首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Heavy metal contamination in sediments of the Karasu spring was investigated in the presented study. In this respect, sediment samples were collected from contaminant sites along the spring starting from the spring water manifestation site, base of the Akkaya dam to the dam exit site. Heavy metal concentrations were determined by X-ray Fluorescence Spectrometer. Cobalt, copper, arsenic, tin, nickel, zinc, cadmium, lead, aluminum, iron, titan, chromium and manganese contents of the Karasu creek sediments are found as 18.30–69.00, 12.40–595.0 5.50–345.3, 5.80–15.1, 10.9–64.1, 28.90–103,300, 4.1–356.2, 7.70–37,840, 13,460–109,400, 11,740–62,900, 22.18–59.04, 41.70–369 and 12.09–3,480 mg/kg, respectively. Results indicate the presence of a contamination in the Karasu creek. All the metal concentrations were found to be exceeding their acceptable limit values. Eutrophication is developed in the Karasu creek and the Akkaya dam. It is thought that heavy metal accumulation in the creek is originated from discharge from mine quarries, industrial and domestic wastes. Protection zones should be defined and all necessary measures must be taken along the Karasu creek.  相似文献   

2.
Twenty-one surface sediment samples were collected from Akkaya Dam. Heavy metal concentrations (Mo, Cu, Pb, Zn, Ni, Co, Mn, Fe, Cr, As, V and Cd), grain size, organic carbon and carbonate contents were studied in order to assess the extent of environmental pollution and to discuss the origin of these contaminants in sediments of dam. The sediments in the study area are mostly very fine sands. However, mud was observed in the northeast of the dam. Sediment pollution assessment was carried out using enrichment factor. The calculation of enrichment factors showed that Mo is depleted by 1.0 whereas Cu, Pb, Zn, Ni, Co, Mn, As, V, Cr and Cd are enriched by 3, 5.4, 7, 2.7, 2.2, 3.4, 42.3, 2.1, 1.8 and 7.2, respectively. Relatively high concentrations heavy metals occurred in north (textile industry area) and east (Karasu River) due to enrichment controlled by anthropogenic wastes. The results of correlation analysis show low–medium positive and negative correlations among metals, grain size, carbonate contents and organic carbon and indicate that heavy metals in sediments of the Akkaya Dam have different anthropogenic sources.  相似文献   

3.
河流底泥砷污染状况及分布特征研究   总被引:1,自引:0,他引:1  
为了今年马鞍山市河湖整治重点工程中清淤工程环境安全需要,对该市城郊某河全流域不同断面底泥中砷含量进行了分析,评价了底泥砷污染状况并分析了该河流底泥中砷的沿程分布特征、横向分布特征和垂向分布特征。结果表明,该河流底泥砷含量范围为17.9~335mg/kg,均值为94.25mg/kg。参照土壤环境质量标准三级标准值对底泥中砷含量进行评价,平均砷污染指数2.69为中度污染;用土壤背景值标准参照评价,平均砷污染指数为9.72,超过当地背景值水平8.50倍,该河流从上游到下游,总体上沿程底泥砷含量未呈明显变化,但局部域段呈现一定变化趋势;断面横向分布上,河中间砷含量总体高于河岸边;垂向分布上,表层底泥砷含量最高。  相似文献   

4.
The main objective of this paper is to examine pollution threat, especially to the groundwater resources, around Tarapur industrial area (also called the Tarapur MIDC area) located on the Arabian Sea Coast in Thane District of Maharashtra State, India and suggest remedial measures that may also be relevant to other industrial areas on the Indian Sea Coast. One hundred and thirty one samples were collected from various sources, such as dugwells, borewells, dug-cum-borewells, effluent sumps, drainage channels (effluent channels), creeks and ocean, for chemical analyses. These analyses show that the area in general is characterized by hard water and high salinity hazard, possibly due to its proximity and hydraulic connection with the sea. Although the potability of groundwater is questionable in certain pockets, it is good enough for irrigation purposes at present. Low pH value and high heavy metal contents in the adjoining Muramba creek water is a matter of great concern and may be attributed to the indiscriminate disposal of industrial effluents to the drainage channels connecting the creek. Muramba Creek is well connected with the Arabian Sea, and there are evidences of seawater intrusion around this creek. Because of the fact that Muramba Creek is highly polluted, and is hydraulically connected with the dugwells and borewells surrounding the creek, it cannot be ruled out that the groundwater around this creek is susceptible to contamination. Unless measures are not taken immediately to stop the indiscriminate disposal of the solid wastes and liquid effluents in open ground and drainage channels, and measures are not taken to maintain the appropriate pH values at the effluent treatment facilities before their disposal, the problem would indeed be formidable one day, and it will be too late then for the authorities to take care of the resulting maladies. Few suggestions have been given for controlling and managing the industrial pollution around the Tarapur MIDC area. These suggestions are relevant to other industrial areas situated on the 7,000 km long Indian Sea Coast.  相似文献   

