首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amir S  Hafidi M  Merlina G  Hamdi H  Revel JC 《Chemosphere》2005,58(4):449-458
The fate of 16 polycyclic aromatic hydrocarbons (PAHs), targeted by the USEPA agency, has been investigated during composting of lagooning sludge. Composting shows efficient decrease of the content and the bioavailability of each PAH. Biodegradation and sorption are suggested as the main mechanisms contributing to this decrease. During the stabilization phase of composting, extensive microbial degradation of PAHs, mainly those with a low number of aromatic rings, was achieved following development of intense thermophilic communities. However, partial sorption of PAH to non-accessible sites temporarily limits the mobility mainly of PAHs with a high number of aromatic rings plus acenaphthene and acenaphthylene, and allows them to escape microbial attack. During the maturation phase, the development of a mesophilic population could play an important role in the degradation of the remaining PAH. During this phase of composting, PAH sequestration and binding of their oxidative metabolites within new-formed humic substances might also explain PAH decrease at the end of composting. The tendency of change of content or bioavailability of various PAH compounds during composting is found to be strongly related to the number of their aromatic rings, their molecular weight and structure.  相似文献   

2.
Oleszczuk P 《Chemosphere》2007,70(2):288-297
The present study focuses on the influence of the composting process on the formation of potentially bioavailable and sequestrated PAH fractions. The potentially bioavailable fraction was determined by means of a mild-solvent extraction (with n-butanol). The total and potentially bioavailable PAH content was evaluated in the consecutive composting stages, i.e. at the onset of the experiment, after the stabilization phase (on the 35th day), and after the maturation phase (on the 76th day). Four municipal sewage sludges with differentiated PAH content were selected for the present experiment. Eleven PAHs from the US EPA list (with exception of naphthalene, acenaphthylene, acenaphtene, fluorene and benz[ah]anthracene) were determined for the purpose of this experiment. The content of the total PAHs ranged from 3052 to 10352microg kg(-1). The share of the potentially bioavailable fraction was at a similar level in the sludge samples tested and ranged from 75% to 81%. Greater differences were noted in the share of the bioavailable fraction in the case of individual PAH groups. The influence of the composting process on the contribution of the potentially bioavailable fraction of the PAH clearly depended on the stage of the experiment and sewage sludge type. However, in the case of all sludges, a lowering of the bioavailable fraction by 19-52% as compared to the level at the outset of the experiment was observed. During the first phase (stabilization) of the sewage sludge composting process, a reduction of the PAH content took place mainly at the expense of potentially bioavailable fraction, whereas in the second phase (maturation), sequestration processes predominated. The above phenomenon was most clearly visible for the 6-rings PAHs.  相似文献   

3.
Oleszczuk P 《Chemosphere》2006,65(9):1616-1626
The application of sewage sludge as a fertilizer is a common method used to improve soil properties. However, sewage sludge may contain various organic pollutants including polycyclic aromatic hydrocarbons. In the present study, the persistence of PAHs in soils fertilized with different sewage sludge doses was compared in relation to the sewage sludge dose applied (30, 75, 150, 300 and 600 Mgha(-1)) and the content of the polycyclic aromatic hydrocarbons in them. The experiment was carried out in two blocks of experimental plots divided according to the type of plants grown: field plants and perennial-willow. Sewage sludge addition to soils resulted in an increase in the content of polycyclic aromatic hydrocarbons in these soils. This increase was proportional to the quantity of sewage sludge applied. The results obtained showed that during a 42/54-month period, more than half of the individual PAHs introduced into the soil with sewage sludge were degraded. The scope of dissipation depended on the sewage sludge dose and the use to which the area was put. In the experiment with the willow only in the case of the highest sludge dose was a decrease in the PAH content above 50% noted; whereas in the case of the experiment with the field plants, it was higher by 50% for all sewage sludge doses. In experiment with field plants the highest scope of individual PAH disappearance was observed in the soil with the sewage sludge dose amounting to 300 Mgha(-1). In experiment with willow a relatively high dissipation of individual PAHs (>50%) was found in the treatment with the highest sludge dose (600 Mgha(-1)). A wider PAH dissipation range in the experiment with field plants was conditioned by the more favourable conditions created as a result of the breeding treatments applied. Agrotechnical treatments clearly increased the disappearance of the PAHs in those soils fertilized with the lowest sewage sludge doses (30 and 75 Mgha(-1)). The results obtained showed that the preferred method of treating a light soil fertilised with sewage sludges should be a one-year system, with a sludge application of 75 Mgha(-1).  相似文献   

