首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
以北京市餐饮企业分布密度最大的西城区为案例区,通过对研究区域内餐饮企业进行实地污染物检测及排放活动水平调查,计算得到基于就餐人数、就餐时间、烹饪油用量和灶头数4种核算基准的餐饮业VOCs和PM2.5排放因子,并利用排放因子法分别估算该区域在餐饮废气净化设备升级改造前后餐饮企业VOCs和PM2.5年排放量.结果表明:本研究区域餐饮业废气净化设备升级改造前VOCs排放量范围为319.03~506.38t/a,改造后为92.14~109.89t/a;改造前PM2.5排放量范围为166.55~211.09t/a,改造后为30.22~36.05t/a,排放量明显减少.餐饮业废气净化设备改造后VOCs和PM2.5减排率分别为71%~82%和80%~86%,餐饮业废气净化设备升级改造减排效果良好.计算得到以街道为单元的餐饮源VOCs和PM2.5排放强度范围分别为1.45~4.32t/km2和0.47~1.42t/km2.通过PM2.5实测浓度(小时值)数据分析,餐饮业废气净化设备升级改造前、后PM2.5浓度平均减少了28.9%,最接近于用油量为核算基准的排放因子降低比例.  相似文献   

2.
东北地区农业源一次颗粒物排放清单研究   总被引:3,自引:0,他引:3  
采用自下而上的清单编制方法,搜集各农业环节(秸秆燃烧、整地、收割、谷物处理、化肥施用、农机排放、风蚀)排放因子、作物面积和耕作方式等信息,编制了2010年东北地区县级尺度的农业一次颗粒物(PM10和PM2.5)排放清单,并分析了农业源颗粒物排放的时空分布特征.结果表明:1)2010年东北地区农业源一次颗粒物PM10总排放量54.6万t,PM2.5总排放量35.6万t;2)东北地区农业源一次颗粒物PM10排放量最大的农业活动环节是秸秆燃烧,占农业源总排放量的比例为60%,秸秆燃烧排放PM2.5占PM2.5农业源排放量的87%,整地环节是一次颗粒物排放的第2大农业排放源,对农业源排放PM10和PM2.5总量的贡献率分别是27%和6%; 3)PM10和PM2.5的排放强度空间分布表明,东北地区农业源颗粒物排放区域集中在黑龙江省东北部和中部地区,吉林省中部和辽宁省中部地区; 4)PM10和PM2.5排放的时间变化特征显示,PM10农业源排放年变化曲线中,5月份和9、10月份是农业源排放一次颗粒物PM10较多的月份,PM2.5排放集中在9、10月份;5)本研究估算的污染物排放清单的不确定性为184.3%.未来的工作将侧重于典型农业区本土排放因子测定,从而有效减小排放清单的不确定性.  相似文献   

3.
为准确掌握贵州省生物质燃烧源大气污染物的排放状况,基于收集资料和实地调查结合的方式获取活动水平,引用文献和本地实测数据结合的方式选取排放系数,采用排放系数法结合GIS技术,建立了贵州省2019年3 km×3 km生物质燃烧源9种大气污染物排放清单.结果表明:(1)全省生物质燃烧源CO、 NOx、 SO2、 NH3、 VOCs、 PM2.5、 PM10、 BC和OC的排放量分别为:293 505.53、 14 781.19、 4 146.11、 8 501.07、 45 025.70、 39 463.58、 41 879.31、 6 832.33和15 134.74 t.户用生物质炉具CO、 SO2、 NH3和BC的排放量贡献率最大,秸秆露天焚烧NOx、 VOCs、 PM2.5、 PM10和OC的排放量贡献率最大.(2)各市(州)生物质燃烧源排放的大气污染物分布不均衡,主...  相似文献   

