首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
多生态类型湖泊N_2O生成与排放的空间异质性给准确地估算湖泊N_2O通量及评估湖泊N_2O排放的重要性带来了很大的不确定性,有关多生态类型湖泊N_2O生成与排放特征及内在机制的研究相对较少.本研究对夏季太湖典型草/藻型湖区水-气界面N_2O通量、水体溶存浓度以及水-土界面N_2O通量进行了原位观测及室内分析,并针对影响N_2O生成与排放的主要环境因子进行了室内微环境实验.结果表明,夏季水-气界面N_2O通量、水体溶存N_2O浓度及水-土界面N_2O通量大致上呈现为挺水植物湖区藻型湖区沉水植物湖区,水-气界面通量分别为(115.807±7.583)、(79.768±1.842)和(3.685±0.295)μmol·(m2·h)-1;水体溶存N_2O浓度分别为:(0.051±0)、(0.029±0.001)和(0.018±0)μmol·L~(-1),水-土界面通量分别为:(178.275±3.666)、(160.685±0.642)和(75.665±1.016)μmol·(m2·h)-1;空间差异原因可归结为生长的植物以及水体中无机氮浓度的差异.水-土界面微环境实验结果表明,外加硝酸盐及有机碳源可以显著增加沉积物N_2O生成潜力,而上覆水中高浓度NH+4-N会抑制沉积物N_2O生成,随温度升高,沉积物N_2O生成速率显著增加,这表明夏季水-土界面N_2O的生成与排放主要受硝酸盐及有机碳的限制,同时也受温度的影响.  相似文献   

2.
利用静态箱法研究了夏季降雨对上海市城市草坪温室气体排放的影响,结果表明,晴天上海市城市草坪是N_2O和CO_2的源,CH_4的汇;降雨会削弱N_2O和CO_2排放,使得草坪由CH_4的汇转变为排放源。N_2O通量在晴天和雨后分别为1.37±3.47和1.06±2.67μmol/(m2·h),CO_2通量在晴天和雨后分别为13.33±8.59和6.46±2.61mmol/(m~2·h),CH_4通量在晴天和降雨后分别为-0.08±3.77和0.22±6.27μmol/(m~2·h)。明暗箱对比实验显示,草坪生态系统能有效缓解土壤对大气N_2O和CO_2的贡献。N_2O和CO_2通量与光合有效辐射和温度呈显著负相关(p0.01),CH_4和二者相关性不显著。降雨通过降低光合作用和温度,间接削弱城市草坪CO_2和N_2O的排放。降雨可能通过提高含水率抑制城市草坪对CH_4的吸收,促进其排放。  相似文献   

3.
以闽江河口鳝鱼滩的短叶茳芏湿地及其转化而成的养虾塘为研究对象,于2016年5~11月,采用静态箱-气相色谱法和悬浮箱-气相色谱法分别对白天短叶茳芏湿地和养虾塘水-气界面N_2O通量进行观测,并同步测定短叶茳芏湿地间隙水化学指标和养虾塘水体理化指标.结果表明,观测期间短叶茳芏湿地和养虾塘水-气界面N_2O通量变化范围分别为-113.11~206.57μg/(m~2·h)和-2.27~143.25μg/(m2·h),均值分别为(38.35±24.44)μg/(m2·h)和(46.44±15.93)μg/(m2·h),整体均表现为大气中N_2O的排放源,但两者N_2O通量无显著差异(P0.05).短叶茳芏湿地N_2O通量与土壤间隙水的盐度和营养盐呈显著正相关(P0.05),养虾塘水-气界面N_2O通量与水深、水体盐度和营养盐含量均呈极显著正相关关系(P0.01).  相似文献   