4.
为了研究多环芳烃(PAHs)污染土壤堆肥修复的加速机制,在人工控温的堆肥装置中以芘、菲和芴为研究对象,采用室内模拟实验的方式研究了添加硫酸钙、过磷酸钙、草炭、竹炭、十二烷基硫酸钠(K12)和十二烷基苯磺酸钠(SD-BS)等对锯末高温堆肥降解污染土壤PAHs的影响。研究结果表明,生物堆肥可以有效的去除土壤中PAHs,堆肥7周后所有处理下芘、菲和芴的降解率基本达到80%以上。不同添加剂处理下芘、菲和芴降解率不同,尤其是添加草炭和竹炭处理中芴和菲在第4周的时候就取得90%以上的降解率,芘在第6周也取得80%以上的降解率,而且氮素的损失率也分别下降了42.6%和36.09%,比其他处理的PAHs降解率和保氮效果都要好。分析其原因,一方面可能是添加不同添加剂对堆肥过程中pH值、有机质(SOM)、总氮(TN)和过氧化氢酶(CAT)都有一定的影响,提高了土壤微生物的活性;另一方面可能是由于草炭和竹炭对氨有良好的吸附性,具有良好的保氮效果,同时也能改善了微生物和目标化合物的接触方式,从而提高了PAHs的降解率。  相似文献   

5.
Binding of two model polycyclic aromatic hydrocarbons (PAHs), phenanthrene and pyrene, by humic acids (HAs) isolated from an organic substrate at different stages of composting and a soil was investigated using a batch fluorescence quenching method and the modified Freundlich model. With respect to soil HA, the organic substrate HA fractions were characterized by larger binding affinities for both phenanthrene and pyrene. Further, isotherm deviation from linearity was larger for soil HA than for organic substrate HAs, indicating a larger heterogeneity of binding sites in the former. The composting process decreased the binding affinity and increased the heterogeneity of binding sites of HAs. The changes undergone by the HA fraction during composting may be expected to contribute to facilitate microbial accessibility to PAHs. The results obtained also suggest that bioremediation of PAH-contaminated soils with matured compost, rather than with fresh organic amendments, may result in faster and more effective cleanup.  相似文献   

6.
The aim of this study was to test the hypothesis about physical factors causing a significant decrease of polycyclic aromatic hydrocarbon (PAH) compounds in foodstuffs. For this purpose, extraction of 16 PAHs (prioritised by EPA) from selected foodstuffs (rapeseed oil and sunflower oil) was carried out. The changes in PAH content in oils exposed to selected physical factors (UV radiation, temperature and time) were observed. Oils under study were exposed to two types of UV radiation: direct and indirect (through a glass plate). In both experiments, a reduction of 16 PAHs in oils was recorded but in the latter a PAH reduction was not as high. In another experiment, the temperature of oils was raised to 40, 100 and 200°C. As a result, the content of PAHs has decreased significantly. In both cases, exposure to UV radiation and high temperature resulted in the reduction of PAHs, it was strongly correlated with the duration of experiments. The results showed relatively low contamination of oil with PAHs. Only for rapeseed oil, the level of said contamination was substantially higher than laid down limits.  相似文献   

7.
In-vessel composting of polycyclic aromatic hydrocarbons (PAHs) present in contaminated soil from a manufactured gas plant site was investigated over 98 days using laboratory-scale in-vessel composting reactors. The composting reactors were operated at 18 different operational conditions using a 3-factor factorial design with three temperatures (T, 38 degrees C, 55 degrees C and 70 degrees C), four soil to green waste ratios (S:GW, 0.6:1, 0.7:1, 0.8:1 and 0.9:1 on a dry weight basis) and three moisture contents (MC, 40%, 60% and 80%). PAH losses followed first order kinetics reaching 0.015 day(-1) at optimal operational conditions. A factor analysis of the 18 different operational conditions under investigation indicated that the optimal operational conditions for degradation of PAHs occurred at MC 60%, S:GW 0.8:1 and T 38 degrees C. Thus, it is recommended to maintain operational conditions during in-vessel composting of PAH-solid waste close to these values.  相似文献   

