首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 406 毫秒
1.
基于1980~2017年MERRA-2再分析产品中的气溶胶光学厚度(AOD)数据,结合趋势分析和时空地理加权回归模型(GTWR)等方法,分析中国AOD的时空变化特征,从时空异质性视角量化自然地理和人类活动对AOD的综合影响.结果表明,1980~2017年AOD以0.0028a-1的速率呈显著上升趋势,而2009~2017年AOD以0.0083a-1的速率呈显著下降趋势.2008年前后为AOD由升到降的转折期,可能与2007年生态文明建设和2008年全球经济危机有关.胡焕庸线以东地区为AOD高值区,以人为气溶胶为主,近40a来AOD值呈显著上升趋势;胡焕庸线以西地区为AOD低值区,以自然气溶胶为主,AOD值基本不变.气温、气压、黑炭气溶胶排放和硫酸盐气溶胶排放与AOD呈正相关,降水、风速、NDVI和GDP与AOD呈负相关.AOD与影响因子间的关系具有时空异质性.从时间变化来看,降水、风速、NDVI、GDP的回归系数具有一致性,而气温、气压、黑炭气溶胶排放、硫酸盐气溶胶排放在不同年份的回归系数有正有负;从空间变化来看,中国北方地区气温与AOD间呈负相关,南方地区二者呈正相关.  相似文献   

2.
基于上海地区2006~2021年逐日臭氧浓度数据以及同期气象要素和美国环境预报中心/国家大气研究中心(NCEP/NCER)再分析数据,分析了2006~2021年上海地区臭氧浓度变化特征和气候背景,进一步对比分析臭氧浓度异常年份的高空大气环流形势差异,并加入关键气象影响因子建立臭氧浓度月预报模型.结果表明,上海地区全年和夏半年臭氧浓度的平均值均呈现波动式上升趋势,且夏半年臭氧浓度和风速呈显著负相关(相关系数达-0.826),与静风出现频率以及低云量<20%出现日数呈显著正相关(相关系数分别为0.836和0.724).当夏半年西太平洋副热带高压强度偏强且位置偏西偏南时,上海易受偏西风异常环流影响,不利于海上洁净空气向上海输送,易引起高浓度臭氧污染.当夏半年地面射出长波辐射偏低时,有利于地面升温,易引起高浓度臭氧污染.加入太阳直接辐射、最高气温和风速作为外生变量的臭氧月预报模型对月预报效果提升明显,均方根误差减少47.7%,相关系数提升11.2%.  相似文献   

3.
为了进一步认识大气气溶胶对气候环境的影响,基于2017年Aqua MODIS C006气溶胶光学厚度(aerosol optical depth,AOD)产品、CERES SSF Aqua MODIS Edition 4A数据集的地表短波辐射以及地面观测太阳辐射数据,对2017年新疆地区AOD和地表太阳辐射年变化进行研究,并以沙尘和人类活动气溶胶丰富的南疆典型地区喀什为代表城市,采用AccuRT辐射传输模式定量化研究晴空时气溶胶对地表短波辐射的影响.结果表明:①地表太阳辐射月均值最大值出现在和田站的5月,为441.62 W·m-2,最小值出现在乌鲁木齐站点的12月,为37.03 W·m-2;CERES/SSF地表短波辐射资料与地面观测结果相比,阿克苏站、焉耆站和伊宁站的差距最小,喀什站和若羌站全年存在高估现象,其他站点存在不同程度的高低估现象.②2017年新疆地区AOD格点平均的年均值最小值为0.0175,最大值为0.4610,南疆地区的AOD整体高于北疆地区;2017年AOD格点春夏季的AOD均值分布与全年均值分布特征相似,其中春季的AOD高值区区域面积高于其他季节.③根据AccuRT计算,当AOD由0.05增加为0.56时,四季的地表向下短波总辐射均呈下降趋势,夏季下降幅度最大,由923.02 W·m-2变化为677.61 W·m-2,其次为春季和秋季,冬季下降幅度最小.AOD的减少变化导致的地表向下短波总辐射通量、直射辐射通量和散射辐射通量变化敏感度明显高于AOD增加所导致的变化敏感度.  相似文献   