5.
This study focuses on a heavily polluted effluent-dominated stream that passes through an industrialized region near Izmir, Turkey. The intermittent creek receives domestic and industrial discharges of Kemalpa?a District Center and its neighborhoods and more than 180 factories of the organized industrial zone. A monitoring campaign was conducted on the creek and samples were taken in two different seasons with distinct hydrological characteristics from 20 stations along the creek to quantify the quality status of water and sediment columns. A number of physicochemical parameters, heavy metals, and trace elements were measured by field and laboratory techniques to assess the status of creek’s water and sediment quality. The spatial and temporal variations were determined, and statistical tools were used to conduct an environmental forensic overview along the creek. A geo-accumulation index and a modified heavy metal pollution index were calculated to cumulatively assess the quality of sediment and water columns, respectively. The results revealed that the creek was under significant pollution load from the industrial zone where metal processing, food and beverage production, marble and natural stone manufacturing, and paper production are made. In particular, elements such as Co, Cu, Cd, Mn, Ni, Pb, Zn, and Zr were found to be above the surface water quality standard values. Similarly, B, Cr, Ni, Cu, Zn, and Sn were determined to be in extreme levels in the sediment column with values exceeding the probable effect concentrations.  相似文献   

6.
Seasonal variation of the concentrations of trace metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn) were measured by ICP-AES in the water and sediment from the Saricay Stream, Geyik Dam and Ortakoy Well in the same basin. Comparisons between trace metal concentrations in water and sediment in three sources (Stream, Dam and Well) were made. The concentrations of a large number of trace metals in the water and sediment were generally higher in the Stream than in the Well and Dam, particularly in summer. Trace metal concentration ranges in sediments of the Saricay Stream and its sources showed very wide ranges (as mass ratio): Co: 5–476 μg g−1, Cr: 15–1308 μg g−1, Cu: 7–128 μg g−1, Fe: 1120–13210 μg g−1, Mn: 150–2613 μg g−1, Ni: 102–390 μg g−1, Pb: 0.7–31.3 μg g−1 and Zn: 18–304 μg g−1, whereas Cd was not detected. Trace metal concentration ranges found in waters were: Co: 9.5–20.7 μg L−1, Cr: 20.3–284 μg L−1, Cu: 170–840 μg L−1, Fe: 176–1830 μg L−1, Mn: 29.3–387 μg L−1, and Ni: 4.3–21.9 μg L−1. Among the trace metals studied, Cd and Zn in two seasons and Pb in winter were usually not detected or in the recommended levels. In addition, Cd was not detected in the sediment during the winter season. The analysis of variance (one-way ANOVA) and correlation matrix was employed for the sediment and water samples of the two field surveys (summer and winter) comparison. The three sources showed differences in metal contents. The metal levels in sediments displayed marked seasonal and regional variations, which were attributed to anthropogenic influences and natural processes. In the Saricay Stream, high values of metals during the dry season showed an anthropological effect from small industry firms, e.g.: an olive mill and a dairy farm or water dilution during summer seasons. Finally, the pollution in this basin probably originated from small industrial, low quality coal-burned thermal power plants, and particularly agricultural and domestic waste discharges.  相似文献   

7.
The levels of 17 organochlorine pesticides residues (OCPs) in surface water and sediments from Tamiraparani river basin, South India were investigated to evaluate their potential pollution and risk impacts. A total of 96 surface water and sediment samples at 12 sampling stations were collected along the river in four seasons during 2008–2009. The ΣOCP concentrations in surface water and sediments were in the range of 0.1 to 79.9 ng l−1 and 0.12 to 3,938.7 ng g−1 dry weight (dw), respectively. Among the OCPs, the levels of dichlorodiphenyltrichloroethanes (DDTs), aldrin, dieldrin, cis-chlordane, trans-chlordane, and mirex were dominant in the sediments. The dominant OCPs in water samples are heptachlor, o,p′-DDE, dieldrin, o,p′-DDD, and mirex, which show different source of contamination pattern among sampling seasons. The distribution pattern of DDTs, hexachlorocyclohexane, and other OCPs in the present study shows heterogenic nature of nonpoint source of pollution. Notable contamination of water and sediment sample that was observed in upstream (S2) 58 ng l−1 and downstream (S11) 1,693 ng g−1 dw explains agricultural and municipal outfalls, whereas frequent damming effect reduces the concentration level in the midstream. The overall spatial–temporal distribution pattern of ΣOCP residues are illustrated by GIS package.  相似文献   