4.
杨乐  李贺鹏  孙滨峰  岳春雷 《环境科学》2017,38(12):5012-5019
新安江水库是我国华东地区最大的水库,面积580 km2,平均深度30 m,水库水体处于中贫营养状态.为了研究新安江水库中CO_2排放的时空变化特征,2014年12月至2015年12月采用静态浮箱法收集水库表面以分子扩散方式排放的CO_2,使用气相色谱仪分析CO_2浓度.结果表明,新安江水库CO_2排放通量从上游入库河流[(120.39±135.41)mg·(m~2·h)~(-1)]至库区主体[(36.65~61.94)mg·(m~2·h)~(-1)]呈下降趋势,而大坝下游河流中CO_2排放通量[(1 535.00±1 447.46)mg·(m~2·h)~(-1)]显著增加,约分别是上游入库河流和库区主体的13倍和25~42倍.但随着与大坝距离增加,大坝下游河流中CO_2排放通量显著下降,如7 km处的CO_2排放通量仅为出库水体处的20%.在库区主体中,CO_2排放通量具有明显的季节变化:CO_2排放通量在秋、冬季时为正值,最大值出现在冬季(12月或1月),说明此时库区表层水体是CO_2排放源;而CO_2排放通量在春、夏季为负值,最小值出现在春季(3、4或5月),说明此时库区表层水体是CO_2吸收汇,这可能与春、夏季时水体中藻类繁殖有关.所以,在调查水库表面CO_2排放时,应对水库的上游入库河流、库区主体和坝下河流进行全面长期的观测,才能避免低估水库中CO_2排放总量.  相似文献   

5.
程芳  丁帅  刘素美  宋国栋  张桂玲 《环境科学》2019,40(9):4230-4237
氧化亚氮(N_2O)是一种重要温室气体,对全球变暖具有重要影响.河流和水库是释放N_2O的活跃区域,但是目前对于温带和亚热带水库及其下游河道释放N_2O的研究相对较少.分别于2009年9~10月和2016年10月对长江三峡水库及其下游干流进行了调查,对库区水体溶解N_2O的浓度分布、释放通量及其影响因素进行了研究,探讨了筑坝和水库运行对长江N_2O分布和释放的可能影响.结果表明秋季三峡库区表层(~0 m)、底层(6~103 m)水体溶解N_2O平均值为(12. 49±1. 75)nmol·L-1和(11. 21±0. 91) nmol·L-1.秋季库区水体N_2O浓度变化较小,和三峡坝下干流站位无显著差异(P 0. 05).三峡库区水体N_2O与氨氮(NH4+)、亚硝态氮(NO2-)呈显著负相关(P 0. 05; P 0. 01),与硝态氮(NO3-)呈正相关(P 0. 01). 2016年和2009年10月三峡水库表层N_2O均处于过饱和状态,饱和度范围分别为114%~187%和122%~170%,库区N_2O平均释放通量分别为(4. 6±2. 4)μmol·(m2·d)-1和(16. 6±4. 9)μmol·(m2·d)-1.两次调查中大坝下游N_2O平均释放通量(6. 0±7. 0)μmol·(m2·d)-1,虽然三峡库区水面释放N_2O通量低于全球水库的平均水平,但是三峡库区仍是大气N_2O不可忽视的源.大坝下泄水和发电未造成库区和大坝下游N_2O浓度出现显著差异.运行多年以来三峡库区已进入平稳期,2009年和2016年秋季N_2O浓度无明显变化.  相似文献   

6.
利用静态箱-气相色谱法对夏季(7月、8月和9月)长江河口湿地芦苇植被CO_2、CH_4和N_2O的叶面通量、茎秆扩散速率以及沉积物通量的日变化进行研究。结果显示,通过芦苇叶片排放的N_2O与CH_4的量分别为2.99μg/(m~2·h)和15.36μg/(m~2·h),CO_2则呈现白天吸收(-120.86 mg/(m~2·h))、夜间排放(69.39 mg/(m~2·h))的特点。芦苇茎秆N_2O、CH_4和CO_2平均扩散速率分别为1.96μg/h、142.45μg/h和10.69 mg/h,沉积物平均排放通量为N_2O 8.18μg/(m~2·h)、CH_41.58 mg/(m~2·h)、CO_2169.66 mg/(m~2·h)。芦苇茎秆和沉积物界面CH_4和CO_2的排放均呈现出明显的"单峰型"昼夜变化规律,其排放峰值集中在日照及温度最高的9:00至15:00。芦苇植株是影响温室气体排放变化的因素之一。芦苇植株在光合作用下吸收CO_2并促进CH_4的排放,而芦苇发达的根系及茎秆是温室气体排放的主要途径。同时,Pearson相关性分析表明温度对芦苇群落CH_4和NO2的排放影响显著,但与CO_2通量的相关性不明显。土壤氧化还原电位对3种气体的排放均有显著影响。  相似文献   