4.
利用探空资料、NECP再分析资料、AERONET气溶胶反演资料等分析了北京地区一次典型灰霾天气过程的成因及气溶胶光学特性参数变化情况.结果表明:此次灰霾期间,稳定的环流形势、湿润的环境及逆温结构的存在是灰霾得以持续和发展的重要原因.灰霾期间AOD、PM2.5浓度逐渐增大,能见度逐渐降低,这可能与局地气溶胶的累积和相对湿度的增大有关,使气溶胶粒子的消光性增强.气溶胶的体积谱表现为双峰型结构,细粒子体积浓度峰值远大于粗粒子浓度峰值,且细粒子浓度峰值逐日增大,Angstrom波长指数在1.2~1.4之间,两参数均可表明此次灰霾过程的污染粒子以气溶胶细粒子为主;灰霾期间SSA逐日增大,表明气溶胶粒子的散射性逐渐增强,SSA随波长的变化主要呈现两种变化趋势,这与当日主控粒子的尺度有关.因气溶胶的作用,使到达地面的辐射通量减小.这些光学特性参量的变化为了解北京地区灰霾期间气溶胶特性及其气候效应提供了参考.  相似文献   

5.
重庆市城区大气气溶胶光学厚度的在线测量及特征研究   总被引:2,自引:1,他引:2  
利用CE-318型太阳光度计(CE-318)测定了重庆市城区2010年3月至2011年2月期间的太阳直接辐射量,反演了该地区大气气溶胶光学厚度(Aerosol optical depth,AOD),并对结果进行了分析.结果表明:重庆市城区上空大气AOD随波长增加而减小,Angstrom波长指数α=1.13±0.08,大气混浊指数β=0.57±0.14.受人为源排放的影响,空气较为混浊,且上空主要分布着城市-工业型气溶胶.AOD日变幅随波长增加而减小,且AOD在短波段变化比长波段变化更为明显.重庆市城区上空AOD(λ=500 nm)日变化大致分为5种类型:平缓型、上升型、下降型、凸型和凹型,其中,平缓型出现频率最低,凸型和上升型是主要变化类型.四季中AOD日变化特征在夏秋季较一致,冬春季较一致.AOD(λ=500 nm)全年主要呈现"V"字形特征,年均值为1.25±0.29,最低值出现在夏季,最高值出现在冬季;α全年变化范围在0.90~1.23,同AOD整体上呈负相关趋势,最低值出现在春季,最高值出现在夏季,且四季α值较大,表征气溶胶主控模态为细粒子,受人为源的排放影响较大.  相似文献   

6.
2003~2014年东北三省气溶胶光学厚度变化分析   总被引:4,自引:5,他引:4  
利用2003~2014年MODIS-Aqua气溶胶光学厚度(AOD)产品、DMSP卫星夜间灯光时间资料和基本气象资料,分析我国东北三省(辽宁、吉林、黑龙江)大气气溶胶光学厚度年际变化及季节变化的空间分布特征.结果表明,东北三省多年平均AOD空间分布存在由大连、沈阳、长春和哈尔滨等城市构成的一个高值带,呈东北-西南走向,多年平均AOD值为0.4~0.8;东北三省植被覆盖率较高的东部和北部是AOD的低值区,多年平均AOD小于0.3;东北三省AOD季节变化为AOD春季到夏季升高,秋季下降,冬季再次升高.东北三省AOD年际变化特征为大部分低值地区呈减小趋势,但以沈阳、长春和哈尔滨为轴线的东北-西南走向的高值区域呈增大趋势,反映了近10多年出现的空气质量两极分化趋势.此外研究了东北三省年均AOD在强、弱西北太平洋夏季风年时的空间分布差异,受地面风场影响,AOD在强季风年时较弱季风年偏低.  相似文献   