8.
Chemical and physical size fractionation of heavy metals were carried out on 20 soil samples from the scrap yard area. Tessier method was used in sequential extraction. Cadmium showed the highest levels among the other elements studied in the exchangeable fraction (about 33%), while other elements showed low levels in this fraction (≥1%). Lead and manganese were mostly found in the Fe–Mn oxide fraction, zinc and iron were mostly in residual fraction, while copper was mostly found in the organic fraction of the soil. Soil samples were size-fractionated into four sizes: 1000–500, 500–125, 125–53, and less than 53 μm. The highest levels of Fe, Cu, Pb, Mn, and Cd were found in the medium fraction (500–125 μm), while zinc showed its highest levels in the fine fraction (125–53 μm). The order of heavy metal load in the size fractions was found to be medium > fine > coarse > silt for Fe, Mn, Cu, Pb, and Cd, where it was found as fine > medium > coarse > silt for zinc.  相似文献   

9.
Wastewater pollution in industrial areas is one of the most important environmental problems. Heavy metal pollution, especially chromium pollution in wastewater sources from dyeing and tannery has affected the life on earth. This pollution can affect all ecosystems and human health directly or by food chain. Therefore, the determination of chromium in this study is of great importance. Dil Creek is located in the eastern Marmara region and discharges into the Izmit Gulf. This water source is used for irrigation in agriculture and as drinking water for animals. In this study, a rapid, sensitive and selective method for the speciative direct determination of Cr (III) and Cr (VI) in dyeing waste water samples collected from the nearest station to Izmit Gulf of Dil Creek in May 2006 by inductively coupled plasma-atomic emission spectrometry (ICP-AES) has been developed. An analysis of a given sample is completed in about 15 min for ICP-AES the method. As the result of the chromium analysis, the limit of quantification (LOQ) for the Cr (III), Cr (VI) and total Cr were founded as 0.0111 ± 0.0002 mg/l (RSD, 1.80%), 0.0592 ± 0.0010 mg/l (RSD, 1.70%) and 0.0703 ± 0.0020 mg/l (RSD, 2.84%) respectively. In addition, the general mathematical formula has been developed to calculate the concentration of Cr(III), which can be applied to any other metal species. The result of Cr (VI) analysis indicated that water quality of Creek was IV. class quality according to the inland water classification. In order to validate the applied method, recovery studies were performed.  相似文献   

10.
The present paper is the first document of heavy metal levels in surficial sediment, water and particulate matter of the Gediz River collected from five different sites in August, October 1998, February, June 1999. The present work attempts to establish the status of distribution and environmental implications of metals in the sediment, water and particulate matter and their possible sources of derivation. The concentrations of mercury ranged 0.037–0.81, 120–430; lead 0.59–1.5, 190–8,100; copper 0.24–1.6, 30–180; zinc 0.19–2.9, 10–80; manganese 30–170, 20–490; nickel 0.39–9.0, 100–510; iron 1.3–687, 100–6,200 μg/l in water and particulate matter, respectively. The maximum values in water were generally obtained in summer periods due to industrial and agricultural activities at Muradiye. The particulate metal concentrations also generally showed increased levels from the upper Gediz to the mouth of the river. Calculation of metal partition coefficients shows that the relative importance of the particulate and the water phases varies in response to water hydrochemistry and suspended solid content, but that most elements achieve a conditional equilibrium in the Gediz River. The metals ranged between Hg: 0.25–0.49, Cr: 59–814, Pb: 38–198, Cu: 15–148, Zn: 34–196, Mn: 235–1,371, Ni: 35–175, and Fe: 10,629–72,387 mg/kg in sediment. The significant increase of metals found in Muradiye suggested a pollution effect, related to anthropogenic wastes. Also, relatively high concentrations of Ni and Mn occurred in sampling site upstream, due to geochemical composition of the sediments. Maximum values of contamination factor for metals were noticed for sediment of Muradiye. The sampling stations have very high degree of contamination indicating serious anthropogenic pollution.  相似文献   