4.
颗粒物是影响西安市环境空气质量的主要因子.结合《西安统计年鉴2015》《2014年环境统计数据》和现场调查等确定了西安市各类PM2.5排放源的活动水平数据,采用物料衡算法和排放因子法测算了西安市2014年大气中PM2.5的年排放总量,并从行业和区域角度详细分析了PM2.5的排放贡献率.在此基础上,以2014年为基准年,依据西安市地方政策和各行业最新排放标准,对PM2.5的减排潜力进行了预测.结果表明:2014年西安市人为源一次PM2.5排放总量为33 660.1 t,其中,固定燃烧源、工艺过程源、移动源、生物质燃烧源、扬尘源和餐饮源的贡献率分别为27.6%、23.5%、6.8%、10.7%、31.1%和0.3%.道路扬尘、窑炉和发电为西安市PM2.5的重点排放行业,其PM2.5排放量分别占排放总量的21.4%、20.3%和11.0%.各区县中,鄠邑区、灞桥区和未央区的PM2.5排放量较高,其贡献率分别为15.7%、13.7%和12.7%;新城区PM2.5排放量最小,为297.8 t/a.2014年西安市PM2.5平均排放强度为2.07 t/km2,其中,碑林区排放强度(16.80 t/km2)最大,高陵区(0.48 t/km2)最小.按照《西安市2017年"铁腕治霾保卫蓝天"工作实施方案》等新政策的规定,预测在新的排放标准下西安市PM2.5排放量将比2014年削减63.7%.研究显示,固定燃烧源、工艺过程源和生物质燃烧源有较大的减排潜力.   相似文献   

5.
基于环境统计数据,采用排放因子法建立2020年京津冀地区燃煤工业锅炉县级大气污染物排放清单.结果表明,2020年京津冀地区燃煤工业锅炉常规大气污染物SO2、NOx、颗粒物(PM)、PM10、PM2.5排放量分别为6351,7399,2952,825,399t.,其中PM10和PM2.5分别占PM排放总量的27.9%和13.5%.重金属Hg、Pb、Cd、Cr、As的排放量分别为197.9,1391.3,32.0,1214.2,362.4kg.65t/h及以上燃煤工业锅炉为主要的排放贡献源,各类污染物的排放量占京津冀地区工业锅炉各类污染物排放总量的比重为51.1%~81.2%,是污染控制及监管的重点.河北省承德市、唐山市、张家口市为污染物排放量最大的3个城市,3个城市各类污染物排放量占京津冀地区工业锅炉各类污染物排放总量的14.6%~71.9%.污染物排放强度大的区域主要集中在天津市、河北省廊坊市、唐山市的一些区县.  相似文献   

6.
使用中尺度气象-化学耦合模式WRF-Chem针对MEIC源清单中五大部门来源(工业源、电力源、民用源、交通源和农业源)对华东地区PM2.5的影响进行了模拟研究,主要得到以下结论:春夏秋季PM2.5约40%~60%来源于工业源,冬季由于采暖供热燃用大量散烧煤,导致民用源对PM2.5的贡献最大,在山东、安徽和江苏省等高值区贡献率超过50%;农业源、电力源和交通源对PM2.5影响的季节差异不大,农业源贡献约20%~30%,交通源和火电源贡献约10%.因此冬季需主要控制民用源排放,春夏秋季主要控制工业源排放,其次是农业源排放.一次PM2.5在工业、电力和民用源贡献的PM2.5中所占比例可达50%~60%;NO3-和NH+4在交通源贡献的PM2.5中总比例可达53%,在农业源中总比例高达93%;由于模式对SO42-模拟偏低,SO42-在工业源和电力源贡献的PM2.5中占比约5%~15%;OC对来自民用源的PM2.5有30%的贡献,BC对来自交通源的PM2.5有15%的贡献;Na+和Cl-对PM2.5的贡献在各大来源中均低于3%.  相似文献   

7.
基于全面开展大气污染源排放清单编制工作的要求,研究制定了天津市港口自有移动源排放清单.对道路和非道路移动源各源类6种大气污染物建立了分辨率为3 km×3 km的网格化排放清单,并分析其污染物排放时空分布特征,利用蒙特卡罗方法分析了清单的不确定性.结果表明,2020年港口自有移动源共排放PM10 148.22 t、 PM2.5 135.34 t、 SO2 1 061.04 t、 NOx 4 027.16 t、 CO 756.60 t和VOCs 237.07 t,其中道路和非道路移动源污染物总排放量占移动源排放量的比例分别为6.66%和93.34%.全港区自有道路移动源机动车污染物排放的主要贡献源是小型、中型、大型载客汽车(汽油)和重型载货汽车(柴油),非道路移动源排放的各污染物的主要贡献源均是船舶和工程机械.不确定性分析结果表明,移动源总体不确定性范围为-13.3%~16.53%.  相似文献   