7.
气溶胶光学特性是研究区域大气污染特征的重要依据,也是研究气溶胶环境和气候效应的关键。利用2016年4-10月辽宁省铁岭地区的POM-02型太阳光度计观测资料和地面气象资料,分析了铁岭市大气气溶胶光学厚度(AOD)、Angstrom波长指数(α)和浑浊度指数(β)的变化特征,并基于广义相加模型(GAM)分析区域AOD与PM浓度以及气象因子间的相关关系。结果表明,4、5和7月的AOD与β相对较大,α较小;6、8-10月的AOD与β相对较小,α较大。GAM模型分析表明PM浓度、温度、风速、气压以及相对湿度对区域AOD影响显著,并与AOD间存在复杂的非线性关系。经广义交叉验证(GCV)得到GAM模型的调整R~2为0.740,表明该模型能够解释AOD 74.4%的变化。  相似文献   

8.
《环境科学与技术》2021,44(5):154-161
文章利用冬季空气质量指数、大气污染物浓度、气溶胶质量浓度、降水pH值以及地面气象要素、NCEP、ERSST_V3、GBL等资料,对岳阳市区新冠疫情前和疫情期间以及历史同期大气环境的变化进行对比,并对2次气溶胶质量浓度增长过程的气流后向轨迹及边界层扩散条件进行了分析。结果表明:疫情期间除O3外,其他污染物浓度均减小,且空气质量明显提升。主要是PM10、PM2.5、NO2浓度历史罕见减小导致的。疫情前和疫情期间酸雨频率基本相当,降水的酸性强度均为历史最弱。疫情期间气温明显偏高且偏东北风频率减小而偏南风频率增大、偏南风风速增大。疫情前气溶胶质量浓度增长过程中2支气流均来源于北方并以回流的方式从偏南方向影响岳阳,而疫情期间一支气流来源于北方而另一支气流来自海上。气溶胶质量浓度低、外源输送弱且输送时间短等使得疫情期间气溶胶质量浓度增长过程中污染程度较轻。近地层偏东北风频率减小而偏南风频率增大导致疫情期间气溶胶质量浓度增长幅度较疫情前偏小。  相似文献   

9.
艾比湖地区气溶胶光学特性分析   总被引:1,自引:0,他引:1  
张喆  丁建丽  王瑾杰 《环境科学》2020,41(8):3484-3491
精河县气溶胶光学特性的定量评估是理解艾比湖盐尘传输过程的关键.本文利用2019年精河县CE-318太阳光度计站点观测资料,分析了气溶胶光学厚度(AOD)和Angstr?m波长指数(α)的变化特征.结果表明AOD日变化呈单峰曲线,与α呈反向变化特征;气溶胶粒子浓度和主控模态具有明显的季节性差异,与夏、秋季相比,春季AOD较高且变化幅度剧烈,粗粒子气溶胶占主控地位,粒子粒径和变化幅度较大; AOD和α呈负相关关系,从春季到秋季,气溶胶逐渐从粗模态向细模态过渡;与夏季相比,春季局地气溶胶对风速、风向和相对湿度的变化较为敏感;温度不是导致局地气溶胶变化的内在因素,但与气溶胶粒子扩散能力成正比;非采暖期,精河县AOD高值主要受粗粒子为主的沙尘气溶胶的影响,小颗粒的气溶胶的增加以及气溶胶吸湿增长都不是造成该地区AOD增加的主要原因.  相似文献   

10.
珠江三角洲气溶胶光学厚度的观测研究   总被引:18,自引:6,他引:12  
利用2004年1月至2007年6月的多波段太阳光度计数据反演珠江三角洲地区的气溶胶光学厚度(AOD),对仪器定标方法和反演结果进行了分析,并以反演结果为基准,比对检验MODIS的AOD产品.分析表明:在使用Langley法进行仪器定标时,用迭代方法进行数据筛选处理,定标结果更为合理.统计结果显示:珠三角区域春季AOD值较大,秋夏季次之,冬季较小;4个站点AOD的季节变化特征具有一致性;珠三角区域AOD的年平均值大于0.7,气溶胶造成的到达地表的直接可见光辐射透过率衰减至少有50%一60%,造成严重的霾天气;从频率分布看,AOD值主要集中在0.4~0.6区间.4个站点的α值在1.2~I.6区间内所占的比例很高.频率分布类似,表明此区域内气溶胶粒子平均有效半径较小且较一致,同属于城市-工业型气溶胶类型;α与AOD没有明显的可辨析关系,通过样本统计和典型个例分析,表明区域内清洁与污染过程气溶胶粒子模态稳定,平均半径变化不大,粒子数浓度上的差别是产生消光效果不同的主要原因.以地面太阳光度计反演的AOD为基准,验证MODIS卫星遥感的AOD,结果表明,MODIS卫星遥感AOD在珠三角区域具有较好的量化精度,并初步建立珠三角区域卫星遥感AOD的订正公式.  相似文献   