7.
地膜覆盖对菜地生态系统N2O排放的影响   总被引:1,自引:0,他引:1  
为了探讨地膜覆盖对菜地N_2O的排放通量、土壤剖面N_2O浓度以及土壤温度和湿度的影响,选取西南地区常见菜地(辣椒-萝卜轮作)为研究对象,采用静态暗箱/气相色谱法,进行了为期1 a的野外观测实验.结果表明,在辣椒季,常规处理(不覆膜)N_2O的平均排放通量为1000.0μg·(m~2·h)~(-1),覆膜处理为400.6μg·(m~2·h)~(-1),覆膜显著低于常规处理(P0.05);而在萝卜季,N_2O的平均排放通量则表现为覆膜处理[128.1μg·(m~2·h)~(-1)]高于常规处理[107.8μg·(m~2·h)~(-1)],但两者差异未达到显著水平(P0.05).覆膜和常规菜地土壤中N_2O含量均基本随土层深度的增加而增加,表现为:30 cm20cm10 cm,相同处理各层次土壤N_2O含量间均呈显著相关,不同处理相同深度处的土壤N_2O含量间也存在显著的正相关关系.对不同土层中的N_2O含量与地表N_2O排放通量的相关性分析可得出,常规处理各土层处的N_2O含量与地表N_2O排放通量呈显著正相关关系.覆膜处理的N_2O排放通量仅与30 cm深土壤中的N_2O含量存在显著正相关关系.通过对土壤湿度和温度的观测可以得出,地膜覆盖对土壤的增温效应在夏季更加明显,对土壤的保水作用在秋冬季更加突出.相关性分析和主成分分析结果表明,土壤中氮素形态是决定农田N_2O排放最重要的因素,其中常规菜地N_2O排放主要受土壤中总氮含量的影响,而覆膜菜地N_2O的排放对土壤中无机态氮含量的变化更加敏感.  相似文献   

8.
田琳琳  王正  朱波 《环境科学》2018,39(12):5391-5399
农业源溪流与农田生态系统有着紧密的水文连接,其会随着农业非点源氮(N)污染的加剧而成为重要的N汇和氧化亚氮(N_2O)间接排放源.本研究采用静态暗箱-气相色谱法于2015年6~9月(所研究区域的雨季)原位测定了长江上游紫色土丘陵区农业源溪流的N_2O间接排放通量.结果表明,农业源溪流雨季中N_2O平均排放通量为12. 8μg·(m~2·h)~(-1),接近其所在区域内同季节农田的N_2O直接排放水平,是重要的农业N_2O间接排放源.该农业源溪流中N_2O间接排放系数值(EF5r=0. 01%)远低于IPCC的建议值(0. 25%)和重新计算的全球平均值(0. 20%),然而,全球EF5r的现有数据量仍十分有限、且有较大的空间差异,应加强对此类N_2O间接排放的研究,从而进一步修正EF5r的精度、减少N_2O间接排放估算的误差.本研究的N_2O间接排放通量与水中NO-3-N浓度正相关,反硝化是N_2O的主要产生过程.雨季中较强的降雨(如连续降雨日内降雨 9 mm)可促进溪流中NO-3-N浓度在雨后短期内急剧升高,进而激发水中N_2O间接排放通量的明显增加.  相似文献   

9.
快速城市化区河流温室气体排放的时空特征及驱动因素   总被引:4,自引:3,他引:1  
河流是大气温室气体重要的排放源,近十多年来全球城市化导致河流生态系统各要素发生改变,对河流水体温室气体排放产生影响.为研究快速城市化区不同土地利用方式下河流温室气体排放的时空特征及其影响因素,采用薄边界层模型法,于2014年9月(秋季)和12月(冬季)及2015年3月(春季)和6月(夏季)的晴天对重庆市区内梁滩河干、支流水体pCO_2、CH_4、N_2O溶存浓度进行监测.结果表明,梁滩河干、支流水体pCO_2范围为(23. 38±34. 89)~(1395. 33±55. 45) Pa、CH_4溶存浓度范围(65. 09±28. 09)~(6 021. 36±94. 36) nmol·L~(-1)、N_2O溶存浓度范围为(29. 47±5. 16)~(510. 28±18. 34)nmol·L~(-1); CO_2、CH_4和N_2O排放通量分别为-6. 1~786. 9、0. 31~27. 62和0. 06~1. 08 mmol·(m~2·d)~(-1);流域水体温室气体浓度空间格局与快速城市化带来的污染负荷空间梯度吻合,干流温室气体浓度与通量从上游向下游均呈先增加后降低,在城市化速度最快的中游出现峰值,其中城市河段CO_2和CH_4浓度约为非城市河段的2倍,同时支流水体自上游农业区向下游城市区呈显著增加;由于受到降雨、温度、外源输入的综合影响,河流CO_2排放通量呈秋季冬季夏季春季的季节模式,CH_4排放通量春季最高夏季最低,N_2O排放通量季节差异不显著.流域水体碳、氮含量均较高,水体CO_2的产生和排放不受生源要素限制,但受水温、pH、DO、叶绿素a等生物代谢因子影响; CH_4的产生和排放受水体碳、氮、磷含量和外源污水输入的共同驱动; N_2O的产生和排放主要受高N_2O浓度的城市污水排放影响.本研究认为流域快速城市化加快了河流水体温室气体排放,形成排放热源,因此城市河流温室气体排放对全球河流排放通量的贡献可能被忽视,在未来研究中应受到更多关注.  相似文献   