8.
重庆主城区春季大气PM10及PM2.5中多环芳烃来源解析   总被引:1,自引:0,他引:1       下载免费PDF全文
于2012年春季采集了重庆主城区和缙云山共6个环境采样点的大气PM10、PM2.5样品,同步采集了燃煤尘、机动车尾气尘、施工机械尾气尘、船舶尾气尘、餐饮油烟尘、生物质燃烧尘及土壤尘等7类污染源,采集到有效受体样品139个、有效源样品233个,使用GC-MS分析样品中18种PAHs的质量浓度(ρ),分析了PM10、PM2.5上载带PAHs的污染特征,并分别运用比值法、主成分分析法及CMB(化学质量平衡)受体模型法对PM10、PM2.5中的PAHs进行来源解析,所得源解析结果较为一致. 结果表明:重庆主城区大气PM10、PM2.5中ρ(PAHs)较低,ρ(PAHs)分别为22.03~31.71、19.02~29.92 ng/m3,其中位于工业区新山村采样点的ρ(PAHs)最高. PM10载带的PAHs有86%~99%集中在PM2.5中,说明PAHs主要富集在PM2.5中. 重庆主城区大气PM10、PM2.5载带的PAHs主要来自机动车尾气尘和燃煤尘的贡献,这2类源对PM10的贡献率分别为25.89%、32.80%;而在PM2.5中,机动车尾气尘的贡献率较高,可达62%左右.   相似文献   

9.
PM2.5主要受排放源、大气化学、气象条件等驱动因素的非线性影响,了解驱动因素对PM2.5浓度的影响十分重要. 本研究基于南开大学大气环境综合观测超级站的逐时在线观测数据,耦合机器学习方法和受体模型,揭示了驱动因素的重要性以及对PM2.5浓度的影响. 结果表明:① 2018年11月—2020年10月观测地点的PM2.5浓度范围为3.21~291.80 μg/m3,采暖季PM2.5浓度和化学组分均高于非采暖季. ②使用受体模型解析PM2.5的来源及其贡献,发现观测期间二次源的贡献率(44.7%)最高,其他依次为燃煤源(23.6%)、机动车排放源(11.0%)、扬尘源(9.9%)、生物质燃烧源(7.2%),工业源的贡献率(3.6%)最小. ③利用随机森林-SHAP模型量化排放源、大气氧化能力、气象条件等驱动因素对PM2.5浓度的影响,发现观测期间排放源对PM2.5浓度的影响程度为54.3%,高于其他驱动因素;气象条件对PM2.5浓度的影响程度次之,为32.4%;大气氧化能力对PM2.5浓度的影响程度相对较低,为13.3%. 在采暖季和非采暖季,各驱动因素对PM2.5浓度的重要性在排序上没有变化,然而驱动因素对PM2.5浓度的影响程度有所不同. 采暖季排放源对PM2.5浓度的影响程度高于非采暖季,采暖季大气压对PM2.5浓度的影响程度低于非采暖季. 研究显示,排放源对PM2.5的影响相对较大,气象条件和大气氧化能力对PM2.5浓度的影响也不容忽视.   相似文献   

10.
重庆主城区大气PM10及PM2.5来源解析   总被引:8,自引:0,他引:8       下载免费PDF全文
为探讨重庆主城区4个季节大气PM10和PM2.5的主要来源,于2012年2—12月在重庆主城区的工业区、文教区和居住区5个环境监测点同步采集PM10及PM2.5样品,分析了无机元素、水溶性离子、有机碳和元素碳含量及其分布特征. 采集了重庆主城区土壤尘、建筑水泥尘、扬尘、移动源(包括机动车、施工机械及船舶)、工业源(包括固定燃烧源及工业工艺过程源)、生物质燃烧源及餐饮源等7类污染源,建立了重庆市本地化的污染源成分谱库. 利用CMB(化学质量平衡)受体模型及二重源解析技术分析了PM10及PM2.5的来源. 结果表明:重庆主城区大气中ρ(PM10)及ρ(PM2.5)的年均值分别为153.2和113.1 μg/m3,超过GB 3095—2012《环境空气质量标准》二级标准限值2倍以上. 大气PM10的主要来源为扬尘、二次粒子和移动源(贡献率分别为23.9%、23.5%和23.4%),大气PM2.5主要来源于二次粒子和移动源(贡献率分别为30.1%和27.9%).PM10和PM2.5的主要源类贡献率差别不大,表明研究区域内大气颗粒物污染控制应采取多源控制原则. 大气PM10来源的季节性变化特征表现为春季和秋季主要以扬尘为主、夏季和冬季主要以二次粒子为主.   相似文献   