11.
为探究南京秋季污染过程的特征和影响因素,利用MODIS(Moderate Resolution Imaging Spectroradiometer)传感器获得的气溶胶光学厚度(Aerosol Optical Depth)、波长指数(Angstrom Exponent)、火点数据及CALIPSO(Cloud-Aerosol Lidar And Infrared Pathfinder Satellite Observations)卫星数据和来自NECP、MICAPS的温度、相对湿度、风向风速等常规气象要素数据,对南京2015年10月、2016年9月两次污染过程进行分析.研究结果表明:两次污染过程的AE412-470值(埃斯特朗波长指数α)均高于1,由此判断两次污染均以人为排放产生的细粒子为主.但2015年10月的AE412-470值明显低于2016年9月,说明在2015年10月污染过程中粗粒子所占比重高于2016年9月.结合对后向轨迹的分析发现,南京地区2015年10月污染天气的发生还受长距离输送的影响,污染源主要为来自内蒙古、山西等地的污染型沙尘粒子.研究还发现,较高的相对湿度、较低的地表风速、低混合层高度及贴地逆温等气象条件会导致污染物难以扩散稀释而累积在南京地区,造成该区域在秋季出现较严重的污染天气.  相似文献   

12.
郑州地区大气气溶胶光学特性的地基遥感研究   总被引:6,自引:2,他引:4       下载免费PDF全文
根据自动跟踪扫描光度计观测资料,利用Bouguer-Lamber定律反演郑州地区2007年2~9月气溶胶光学厚度和波长指数,分析郑州地区该时段气溶胶光学特性的季节变化和日变化情况.结果表明,郑州地区2007年2~9月1020nm气溶胶光学厚度为0.49±0.09;870nm气溶胶光学厚度为0.60±0.13;670nm气溶胶光学厚度为0.76±0.20;440nm气溶胶光学厚度为1.08±0.34.季节变化以夏季最高,秋冬次之,春季最低.波长指数春季为0.37~0.69,夏季为1.18~1.26.春季有50%以上的天气,扬尘粒子为主控粒子,而夏季城市-工业气溶胶是主控粒子之一.日变化规律与近地面污染物浓度变化一致,8:30和17:00左右出现峰值,11:30出现谷值,由于气温上升,湍流剧烈,12:30左右气溶胶光学厚度有1个小高峰,但仍处于全天的低值区.  相似文献   

13.
气溶胶光学厚度(AOD)在一定程度上可以反映城市上空大气污染状况,本文以乌鲁木齐市为研究区,利用2015~2019年MODIS L1B 1 km数据,在IDL平台下调用6S辐射传输模型构建查找表(LUT),结合地面暗像元法反演得到近5年乌鲁木齐AOD,采用标准差椭圆、空间自相关分析和趋势分析等方法分析研究区AOD的时空分布特征,并利用统计法分析气象因子对AOD的影响。结果表明:(1)2015~2019年,乌鲁木齐市AOD先增加后减小,整体没有明显变化,趋势近于0,年均AOD在0~1.95之间。在空间上,AOD呈现西南-东北方向浓度逐渐增加的趋势。AOD高值区(1.67~1.95)主要分布在达坂城区、头屯河区及沙依巴克区。(2)研究区冬季和秋季AOD值相对春季和夏季偏高,冬季AOD平均值可以达到0.63。(3)2015~2019年研究区AOD呈正的空间自相关。AOD的Moran I值呈先增加后减小的趋势,最大值和最小值分别为0.991和0.979。近5年研究区AOD的空间分布中心主要集中在达坂城区和乌鲁木齐县,AOD在空间上呈现先扩散后逐渐集中的趋势,标准偏差椭圆先增大后减小。(4)研究...  相似文献   