8.
Qian Y  Posch T  Schmidt TC 《Chemosphere》2011,82(6):859-865
Sorption of polycyclic aromatic hydrocarbons (PAHs) to glass commonly used in laboratories was studied. Sorption coefficients (Kd) of five selected PAHs to borosilicate glass surfaces were measured using column chromatography. A linear relationship between log Kd and the corresponding water solubility of the subcooled liquid (log Sw) of the investigated PAHs was observed. Based on the determined sorption coefficients our data revealed that mass loss caused by sorption on glass walls strongly depends on the ratio of solution volume to contacted surface area (V/S). The influence of solution chemistry such as ionic strength, solution pH, presence of cosolvent, and the influence of temperature on the sorption process were investigated. In the presence of ionic strength, sorption coefficients concurrently increased but less than a factor of 2 up to 0.005 M calcium chloride concentration. However, further increasing ionic strength had no influence on Kd. The cosolvent reduced sorption at a concentration of methanol in water above 0.5% (v/v); however, for benzo[a]pyrene even with 10% (v/v) methanol the mass loss would be still higher than 10% (with a V/S ratio less than 0.25). Significant effects of the solution pH and temperature were not observed. These results suggest that van der Waal’s forces dominate the sorption process. In the analysis of highly hydrophobic PAHs in aqueous samples, mass loss due to sorption on glass walls should be accounted for in the final result if untreated glass is used. The presented relationship between log Kd and log Sw may help to decide if such a correction is necessary. Furthermore, the frequently used silanization of glass surfaces may not be sufficient to suppress sorption for large PAHs.  相似文献   

9.
The paper provides comprehensive information on the level of contamination of arable soils in Poland with polycyclic aromatic hydrocarbons (PAHs). Extensive monitoring studies were carried out to determine the content of the 16 priority PAHs in 216 soil samples collected in 2005 throughout arable lands (0-20 cm layer) in Poland. Locations of sampling points reflected the differences in regional industrialisation and urbanisation as well as in the characteristics of soils. The content of Sigma16PAHs ranged from 80 to 7264 microg kg(-1) with a median of 395 microg kg(-1) and with a dominance of 4-6 rings hydrocarbons (74% of total PAHs). Soil properties affected the PAHs content to a limited extend. The organic matter content was the only parameter correlated significantly (although weakly) with the concentrations of Sigma16PAHs; the strength of this relationship was more pronounced in soils with elevated OM content. The various molecular markers pointed to a prevailing pyrogenic origin of the PAHs in Polish arable soils, with minor contribution from liquid fuels combustion and traffic emissions. Two different Polish systems for classification of agricultural soils (providing for the content of Sigma9PAHs and Sigma13PAHs) indicate that the percentage of contaminated arable soils in Poland does not exceed 10%. Multivariate methods enabled an evaluation of spatial trends in Sigma16PAHs concentrations, an identification of regions with very low PAHs content (East part of the country), and a recognition of small industrial/urbanised areas of higher risk.  相似文献   

10.
11.
A regression model based on the provincial energy consumption data was developed to calculate the monthly proportions of residential energy consumption compared to the total year volume. This model was also validated by comparing with some survey and statistical data. With this model, a PAHs emission inventory with seasonal variation was developed. The seasonal variations of different sources in different regions of China and the spatial distribution of the major sources in different seasons were also achieved. The PAHs emissions were larger in the winter than in the summer, with a difference of about 1.3-folds between the months with the largest and the smallest emissions. Residential solid fuel combustion dominated the pattern of seasonal variation with the winter-time emissions as much as 1.6 times as that in the summer, while the emissions from wild fires and open fire straw burning was mainly concentrated during the spring and summer.  相似文献   