10.
在秦岭南坡火地塘林区天然次生油松林内选取上、中、下3个坡位,采用静态箱-气相色谱法对土壤CO_2、CH_4、N_2O通量进行了1年的监测.结果表明,坡位间土壤质地和水分的差别是引起不同坡位CO_2与N_2O通量差异的主要原因:下坡位土质为壤土,水分适宜,CO_2平均排放量为(156.49±9.72)mg·m~(-2)·h~(-1),CH_4平均吸收量为(77.43±14.27)μg·m~(-2)·h~(-1),都处于3个坡位间最高水平;中坡位土质为粉砂壤土,土壤粒径小,透气性差,CO_2排放量和CH_4吸收量均为3个坡位间的最小值,N_2O平均排放量为(9.57±0.66)μg·m~(-2)·h~(-1),为3个坡位间的最高值,且显著高于上坡位土壤N_2O通量(p0.01);上坡位土质为砂壤土,土壤孔隙度大且地表植被少,N_2O平均排放量为(5.59±0.74)μg·m~(-2)·h~(-1),为3个坡位间的最小值.总体来说,油松林土壤是CO_2、N_2O的排放源,是CH_4的吸收汇.3个坡位CO_2年通量具有明显的季节规律,表现为倒"S"形变化,且与土壤温度显著正相关(p0.01).受冻融循环的影响,N_2O主要在非生长季大量排放;生长季末期,受降雨事件影响,油松林中坡位出现N_2O吸收峰值.生长季上、下坡位CH_4吸收峰值的出现同样伴随着降雨事件的发生,非生长季,中坡位因土壤水分过高而出现短暂的CH_4排放现象.不同坡位土壤温室气体的全球增温潜势(Global Warming Potential,GWP)从大到小依次是上坡位、下坡位和中坡位.  相似文献   

11.
太湖地区湖水与河水中溶解N2O及其排放   总被引:3,自引:0,他引:3  
水体是N2O排放的重要来源.2000-09~2001-09,每月2次采样(重复3次)连续监测太湖地区太湖和大运河水体N2O排放通量和水中溶解的N2O浓度,还同时监测不同深度水样中的N2O浓度.结果表明,太湖N2O-N的年均排放通量为3.53 μg/(m2@h),而大运河已高达122.5,μg/(m2@h).太湖湖水中溶解N2-O-N浓度为0.36μg/L,大运河河水中浓度高达11.31μg/L,浅水型水体是N2O排放的源.结果还表明,不同深度水中N2O浓度差异不明显,而时间差异显著.水面N2O的排放通量和水中溶解的N2O浓度呈显著正相关关系,二者又都与水温呈显著正相关.  相似文献   

12.
小型池塘作为内陆水体的一部分,是被忽视的温室气体重要排放源.本研究主要利用通量-梯度方法测量长江三角洲地区的一处小型池塘水-气界面温室气体(CO_2和CH_4)交换通量.结果表明:1零梯度测试结果显示本套通量-梯度系统测量H_2O、CO_2和CH_4通量的精度分别为7.525 W·m-2、0.022 mg·(m2·s)-1、0.054μg·(m2·s)-1,并且在正常实验观测期间3种气体(H_2O、CO_2和CH_4)的通量值分别有84%、80%和94%的结果高于零梯度测试精度,以上结果可以保证本套通量-梯度系统具有足够的精度测量池塘水-气界面温室气体交换通量;2通量-梯度计算结果表明此小型池塘在夏季为CO_2和CH_4的排放源,其排放通量平均值分别为0.038 mg·(m2·s)-1和0.889μg·(m2·s)-1,其中CH_4排放通量远高于内陆湖泊甲烷排放通量的中值,说明小型池塘的温室气体排放量是估算内陆水体温室气体排放量特别是CH_4排放量中不可忽视的重要量值,本研究结果可为准确估算区域温室气体排放量提供科学参考.  相似文献   

