effects, (3) verification of in situ alterations.  相似文献   

19.
This paper presents the results of investigations on the suitability of lugworms (Arenicola marina) to study the bioaccumulation potential of Hg, PCB and PAH compounds from dredged sediments upon laboratory exposure. The results of tissue concentrations for several sediments from Spanish ports showed that it is possible to identify increased levels of contaminants in lugworms just after 10 days of exposure although different bioaccumulation trends were shown amongst compounds and sediments. Total and organic Hg compounds were accumulated following a non-linear trend, with a sharp increase of tissue concentrations in lugworms exposed to levels of contamination associated to a significant increase in mortality. Interestingly organic Hg compounds accounted for an average of 40% of the total Hg in lugworms exposed to sediments presenting sublethal concentrations while, when exposed to sediments presenting lethal concentrations, organic Hg compounds only accounted for 4% of the total Hg accumulated in lugworms. While lugworms seem to readily accumulate Hg and PCB compounds, with some variability explained by the organic matter content in sediments or other factor for which it accounts for, the results for PAHs suggest a more complex process of bioaccumulation as no relationship was observed between the measured concentrations in sediments and in lugworms, not even after correcting the results for this factor. Besides, the differences in the calculated BSAFs for each compound and for each sediment supported the use of bioassays for evaluating the bioaccumulation potential of sediment-bound contaminants as part of the assessment framework required in pre-dredging investigations, as they still offer unique information about the bioavailability of sediment-bound contaminants.  相似文献   

20.
In view of the complexity and costs of "traditional" whole sediment assays, a "culture/maintenance free" direct contact microbiotest has been developed with the freshwater ostracod Heterocypris incongruens. The new Toxkit assay (named Ostracodtoxkit) has been applied to 33 sediment samples from Peninsula Harbour, located in Lake Superior of the Great Lakes water basin in Ontario, Canada. The microbiotest was applied in parallel to direct contact tests with the amphipod Hyalella azteca and the midge larva Chironomus riparius, to compare its relative sensitivity with that of the two "conventional" assays. The study was undertaken in the framework of remediation action plans for specific areas of concern, to enable decision making by the Canadian authorities for the restoration of impacted aquatic environments. Most sediments were found non-toxic (<20% mortality) to both the conventional test species and the ostracod. For the large majority of samples, a very good correspondence was found between the two crustacean test species for the intensity of the toxic signal "mortality", as reflected by a 0.71 (p<0.05) correlation coefficient. Growth inhibition, which is determined in the ostracod microbiotest as a sublethal effect criterion, allowed the earmarking of some sediment samples, which were apparently more toxic for the amphipod than to the ostracod. For 20% of the samples, substantially higher mortality scores were noted with the ostracod assay than with the midge larvae tests and the overall correlation coefficient between these two tests was lower (r=0.60,p<0.05). The results obtained in the present study corroborate those of previous research on sediments collected from various rivers in Flanders, Belgium, and confirm the potential of the new ostracod microbiotest as a reliable and sensitive low cost alternative for traditional whole sediment assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号