11.
为研究轻型汽油车尾气PM2.5的排放特征,利用整车测试台架和颗粒物稀释采样系统,对12辆轻型汽油车尾气的PM2.5进行了采集,并进一步分析了PM2.5排放因子及其碳质组分——OC(有机碳)和EC(元素碳)的排放特征;在此基础上,参考文献研究结果,计算了我国轻型汽油车分阶段PM2.5排放因子,结合活动水平数据估算轻型汽油车PM2.5排放量.结果表明:测试的国Ⅰ前~国Ⅳ轻型汽油车PM2.5平均排放因子分别为(73.2±3.8)(50.5±45.4)(34.7±18.4)(22.6±10.3)和(1.0±0.2)mg/km,随排放阶段升级而显著降低.OC是轻型汽油车尾气PM2.5中的主要碳质组分,在TC(总碳)中所占比例超过90%. 2012年我国轻型汽油车PM2.5排放量为21 828.7 t,占机动车颗粒物排放总量的3.5%,其中仅占轻型汽油车保有量17%的国Ⅰ及以前车辆排放了约43%的PM2.5. 研究显示,轻型汽油车尤其是国Ⅰ及国Ⅰ前车辆颗粒物排放不容忽视,在机动车颗粒物减排工作中应给予足够重视.   相似文献   

12.
餐饮源油烟中PM2.5的化学组分特征   总被引:1,自引:0,他引:1       下载免费PDF全文
集中分析了餐饮无组织排放源(街边小吃、火锅店、露天烧烤)及有组织排放源(10家大中型餐馆)油烟PM2.5中的TC(总碳)、元素组分、离子组分和16种PAHs,得到了各类餐饮源油烟PM2.5的化学组成特征,建立了餐饮源油烟化学成分谱. 结果表明:各餐饮源油烟的ρ(PM2.5)是大气背景值的3~42倍,其中露天烧烤油烟的ρ(PM2.5)最高,达5 659.8 μg/m3. 不同餐饮源油烟的PM2.5中各化学组分均为w(TC)(38.1%~75.8%)>w(元素组分)(4.5%~27.0%)>w(离子组分)(2.7%~22.6%),并且ρ(PM2.5)与w(TC)呈显著正相关(R=0.84). 菲(PHE)、芘(PYR)、荧蒽(FLT)的质量分数在各类餐饮源油烟的PAHs中均普遍较高,分别为13.8%~21.6%、9.2%~26.5%、6.9%~22.0%.大中型餐馆油烟的PAHs中苯并苝(BPE)的质量分数最高(27.5%),而在其他餐饮源中均小于6.7%;(CHR)的质量分数最低(3.3%),而在其他餐饮源中均大于5.3%. 露天烧烤油烟的PAHs中芘、荧蒽的质量分数分别是其他餐饮源的2.7和2.3倍以上;萘(NAP)的质量分数(0.3%)较小,但在其他餐饮源中均大于11.4%,可以作为特定餐饮源油烟的特征物种.   相似文献   

13.
为研究京津冀地区民用散煤燃烧大气污染物的排放情况,结合散煤燃烧活动水平与燃用特征,根据排放因子法自下而上建立了2018年京津冀地区民用散煤燃烧污染物排放清单,研究了污染物排放的时空分布特征并使用蒙特卡罗方法对排放清单进行了不确定性分析.结果表明:2018年京津冀地区民用散煤燃烧量共计3799.22万t,PM2.5、CO、SO2、NOx的排放量分别为9.27,341.31,5.17,5.44万t.污染物排放集中在11月份~次年3月份,大多数地区呈现出相同的日排放趋势.8:00、11:00、18:00、21:00左右出现污染物排放峰值,小时排放系数平均值分别为11%,6%,7%,13%.PM2.5排放高值区主要集中在北部、东部及部分南部地区,CO主要集中在北京和天津地区,SO2和NOx主要集中在天津和承德地区.  相似文献   