13.
湿地是温室气体氧化亚氮(N_2O)重要的源或汇,盐碱湿地作为湿地的重要组成部分,研究其N_2O排放对于探究盐碱湿地N_2O产生的硝化作用机制及评估其在温室效应中的作用具有重要意义.本文对代表性盐碱湿地——扎龙芦苇沼泽湿地生长季的N_2O释放量及相关环境因子进行了研究.结果表明,生长季N_2O通量呈波动性下降趋势,最大值出现在7月中旬,平均排放通量为(37. 49±15. 75)μg·(m2·h)-1,表现为N_2O的释放"源". N_2O通量与不同深度土层温度存在显著正相关关系(P 0. 05),且上层土温对N_2O排放的影响程度高于深层土;淹水期间N_2O通量与积水深度呈显著负相关关系(P 0. 05);且土壤TOC和TN含量较低,N_2O通量与0~40 cm土层NH+4-N含量呈显著正相关关系(P 0. 05),而与NO-3-N含量没有关系,硝化作用程度要比反硝化强;此外,土壤氨氧化菌活性与0~20 cm土层温度存在极显著正相关关系(P 0. 01),且N_2O通量与氨氧化菌活性也呈极显著的线性正相关关系(P 0. 001),表明盐碱湿地的N_2O释放受硝化作用影响巨大.  相似文献   

14.
节水灌溉是现代农业的发展趋势,为研究节水灌溉措施对农田土壤温室气体排放的影响,采用静态箱暗箱法研究了微喷水肥一体化(微喷)与传统漫灌方式下华北平原西部2013~2014年冬小麦田土壤CO_2及N_2O排放通量的变化特征及微喷方式下垂直微喷管不同距离的3个空间位置土壤CO_2、N_2O排放通量的空间变化.利用根排除法分析土壤呼吸组分,并估算不同灌溉方式下农田碳收支状况.结果表明:1微喷与漫灌方式下小麦田土壤CO_2排放通量平均值分别为418.19mg·(m~2·h)~(-1)和372.14 mg·(m~2·h)~(-1),两种灌溉方式间CO_2排放通量无显著差异,累积排放量分别为2 150.6 g·m~(-2)及1 904.6 g·m~(-2).2返青期-成熟期微喷方式下距离微喷管不同距离的3个位置土壤CO_2累积排放量表现为距离微喷管近的土壤CO_2排放量最大,但无明显差异.3微喷和漫灌方式下,小麦生长季土壤异养呼吸排放量(以C计)分别为468.49 g·m~(-2)和427.31 g·m~(-2),净初级生产力(以C计)分别为1 988.21 g·m~(-2)和1 770.54 g·m~(-2),生长生育期小麦田碳汇(以C计)分别为1 519.72 g·m~(-2)和1 343.24 g·m~(-2).4微喷与漫灌处理小麦生长季土壤N_2O排放通量的平均值分别为50.77μg·(m~2·h)~(-1)和28.81μg·(m~2·h)~(-1),两种灌溉方式间N_2O排放通量无显著差异,累积排放量分别为272.67 mg·m~(-2)及154.08 mg·m~(-2).5小麦返青期-成熟期微喷方式下3个空间位置土壤N_2O排放通量表现为距离微喷管越远,N_2O累积排放量越小,但处理间无显著性差异.可见,小麦田由传统漫灌转变为微喷节水灌溉后,农田土壤CO_2和N_2O排放通量均有增加,但农田碳汇强度也增加了.  相似文献   