14.
This study finds out seasonal and monthly variations in Aerosol Optical Depth (AOD) over eastern and western routes of China Pakistan Economic Corridor (CPEC) and the relationship between AOD and meteorological parameters (i.e., temperature, rainfall and wind speed). The Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging Spectroradiometer (MISR) data was used from the terra satellite for the period of 2000-2016. This study aims to overtake the conventional view of the purpose of using the satellite datasets. This study takes on to the concept that validated satellite data sets rather should be used for the analysis instead of just validation specifically for our study region. Hence, after comparing MODIS AOD with MISR AOD, only MISR AOD dataset is used for further analysis. The results show a decreasing trend of AOD in summer season, a positive relationship between temperature and AOD during winter and spring seasons whereas a positive relationship between wind speed and AOD in winter and spring seasons over eastern and western routes. Periodic analysis of MODIS AOD and MISR AOD depicts May-Aug as the peak period of aerosol concentration over central Pakistan. The inter-annual analysis shows the aerosol trend remained higher during summer season however rainfall shows the washout effect. Eastern route has higher standard deviation and larger values for aerosol prevalence as compared to western route. The trajectory analysis using the HYSPLIT model suggests the bias of air mass trajectory caused deviation in the aerosol trend in the year 2014.  相似文献   

15.
基于卫星遥感和地面观测资料的霾过程分析   总被引:3,自引:0,他引:3  
利用MODIS、CALIPSO卫星观测的气溶胶产品和地面空气质量、气象资料,并结合HYSPLIT后向轨迹模式,探讨了2013年12月1~9日长江三角洲地区一次持续性的严重霾污染过程的形成、特征及其可能来源.研究表明,此次污染过程中长江三角洲地区8个代表城市大部分时间处于霾污染的状况下,气溶胶光学厚度(AOD)显著增长,空气质量指数(AQI)均达到或超过污染限值,且以中度以上污染为主.污染发生时,气溶胶主要存在于地面至2km的大气层内,尤其是850m以下.根据体积退偏比和色比得出球形气溶胶出现频率高于非球形气溶胶,大粒径气溶胶出现频率高于小粒径气溶胶,进而得到污染期间气溶胶的主要类型为“污染型”气溶胶.污染物的近距离的输送和持续小风,无降水的静稳气象条件而导致污染物难以扩散稀释而累积在本地是造成长江三角洲区域污染范围广、时间长、程度重的主要原因.  相似文献   

16.
为研究西南涡对气溶胶光学厚度(AOD)的影响,本研究利用2008—2010年的西南涡个例数据与对应时间段的中分辨率成像光谱仪(MODIS)卫星遥感观测AOD数据,并结合降水量、风速、相对湿度、温度等气象资料进行了分析研究.结果发现,2008—2010年产生干涡31个,强降水涡29个,弱降水涡26个.总体而言,干涡过境后使AOD增加而降水涡过境后使AOD减少,且弱降水涡比强降水涡削减作用强.春季产生的西南涡对AOD的影响最大,夏季产生的干涡过境后会使AOD减少,夏季的弱降水涡过境后会使AOD增加.不同季节产生的不同类型西南涡过境后致使AOD变化的主导气象因子不同.总体而言,较大的风速对AOD具有显著的削减作用;干涡中较小的风速、温度和相对湿度是使AOD增加的主要因素;弱降水涡中较大的风速和产生的降水是使AOD减少的主要因素,但夏季产生的弱降水涡中影响AOD的主要因素是风速、温度和湿度;强降水涡中无明显的主导因素.  相似文献   