11.
Waste water pollution of industrial areas can answer for the serious consequences of one of the most important environmental threats to the future. In this study, inductively coupled plasma-atomic emission spectrometry method (ICP-AES) is proposed to determine heavy metals (Pb, Cu, Cd, Cr, Zn, Al, Fe, Ni, Co, Mn) and major elements (Ca, Mg) in waste water of Kocabas Stream. The concentration of metals in the waste water samples taken from 9 different stations (St.) in Biga-Kocabas Stream in November 2004 (autumn period) were determined after simple pretreatment of samples by the proposed ICP-AES method. An analysis of a given sample is completed in about 15 min for ICP-AES the method. The results of heavy metals concentrations in waste water were found between 0.00001–77.69610 mg l−1 by the ICP-AES technique. The concentrations of Pb, Cd, Cu, Zn, Cr, Al, Fe, Mn, Ni, Co, Mg and Ca 0.00001 (St.3,6,7) – 0.0087 mg l−1 (St.9), 0.00001 (St.4-7) – 0.0020 mg l−1 (St.8), 0.00001 (St.1,3-7,9) – 0.0041 mg l−1 (St.2), 0.0620 (St.2) – 0.2080 mg l−1 (St.3), 0.0082 (St.6) – 0.2290 mg l−1 (St.8), 0.3580 (St.2) – 1.7400 mg l−1 (St.3), 0.2240 (St.1) – 0.6790 mg l−1 (St.3), 0.0080 (St.1) – 1.5840 mg l−1 (St.3), 0.0170 (St.3) – 0.0640 mg l−1 (St.2), 0.0010 (St.1,4,5,8) – 0.0080 mg l−1 (St.3), 5.0640 (St.9) – 5.2140 mg l−1 (St.1) and 43.3600 (St.2) – 77.6961 mg l−1 (St.9), respectively. Also we measured environmental physicochemical parameters such as temperature, salinity, specific conductivity, total dissolved solid (TDS), pH, oxidation and reduction potential (ORP), and dissolved oxygen (DO) in the waste water at sampling stations.  相似文献   

12.
The number of sites sampled must be considered when determining the effort necessary for adequately assessing taxa richness in an ecosystem for bioassessment purposes; however, there have been few studies concerning the number of sites necessary for bioassessment of large rivers. We evaluated the effect of sample size (i.e., number of sites) necessary to collect vertebrate (fish and aquatic amphibians), macroinvertebrate, and diatom taxa from seven large rivers in Oregon and Washington, USA during the summers of 2006–2008. We used Monte Carlo simulation to determine the number of sites needed to collect 90–95% of the taxa 75–95% of the time from 20 randomly located sites on each river. The river wetted widths varied from 27.8 to 126.0 m, mean substrate size varied from 1 to 10 cm, and mainstem distances sampled varied from 87 to 254 km. We sampled vertebrates at each site (i.e., 50 times the mean wetted channel width) by nearshore-raft electrofishing. We sampled benthic macroinvertebrates nearshore through the use of a 500-μm mesh kick net at 11 systematic stations. From each site composite sample, we identified a target of 500 macroinvertebrate individuals to the lowest possible taxon, usually genus. We sampled benthic diatoms nearshore at the same 11 stations from a 12-cm2 area. At each station, we sucked diatoms from soft substrate into a 60-ml syringe or brushed them off a rock and rinsed them with river water into the same jar. We counted a minimum of 600 valves at 1,000× magnification for each site. We collected 120–211 diatom taxa, 98–128 macroinvertebrate taxa, and 14–33 vertebrate species per river. To collect 90-95% of the taxa 75-95% of the time that were collected at 20 sites, it was necessary to sample 11–16 randomly distributed sites for vertebrates, 13–17 sites for macroinvertebrates, and 16–18 sites for diatoms. We conclude that 12–16 randomly distributed sites are needed for cost-efficient sampling of vertebrate richness in the main stems of our study rivers, but 20 sites markedly underestimates the species richness of benthic macroinvertebrates and diatoms in those rivers.  相似文献   