14.
邯郸市大气污染源排放清单建立及总量校验   总被引:1,自引:0,他引:1       下载免费PDF全文
邯郸作为"2+26"城市主要的重工业城市之一,位于京津冀南北传输通道的核心位置,在京津冀地区大气污染协同调控中处于重要地位.为改善当地空气质量,以邯郸市为研究对象,基于拉网式调查获取详细活动水平数据,结合相关排放因子,得到2016年邯郸市大气污染源排放清单;采用WRF-CMAQ(气象-空气质量)数值模型,模拟了2016年典型季节代表月(1月、4月、7月、10月)的空气质量,验证了数值模型的准确性;最后基于总量校验方法,反向估算了邯郸市典型污染物的排放总量,对初始大气污染源排放清单进行校验.结果表明:①2016年邯郸市SO2、NOx、TSP、PM10、PM2.5、CO、VOCs、NH3的总排放量分别为78 533、183 126、497 466、258 940、124 637、3 735 355、200 309、187 299 t.②工业源是SO2、NOx、PM2.5、CO和VOCs的主要排放源,分别占总排放量的74.5%、54.5%、30.6%、76.7%和28.1%;无组织扬尘源对TSP、PM10、PM2.5的贡献较大,分别占总排放量的58.5%、43.6%、30.3%;NH3的主要排放源为农畜氨及人体和其他氨,二者排放的NH3占总排放量的96.9%.③总量模型估算得到邯郸市PM2.5、SO2、NO2年排放量分别为152 739、79 405、206 549 t;对比分析校验前、后典型污染物排放发现,校验前的大气污染源排放清单可能低估了PM2.5和NOx的排放量.研究显示,邯郸市污染物排放量较大,工业源为主要排放源,建议相关部门加强对工业源的管控力度.   相似文献   

15.
《大气污染防治行动计划》实施以来,我国重点区域PM2.5浓度快速下降,但臭氧(O3)浓度逐步上升,大气污染控制形势已由单一的PM2.5控制转变为PM2.5和O3的协同控制. 了解PM2.5和O3对前体物排放变化和气象条件变化的响应,对制定PM2.5和O3协同控制策略具有重要意义. 本文通过使用FNL全球再分析资料和自下而上的排放清单ABaCAS-EI,结合三维空气质量模式和响应曲面模型,评估前体物变化和气象条件变化后PM2.5和O3浓度的响应,并依据解析的响应关系提出了前体物减排、联防联控区域划分和目标设定等方面的政策建议. 结果表明:①VOCs减排对降低各省份PM2.5和O3浓度均有利,NOx的减排量不足会导致京津冀、长三角地区的O3浓度和京津冀地区的PM2.5浓度增加,为避免PM2.5和O3年评价值反弹需要的VOCs与NOx减排比分别为15%~25%(PM2.5)和5%~90%(O3). ②O3污染防治需要更大范围的联防联控,对于京津冀地区,需要考虑引入河南省和山东省的联合控制,对于长三角和珠三角地区,还需要联合江西省、福建省进行控制. ③气象条件对PM2.5和O3背景值的影响较大,使用3年或5年滑动平均值可以有效降低气象条件年际变化对PM2.5和O3浓度的影响(对于PM2.5,2008—2019年其背景值极差的降幅分别为35%~81%或60%~86%;对于O3,极差的降幅分别为40%~67%或53%~87%). 采用多年滑动平均有助于科学设定和考核PM2.5和O3的控制目标. 研究显示:PM2.5和O3的协同控制依赖于NOx和VOCs的协同减排,其减排比例在不同地区存在差异;此外,科学的PM2.5和O3的协同控制还需要更大范围的联防联控和评价指标的持续更新.   相似文献   