17.
北京地区冬夏季持续性雾-霾发生的环境气象条件对比分析   总被引:29,自引:14,他引:15  
在北京地区,除冬季供暖期外盛夏也是雾-霾天气的高发季节,与我国南方不同.使用微波辐射仪、风廓线和常规气象探测资料、NCEP再分析资料以及大气成分观测结果,通过对比分析揭示了冬、夏季持续6 d的2个雾-霾过程形成和维持机制的异同.冬季雾-霾过程出现在高空西北气流、低层多短波活动的背景下,其形成和维持的主要机制是边界层内始终有逆温层、地面弱风场、底层湿度逐渐增大.逆温层昼高夜低、湿度昼小夜大是影响PM2.5质量浓度和能见度日变化的重要环境因子.在雾-霾天气持续期间地面弱风场能够维持主要源于冷空气势力弱、常不能影响到地面.此外,入夜后地面迅速辐射降温、边界层上层有暖平流以及空气过山后下沉增温在逆温层的形成中起了关键作用.然而,对于夏季持续性雾-霾天气,气溶胶区域输送、环境大气保持对流性稳定、空气的高饱和度是其发生的重要条件.在副热带高压长时间控制下对流层低层盛行偏南风,北京的PM2.5质量浓度随着偏南风风速增大升高.对流层底层系统性偏南风与北京附近的山谷风共同构成了从北京以南气溶胶累积地向北输送的机制.夏季雾-霾过程低层没有逆温,但是北京上空一直维持超过200 J·kG-1的对流抑制能量,它同样限制了污染物的垂直扩散.夏季自由对流高度也存在昼夜变化,其对PM2.5浓度和能见度的作用与逆温层高度升降相同.因此,冬、夏个例分别代表了2种不同类型的持续性雾-霾过程,导致差异的根本原因在于大气环流型.  相似文献   

18.
为研究长株潭城市群大气污染时空演化特征及潜在传输规律,采用2008~2016年中分辨率成像光谱仪(MODIS)MAIAC气溶胶光学厚度(AOD)数据,分析长株潭城市群近10a来AOD演化特征.在此基础上,利用拉格朗日混合型单粒子轨迹模式(HYSPLIT)及全球资料同化系统(GDAS)气象要素数据研究大气污染物潜在传输规律.结果表明,长株潭城市群AOD呈现下降趋势,并以春、夏季下降幅度最为显著.空间上,AOD总体呈北高南低、西高东低分布特征,并与经济发展、城市化水平等因素密切相关.此外,长株潭城市群大气污染物向外长距离传输(>1500km)、中距离传输(500~1500km)以及局地传输(0~500km)比率分别为17.89%、36.45%和45.66%,主要影响湖北、江西、安徽、广东、广西、江苏和浙江等地区.研究结果有助于理解长株潭城市群大气污染的时空变化规律,同时为区域“联防联控”、建设“美丽中国”提供科学的辅助依据.  相似文献   

19.
基于2008—2017年的MODIS气溶胶光学厚度(AOD)数据、实测气象观测数据,探究了长三角地区的AOD时空分布规律,并分析了AOD与多个气象要素的相关性,以对AOD的时空变化作出合理的气象解释。结果表明:1)从时间分布来看,长三角地区年均AOD呈周期性波动变化趋势,2011年出现峰值0.83,2014年AOD开始迅速下降,至2017年达到最低,较2014年相比下降22.8%,这与政府实施的固体颗粒物控制排放政策有关;每年夏季(6,7月)AOD出现最大值,这主要是海洋上大量的海盐气溶胶颗粒和水汽扩散到内陆地区造成的。2)从空间分布来看,长三角AOD高值区均分布在江苏南部以及徐州一带,2014年以来AOD高值范围逐步缩小;浙江地区AOD明显低于苏沪地区,这与浙江地势高起伏较大密切相关。3)从相关性方面来看,AOD变化与气温、相对湿度变化之间呈较好的正相关性,而与风速的相关性较复杂,这可能受风向的不确定影响;夏季气温高、湿度大,因此出现大范围的AOD高值区;冬季气温低、空气中水汽含量低,固体颗粒物对于AOD贡献率较大,因此冬季AOD变化能够在一定程度上反映空气污染状况。该研究结果可为长三角地区气溶胶评估、空气质量归因分析、空气质量改善等相关研究提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号