13.
Advances in research on pollution of organic pesticides (OPs) in surface water, pollution survey and risk assessments of organochlorine pesticides (OCPs) and organophosphorus pesticides (OPPs) of surface water in Hangzhou are conducted. Total concentrations of dichloro-diphenyl-trichloroethane (DDT) and hexachloride-benzene (HCH) in surface water were observed to be 0–0.270 μg/L and 0–0.00625 μg/L respectively. DDE, as a metabolite of DDT and many species of OPPS were determined in some samples of surface water. Parathion, the main pollutant among OPPs in surface water of Hangzhou, was observed to be 0–0.445 μg/L. Based on these experimental results, health risk assessments on the organic pollution are developed. It is observed that the total risk “R T” at present time of surface water in Hangzhou is mainly contributed by organophosphorus pesticides, especially Parathion; HCH and DDT are not the main contaminants; on the contrary, organophosphorous pesticides, especially Parathion, must be of concern at the present time.  相似文献   

14.
Cadmium and lead were determined in different tissues (muscle,gill, stomach, intestine, liver, vertebral column and scales) of Tilapia nilotica from the High Dam Lake, Aswan (Egypt) to assess the lake water pollution with those toxic metals. Fish samples were chosen from different ages and weights to be analyzed along with samples of the aquatic plant(Najas armeta), sediment and lake water.The results showed that cadmium and lead concentrations were higher in fish scales and vertebral column than in the other parts of the fish. Cadmium and lead levels in High Dam lake water and fish (Tilapia nilotica) were a result of the pollution which uptakes from aquatic plants, sediments andgasoline containing lead that leaks from fishery boats. Tilapia nilotica fish was used as a good bio-assay indicator for the lake pollution with cadmium and lead. The fish musclesin this study were in the safety baseline levels for man consumption.  相似文献   

15.
The Second Songhua River was subjected to a large amount of raw or primary effluent from chemical industries in Jilin city in 1960s to 1970s, resulting in serious mercury pollution. However, an understanding of other trace metal pollution has remained unclear. The objective of this study was to investigate trace metal contamination in the sediment of the river. Bottom sediment samples were taken in the river between Jilin city and Haerbin city in 2005. An uncontaminated sediment profile was taken in the Nen River at the same time. Total concentrations of Al, Fe, Mg, Ca, K, Na, Ti, Mn, V, Sc, Co, Cu, Cr, Ni, Pb and Zn in the sediment samples were measured by ICP-MS or ICP-OES, following digestion with various acids. Concentrations of Co, Cu, Cr, Ni, Pb and Zn in the surface sediments were 5.1–14.7, 18.5–78.9, 2.4–75.4, 7.2–29.0, 13.5–124.4, and 21.8–403.1 mg/kg, respectively, generally decreasing along the course of the river from Jilin city to Haerbin city. Background concentrations of trace metals were reconstructed by geochemical normalization to a conservative element scandium. Results showed that concentrations of Co, Cr, and Ni in the sediment were generally only slightly higher than or equal to their background values, while concentrations of Cu, Pb, and Zn in the some sediment samples were significantly higher than their background values. In detail, the sediment at Jilin city was moderately contaminated by Cu, and the sediment of the Second Songhua River was moderately contaminated by Pb and Zn. The top layer (0–10 cm depth) and bottom layers (30–46 cm depth) of one sediment profile at Wukeshu town were generally moderately polluted by Pb and Zn. Synthetically, the surface sediment in the studied river section was classified as natural sediment without ecological risk by the sediment pollution index (SPI) of Cu, Cr, Ni, Pb and Zn. Only the 30–45 cm depth of the sediment profile at Wukeshu town was classified as low polluted sediment by the SPI of these metals, recording a historical contamination of the river in the 1960s to 1970s. This buried contamination of trace metals might pose a potential risk to water column under disturbance of sediment. Foundation item: The National Basic Research Priorities Program of China (2004CB418502)  相似文献   

16.
Different multivariate statistical analysis such as, cluster analysis, principal component analysis, and multidimensional scale plot were employed to evaluate the trophic status of water quality for four monitoring stations. The present study was carried out to determine the physicochemical parameters of water and sediment characteristics of Pondicherry mangroves—southeast coast of India, during September 2008–December 2010. Seasonal variations of different parameters investigated were as follows: salinity (10.26–35.20 psu), dissolved oxygen (3.71–5.33 mg/L), pH (7.05–8.36), electrical conductivity (26.41–41.33 ms−1), sulfide (1.98–40.43 mg/L), sediment texture sand (39.54–87.31%), silt (9.89–32.97%), clay (3.06–31.20%), and organic matter (0.94–4.64%). pH, temperature, salinity, sand, silt, clay, and organic matter indicated a correlation at P < 0.01. CA grouped the four seasons in to four groups (pre-monsoon, monsoon, post-monsoon, summer) and the sampling sites in to three groups. PCA identified the spatial and temporal characteristics of trophic stations and showed that the water quality was worse in stations 3 and 4 in the Pondicherry mangroves.  相似文献   