15.
闽江河口养殖塘水体溶存氧化亚氮浓度及扩散通量研究   总被引:2,自引:0,他引:2  
水产养殖生态系统由于其高氮负荷而成为氧化亚氮(N_2O)的潜在释放源.本文以福建闽江河口养虾塘为研究对象,采用静态顶空-气相色谱法测定分析了表层水体溶存N_2O浓度和饱和度,基于薄边界层模型计算了水-气界面N_2O扩散通量,在此基础上结合气象要素与水环境因子分析其主要影响因素.结果表明,养殖塘水体溶存N_2O浓度和饱和度的均值分别为17.96 nmol·L~(-1)和198.03%,时间变化上表现为养殖中期显著高于养殖末期和初期,且具有一定的日变化特征.相关分析表明,N_2O浓度及饱和度与温度、水体NH~+_4-N和叶绿素a浓度呈显著正相关(p0.05),与气压、风速和水体pH值呈显著负相关(p0.05).LM86、W92和RC01模型估算的养殖塘水-气界面N_2O扩散通量的均值分别为20.80、183.75和298.52 nmol·m~(-2)·h~(-1),3种扩散通量均呈现出随着养殖时间推移显著增加的特征,风速和水体溶存N_2O是影响河口养殖塘N_2O扩散通量的重要因子.N_2O扩散通量与扩散系数的取值密切相关,但不同模型方程计算得出的扩散系数存在显著差异,比较发现,RC01模型更适合河口区养殖塘水-气界面N_2O扩散通量估算.本研究结果可为完善水产养殖生态系统的N_2O排放清单编制和近海水环境保护提供一定的科学依据.  相似文献   

16.
为了探讨炉渣与生物炭施加对稻田温室气体的排放是否具有后续效应,于2015年早、晚稻秧苗移栽前对稻田进行施加生物炭(B)、炉渣(S)和生物炭+炉渣(混施)处理(BS),以不施加处理作为对照(CK). 2 a后(2017年)在早、晚稻生长期,分别测定了不同试验组稻田温室气体CO_2、CH_4和N_2O的排放通量.结果表明,在水稻生长期,对照、生物炭、炉渣和混施处理CO_2的平均排放通量分别为(1 723. 66±194. 56)、(1 245. 52±155. 05)、(1 140. 29±79. 68)和(1 055. 83±62. 13) mg·(m~2·h)~(-1),生物炭、炉渣和混施这3种施加处理CO_2的排放通量均比对照组有显著降低(P 0. 05),降低比例分别达27. 74%、33. 84%和38. 75%. CH_4的平均排放通量为(0. 45±0. 03)、(0. 40±0. 05)、(0. 36±0. 10)和(0. 25±0. 04) mg·(m~2·h)~(-1),各处理组与对照相比均降低了CH_4的排放通量,降低比例分别为11. 11%、20. 00%和44. 44%,但未到达显著差异(P 0. 05). N_2O在不同处理组的平均排放通量为(62. 47±27. 00)、(115. 09±30. 94)、(79. 75±24. 98)和(112. 68±23. 59)μg·(m~2·h)~(-1).与对照相比,各处理组均增加了N_2O的排放通量,升高比例分别达84. 23%、27. 66%和80. 37%.全球综合增温潜势表明,施加处理增加了早、晚稻稻田生态系统的综合增温潜势.说明,炉渣和生物炭施加处理2 a之后,对减排作用效果不明显.  相似文献   

17.
研究分析了我国20世纪90年代以来科学工作者利用静态箱-气相色谱法对内蒙古呼伦贝尔草原和锡林郭勒草原、青藏高寒草原等不同草原类型所开展的日变化通量观测数据并进行了对比分析研究.结果表明:我国草地N2O通量的日变化规律明显,日变化形式呈多峰型,我国草地均表现为N2O排放源,日均通量的对比顺序是:贝加尔针茅草甸草原>羊草草甸草原>羊草典型草原>高寒草甸[(42.82±15.96)>(29.17±13.03)>(4.91±2.12)>(0.89±0.67)μg/(m2?h)];10:00~14:00和夜间0:00左右所观测的N2O通量均可代表当日平均通量;夜间N2O的排放对整个日通量有重要贡献,其排放量占到全日排放总量的46%以上,草地夜间N2O的排放通量应该受到重视.另外,本文讨论了水分和温度作为主要环境因子对N2O通量日变化的影响,以及不同植被类型和人类活动(放牧和刈割)对N2O通量的日变化的影响.  相似文献   