16.
基于唐山市机动车定期环保检测数据获取不同类型车辆的本地年均行驶里程,建立城区内典型车辆的"里程-注册年"特征曲线.采用车载排放测试法获取唐山市典型国Ⅵ阶段轻重型汽车实际道路排放因子.利用COPERT模型进行机动车排放因子本地化修正,建立涵盖不同排放阶段和燃料动力类型的唐山市机动车排放清单,结合唐山市路网信息,建立基于ArcGIS的3km×3km高时空分辨率网格化排放清单,并分析了国三及以下中重型柴油车(简称高排放车)不同淘汰与DPF排放治理比例情景下机动车减排与投入成本效益.研究表明,2020年机动车CO,HC,NOx,PM2.5,PM10年排放量分别为92403.51,10034.53,70568.35,2036.51,2160.65t,其中:NOx,PM2.5和PM10排放主要来源于柴油车,分担率分别为92%,89%和89%;CO和HC排放主要来自汽油车,分担率分别为71%和73%.唐山市实施二环内国Ⅳ及以下柴油货车限行区政策后,二环内CO和HC年排放量削减率分别为22.41%和21.68%;而NOx,PM10和PM2.5污染物排放强度显著降低,年排放量削减率分别为78.60%,84.85%和84.79%.在高排放车淘汰与治理情景下,随着高排放车淘汰比例的增长,投入成本和NOx年均减排量呈线性上升趋势,且NOx减排效果更加显著,而PM减排辆略呈下降趋势.高排放车淘汰率每增长10%,NOx年均减排量增加892.41t,PM年均减排量减少7.56t,年投入成本增加1.13亿元.  相似文献   

17.
船舶排放是我国沿海地区重要的人为排放源,但现有的船舶排放评估研究大多只关注区域尺度的影响分析,而且忽视了排放清单的不确定性,这在一定程度上削弱了评估结果的可靠性.为此,本文利用WRF-SMOKE-CAMQ空气质量模型,定量评估了船舶排放及其不确定性对我国七大沿海港口城市夏季空气质量的影响,结果表明:船舶排放对我国主要沿海港口城市的SO2、NOx和PM2.5浓度贡献范围分别为16.5%~62.5%、21.9%~72.9%和5.9%~26.0%,尤其对宁波、青岛和深圳等港口城市空气质量的影响显著,主要是由于港口较高的船舶排放以及气象传输两方面原因造成的;如果考虑船舶排放清单的总量不确定性,船舶排放对沿海港口城市夏季SO2、NOx和PM2.5的影响分别呈现1.0~3.1,2.1~5.5,0.3~0.9μg/m3的波动;考虑船舶排放清单的时空分配不确定性,船舶排放对沿海港口城市夏季SO2、NOx和PM2.5的影响分别呈现1.9~15.7,5.1~29.3,0.6~2.5μg/m3的波动.可见,船舶排放清单的不确定性对沿海城市船舶排放贡献影响量化有明显的影响.所以在评估船舶排放对港口城市空气质量的影响时,要考虑船舶排放清单的不确定性,尤其是时空分配的不确定性.而合理的时空分配能够提高船舶排放清单的质量和对沿海空气质量模拟的准确性.  相似文献   

18.
以一辆国Ⅴ柴油公交车为研究对象,在重型底盘测功机上运行中国典型城市公交循环,研究了纯柴油(D100),体积混合比例分别为5%,10%和20%餐厨废弃油脂制生物柴油-柴油混合燃料(即B5,B10,B20)的颗粒物(PM)碳质组分排放特性.结果表明:国Ⅴ柴油公交车尾气颗粒物碳质组分包括有机碳(OC)和元素碳(EC),OC占73%~82%,OC的主要组分是OC2和OC3,生物柴油对车辆尾气颗粒物OC组成比例没有影响;随着生物柴油混合比例的增加,公交车尾气颗粒物OC和OC+EC排放呈降低的趋势,EC排放增加,且B10的OC排放较高;PM0.05~0.1,PM0.1~0.5,PM0.5~2.5,PM2.5~18 4个粒径段颗粒物中,PM0.1~0.5的OC和EC排放最高,PM2.5~18的EC排放几乎为零,生物柴油可改善公交车尾气超细颗粒(PM0.05~0.1)的OC排放,对公交尾气颗粒物EC排放基本没有影响;公交使用生物柴油混合燃料尾气颗粒物OC/EC减小,且PM0.05~0.1和PM0.5~2.5OC/EC降低幅度明显,对大气二次气溶胶的影响减弱.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号