12.
Experiments were conducted to assess the bioavailability of polyclycic aromatic hydrocarbons (PAHs) in soil from a Manufactured Gas Plant site. Three plant species were cultivated for four consecutive growing cycles (28 days each) in soil contaminated with 36.3 microg/g total PAH. During the first growth period, Cucurbita pepo ssp. pepo (zucchini) tissues contained significantly greater quantities of PAHs than did Cucumis sativus (cucumber) and Cucurbita pepo ssp. ovifera (squash). During the first growth cycle, zucchini plants accumulated up to 5.47 times more total PAH than did the other plants, including up to three orders of magnitude greater levels of the six ring PAHs. Over growth cycles 2-4, PAH accumulation by zucchini decreased by 85%, whereas the uptake of the contaminants by cucumber and squash remained relatively constant. Over all four growth cycles, the removal of PAHs by zucchini was still twice that of the other species. Two earthworm species accumulated significantly different amounts of PAH from the soil; Eisenia foetida and Lumbricus terrestris contained 0.204 and 0.084 microg/g total PAH, respectively, but neither species accumulated measurable quantities 5 or 6 ring PAHs. Lastly, in abiotic desorption experiments with an aqueous phase of synthetically prepared organic acid solutions, the release of 3 and 4 ring PAHs from soil was unaffected by the treatments but the desorption of 5-6 ring constituents was increased by up to two orders of magnitude. The data show that not only is the accumulation of weathered PAHs species-specific but also that the bioavailability of individual PAH constituents is highly variable.  相似文献   

13.
燃煤电厂多环芳烃的生成与控制   总被引:2,自引:0,他引:2  
多环芳烃 (PAHs)对人体健康的危害极大。本文综述了燃煤电厂煤燃烧过程中多环芳烃的生成机理 (直接释放、热解合成和高温缩合机理 )和影响因素 (煤种、温度、锅炉负荷、过剩空气系数、停留时间、钙硫比和一次风 /二次风比 ) ,在此基础上介绍了煤燃烧过程中多环芳烃的各种控制技术和方法  相似文献   

14.
Impacts of flooding on the soil environment with regard to soil pollution with polycyclic aromatic hydrocarbons and s-triazine (cyanazine, simazine, atriazine, propazine, prometryn) herbicides have been evaluated. No clear differences in the sum of the PAHs content were observed in the present studies. Only changes in the levels of individual PAHs were noted. In soils covered with flooding both at a depth of 0-20 and 20-40 high molecular weight PAHs were predominant (especially mutagenic and carcinogenic 5-rings PAHs) whereas in non-flooded areas, 2- and 3-rings PAHs constituted over 80%. In the case of s-triazine herbicides, no influence of flooding on the changes in their content in agriculturally used soils was noted. On the other hand, clearly lower levels of cyanazine, simazine and atriazine were not in the flooded forest soil as compared to the non-flooded forest soil.  相似文献   

15.
The global atmospheric emissions of the 16 polycyclic aromatic hydrocarbons (PAHs) listed as the US EPA priority pollutants were estimated using reported emission activity and emission factor data for the reference year 2004. A database for emission factors was compiled, and their geometric means and frequency distributions applied for emission calculation and uncertainty analysis, respectively. The results for 37 countries were compared with other PAH emission inventories. It was estimated that the total global atmospheric emission of these 16 PAHs in 2004 was 520 giga grams per year (Gg y?1) with biofuel (56.7%), wildfire (17.0%) and consumer product usage (6.9%) as the major sources, and China (114 Gg y?1), India (90 Gg y?1) and United States (32 Gg y?1) were the top three countries with the highest PAH emissions. The PAH sources in the individual countries varied remarkably. For example, biofuel burning was the dominant PAH source in India, wildfire emissions were the dominant PAH source in Brazil, while consumer products were the major PAH emission source in the United States. In China, in addition to biomass combustion, coke ovens were a significant source of PAHs. Globally, benzo(a)pyrene accounted for 0.05% to 2.08% of the total PAH emission, with developing countries accounting for the higher percentages. The PAH emission density varied dramatically from 0.0013 kg km?2 y in the Falkland Islands to 360 kg km?2 y in Singapore with a global mean value of 3.98 kg km?2 y. The atmospheric emission of PAHs was positively correlated to the country's gross domestic product and negatively correlated with average income. Finally, a linear bivariate regression model was developed to explain the global PAH emission data.  相似文献   