18.
对生活垃圾填埋场5个操作平台开展了为期1年的CH_4和N_2O释放通量监测,分析了填埋场CH_4和N_2O释放通量变化规律,并对CH_4和N_2O释放通量与CO2释放通量之间相关关系及其影响因素进行了探讨.结果表明,生活垃圾填埋场是CH_4和N_2O释放的源,CH_4释放通量范围为(9.16±7.46)~(21287.03±128.70)mg·m-2·h-1CH_4-C;N_2O释放通量范围为(31.74±16.00)~(17089.31±7599.24)μg·m~(-2)·h~(-1)N_2O-N;整个填埋场5个平台中CH_4和N_2O年释放总量分别约为86.17 Gg·a-1、0.81 Gg%a-1CO2当量,填埋场温室气体的减排主要是控制CH_4释放.生活垃圾填埋场是高度异质性体系,不同平台释放通量变化规律并不统一,N_2O与含水率呈显著负相关(p0.05),两种气体释放通量与土壤温度均呈显著正相关关系(p0.01),而与其他因素无明显相关关系.  相似文献   

19.
脱甲河农业流域土壤沉积物氮素时空分布与N2O释放   总被引:2,自引:0,他引:2  
为研究脱甲河农业小流域氮素输出特性,运用流动注射仪法和顶空平衡-气相色谱法于2015年4月—2016年1月对流域内4级河段(S1、S2、S3和S4)稻田-岸坡-河底沉积物土壤铵态氮(NH_4~+-N)、硝态氮(NO_3~--N)及水体溶存氧化亚氮(N_2O)浓度进行了连续10个月的监测,并利用双层扩散模型法对水系N_2O排放通量进行了估算.结果表明:脱甲河流域稻田-岸坡-河底沉积物NH_4~+-N含量逐渐升高,NO_3~--N含量逐渐降低,其中,岸坡及河底沉积物土壤中的氮主要以NH_4~+-N形式为主,均值分别为(7.38±0.62)mg·kg-1和(16.49±1.70)mg·kg~(-1);稻田土壤和脱甲河水体中的氮主要以NO_3~--N为主,均值分别为(7.40±0.81)mg·kg~(-1)和(1.55±0.03)mg·L~(-1).水体溶存N_2O浓度范围在0.005~7.37μmol·L~(-1)之间,均值为(0.54±0.05)μmol·L~(-1);扩散通量在-1.11~1811.29μg·m~(-2)·h~(-1)之间,均值为(130.10±12.04)μg·m~(-2)·h~(-1),每年向大气输出的N_2O量为11.40 kg·hm-2.其中,在早稻生长初期和早晚稻收割、栽种交替时段N_2O输出量达到高峰.空间上,N_2O扩散通量表现为S1S4S3S2,S1级河段显著低于其他3级河段(p0.01).相关分析表明,脱甲河表层水体N_2O扩散通量与NH_4~+-N(r=0.87,p0.01)、NO_3~--N(r=0.80,p0.01)和水温(r=0.57,p0.01)呈显著正相关,流域内稻田-岸坡-河底沉积物及水体NH_4~+-N和NO_3~--N浓度间相关性不显著.脱甲河农业小流域氮素流失主要包括稻田-岸坡-河底沉积物中铵态氮、硝态氮及水体中N_2O,在水稻栽种期间出现高峰,存在较大氮素流失风险,因此,开展农业小流域氮素流失研究对区域氮素周转及农业生产活动具有重要的指导意义.  相似文献   

20.
冯香荣  邓欧平  邓良基  吴铭  姚昆  杨泽鹏 《环境科学》2017,38(12):5344-5351
为研究不同类型沟渠CH_4、CO_2和N_2O排放通量特征及其影响因素,于2014年3月~2015年2月,以每月一次的频率,采用静态浮箱法对成都平原的农业沟渠、农业生活复合沟渠、生活沟渠的CH_4、CO_2和N_2O排放通量进行监测.结果表明:(1)受人为活动的影响,研究区域中3种类型的沟渠CO_2、CH_4和N_2O排放通量较大,变化范围分别为-2.26~1 504.40mg·(m~2·h)~(-1)、0.69~40.00 mg·(m~2·h)~(-1)、-2.27~70.35μg·(m~2·h)~(-1),且均表现出夏季高,冬季低的特征.(2)农业生活复合沟渠CO_2排放通量显著高于农业沟渠和生活沟渠(P0.05),生活沟渠CH_4和N_2O排放通量显著高于农业生活复合沟渠和农业沟渠(P0.05).(3)水温和降雨量是影响CO_2、CH_4和N_2O排放通量的主要环境因子,溶解氧(dissolved oxgen,DO)和全氮(total nitrogen,TN)是影响CO_2和N_2O排放通量的主要水质参数;铵态氮(ammonium nitrogen,NH_4~+-N)与DO是影响CH_4排放通量的主要水质参数.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号