17.
We assessed the quality and pollution status of source surface waters in Zaria, Nigeria by monitoring the nature, cause and extent of pollution in Samaru stream, Kubanni River and Kubanni dam over a period of 10 months, between March and December 2002. A total of 228 water samples was collected from 12 sites and analysed for a total of ten physicochemical and one bacteriological quality indicators, using standard methods. Aesthetic water quality impairment parameters were also observed. The mean values of most water quality parameters were significantly higher (P < 0.05) in both the stream and river than in the dam. There was no significant correlation between faecal coliform counts (FCC) and water temperature (in the range 15–33°C); pH (5.77–7.32); and turbidity (1.4–567 NTU). The high FCC ranged from 2.0 × 101 to 1.6 × 106 MPN/100 ml and exceeded the WHO standards for drinking water and water used for fresh-produce irrigation, and correlated positively (P < 0.05) with conductivity (in the range 68–1,029 μS/cm); TDS (10.0–70.0 mg/l); TSS (10.0–70.0 mg/l); Cl (7.5–181 mg/l); PO4P (0.01–0.41 mg/l); NO3N (0.6–3.8 mg/l) and BOD5 (0.1–14.9 mg/l). The main pollution sources were municipal wastewater, stormwater runoffs, the ABU sewage treatment plant, abattoir effluents and irrigation farms treated with chemical fertilisers. We conclude that these water bodies are potentially hazardous to public health and that proper sewage treatment and river quality monitoring are needed to warn against hazards to public health.  相似文献   

18.
Sediment and suspended particulate matter samples from 24 stations in the Gulf of Kavala have been examined for lead contamination. Grain size analysis and organic matter content were also performed. Total – anthropogenic sediment lead concentrations and enrichment factors at stations close to harbors and chemical industries were found higher (up to 209–135μg/g and 4.12 respectively), in relation to concentrations from the rest of the coastal zone. In the above areas, increased suspended particulate lead in the bottom of the water column was also recorded (up to 109μg/g). Total sediment lead concentrations composed of high natural Pb background increased with decreasing grain size, suggesting their association with the fine fractions of the sediments (31.1–66.0% mud presence) and the organic matter content (6–9% higher values). Overall, higher total lead concentrations in the sediments, determined by this work, appear to be significantly different from those reported for the Gulf of Kavala in previous studies and similar to those detected in other highly contaminated eastern Mediterranean coastal areas.  相似文献   

19.
Sediment core from Korangi Creek, one of the polluted coastal locations along the Karachi Coast Pakistan, was collected to trace the history of marine pollution and to determine the impact of industrial activity in the area. Down core variation of metals such as Ca, K, Mg, Al, S, Ti, V, Cr, Mn, Fe, Ni, Cu and Zn was studied in the 72.0 cm core. Nuclear analytical techniques, proton induced X-rays emission (PIXE), was employed to ascertain the chemical composition in sediment core. Grain size analysis and sediment composition of cored samples indicated that Korangi creek sediments are clayey in nature. Correlation matrix revealed a strong association of Ni, Cu, Cr and Zn with Fe and Mn. To infer anthropogenic input, enrichment factor (EF), degree of contamination and pollution load index were calculated. EF showed severe enrichment in surface sediment for Ni, Cu, Cr and Zn, indicating increased industrial effluents discharge in recent years. The study suggests that heavy metal discharge in the area should be regulated. If the present trend of enrichment is allowed to continue unabated, it is most likely that the local food web complexes in the creek might be at highest risk.  相似文献   

20.
Permethrin drift from two aerial applications at each of two sites in a potato growing area in Ontario were measured to a maximum distance of 61 m outside the treatment area. Droplet drift did not enter the adjacent surface water streams at either study site, since there was little or no wind on the four occasions. The concentration of the insecticide in soil as a result of drifting off site was significantly lower than the amount deposited on the treatment area. The spray drifting off-target was generally made up of droplets <100 m. Permethrin residues were detected in the water and sediment samples collected after treatment along the Bailey Creek and Beeton Creek; however, these levels did not cause lethal or sublethal effects to aquatic invertebrates and fish species. Based on the conditions and results of this study, it is concluded that a buffer zone of 65 m around sensitive and productive bodies of water would be effective and practical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号