16.
Kim YJ  Osako M 《Chemosphere》2003,51(5):387-395
In order to evaluate the factors affecting leachability of hydrophobic organic pollutants (HOPs), we performed leaching tests under a variety of conditions using sandy soil contaminated with phenanthrene and pyrene. The results obtained were: (1) the shaking time, temperature, and dissolved humic matter (DHM, as coexisting matter) increased leachability; (2) ionic strength reduced leachability; and (3) the liquid-to-solid ratio and pH level had no effect on leaching concentration of HOPs. In DHM-added leaching tests assuming equilibrium with HOPs, DHM, and solid matrix, the partitioning (binding) coefficient of HOPs to DHM was accurately calculated with the equations proposed in this study. While we recommend taking into consideration the coexistence of DHM, it is difficult to use universally because its properties differ according to origin and extracting method. It is therefore reasonable to use an alternative reagent having an effect similar to that of DHM.  相似文献   

17.
Surface and core sediments collected from six fish farms in Hong Kong and from reference sites were investigated for the enrichment and sources of polycyclic aromatic hydrocarbons (PAHs). Moderately high ∑PAH16 levels (123-947 ng g−1, mean: 450 ng g−1) were found in the surface aquaculture sediments. In comparison with the sediments from the reference sites, the average enrichment percentage of total organic carbon (TOC) and PAHs in surface sediments were 21.4 and 43.8%, respectively, and in the core sediments, 24.6 and 73.7%, respectively. Mathematical source apportionment analyses (i.e. isomer ratios, hierarchical cluster analysis, principal components analysis with multiple linear regression analysis) suggested a higher percentage of petrogenic sources in aquaculture sediments. The fish feeds might be the main source of the enriched PAHs in the aquaculture sediments. To our knowledge, this is the first study showing that PAHs in aquaculture sediments could be attributed to human aquaculture activities.  相似文献   

18.
This work investigated the PAHs generated in a waste-tire pyrolysis process and the PAHs removal by a wet scrubber (WSB) and a flare. IND, DBA, and BaP were found to dominate in the powders of scrap tires before the pyrolysis. The PAHs in the carbon blacks formed in the pyrolysis were mainly 2-, 3-, 6-, and 7-ring PAHs. Nap was the most predominant water-phase PAH in the WSB effluent. About 40% of the water-phase total-PAHs in the WSB effluent were contributed by nine carcinogenic PAHs. NaP, IND, and COR displayed higher mean gas- and particulate-phase concentrations than the other PAHs in the flare exhaust. The mean removal efficiencies of individual PAHs, total-PAHs, and high carcinogenic BaP+IND+DBA were 39.1–90.4%, 76.2%, and 84.9%, respectively for the WSB. For the flare, the mean removal efficiencies of gaseous, particulate, and combined (gaseous+particulate) total-PAHs were 59.8%, 91.2%, and 66.8%, respectively, whereas the removal efficiencies were 91.0%, 80.1%, and 89.1%, respectively for the total-BaPeq. However, the gaseous BaA displayed a negative mean removal efficiency. The total PAH emission rate and factor estimated for the scrap tire pyrolysis plant were 42.3 g d−1 and 4.00 mg kg-tire−1, respectively.  相似文献   

19.
Elevated PAH concentrations were detected in bank soils along the Mosel and Saar Rivers in Germany. Information on the identification of PAH sources in this area however remains unclear. This study was able to characterize the PAH sources by application of several approaches, including consideration of the distribution patterns of 45 PAHs (including 16 EPA PAHs and some alkyl PAHs), specific PAH ratios, distribution patterns of n-alkanes and principal component analysis (PCA). In addition, the efficiency of the tested approaches was assessed. The results from the application of the various source identification methods showed that pyrogenic PAHs dominate soil samples collected upstream of the confluence of the Mosel and Saar Rivers, and petrogenic and pyrogenic PAHs dominate samples downstream of the confluence. Based on the analysis of reference materials and organic petrography, the petrogenic input was found to be dominated by coal particles. More detailed information on the petrogenic sources was provided by the n-alkane analyses. The current study concludes that to accurately determine the origin of PAHs, several identification methods must be applied.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号