首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 171 毫秒
1.
通过2013年1月1日~2017年7月31日兰州市呼吸系统疾病逐日就诊资料和气象资料,采用分布滞后非线性模型(DLNM)方法,分析0~30d滞后影响,研究极端低温对不同年龄(<15岁、16~45岁、46~60岁、>60岁)和性别人群呼吸系统疾病就诊人次的影响.结果发现:日均最低温度对相对危险度(RR)的最大RR变化范围为0.89~1.41,变化趋势整体呈现出V字型,在低温附近,温度越低,RR越高;滞后0~4d,极端低温代表的冷效应影响最为显著;滞后5~19d,在日均最低温度0℃附近,出现新的峰值,冷效应对RR的贡献有所下降,热效应对RR的贡献完全消失;滞后20~30d,日均最低温度为-10℃时,出现RR最小值,0℃温度点附近维持RR峰值;滞后22d时,滞后影响完全消失.在极端低温条件下,呼吸系统疾病对低龄人群表现出长期滞后性和高发性,对高龄人群表现出短期滞后性.男性比女性患病的滞后效应更长,患病风险更大.  相似文献   

2.
为探究气象和空气污染等环境条件对呼吸系统疾病发病的影响,为遵义地区相关疾病预防提供科学依据,采用分布滞后非线性模型和广义线性、相加模型,利用当地气象和污染资料,分析了2012~2016年遵义市气象环境要素对呼吸系统疾病发病的影响.结果显示,遵义市呼吸系统疾病发病状况与当地长期气候状态基本保持一致,气候效应对其的影响占主导作用,其中,冬季为呼吸系统疾病高发期,立秋至处暑前后其发病人数最少,表明此时间段内当地气候条件对呼吸系统疾病患者有气候疗养效应.气温对呼吸系统疾病发病的影响以低温滞后效应为主,在其敏感阈值附近气温每变化1℃,发病人数将累积增加31.6%(95% CI:4.4%~65.8%);气压以高压滞后效应为主,相对湿度则在低湿部分同时有即时和滞后效应.舒适度对呼吸系统疾病的影响,在冷、热斜胁迫下其发病人数明显多于舒适状况时.PM2.5、SO2和NO2三种污染物的影响都以即时效应为主,而CO则在累积滞后lag04时相对危险度最高,PM2.5与呼吸系统疾病发病人数的暴露-反应曲线呈单调线性分布,SO2、NO2和CO均为“J”型分布.低温与高浓度NO2或者低湿与高浓度SO2的协同作用对呼吸系统疾病的影响较大.建立的全年和季节多元逐步回归方程的试预报准确率在75%以上(夏季除外),其中分季节建模预测效果显著优于全年预测效果.  相似文献   

3.
为研究黑碳(BC)对呼吸系统急性发病的影响及气温的修正效应,收集北京市2009~2012年264075例呼吸系统急诊病例与同期空气污染物(BC、PM2.5、SO2、NO2)及气象数据,在划分呼吸道感染部位(上、下呼吸道)与人群年龄的基础上,采用分布-滞后非线性模型与广义相加模型进行建模.首先分别研究BC、气温与发病的(滞后)关联,继而构造二元交互模型探索气温-BC的协同关系,再分层量化BC在不同气温水平的健康影响;并同时纳入气态污染物验证BC结果的稳健性.结果表明,对总呼吸系统、上感、下感而言,气温-发病风险的暴露-响应曲线均近似“V”型,阈值温度分别为24℃、26℃和24℃,且低温的滞后累积影响强于高温.主效应模型揭示BC诱发即时性风险,影响在3d内消失;BC浓度每升高四分位数(IQR),总呼吸系统、上感、下感的超额发病风险(ER)分别为1.97%、2.64%和1.34%.少儿(£14岁)超额发病风险最高(总呼吸系统,3.40%),而老年组(³60岁)结果不甚显著.双污染物模型显示,BC与SO2共存会放大BC关联风险,尤以上感响应明显;而BC与NO2共存会适度增强下感风险.BC-气温的非参数二元模型显示,BC升高使发病风险类似对数函数上升,且高温会显著增强BC的健康影响.分层模型得到,每IQR BC在气温高于阈值时导致的下感风险显著高于上感,分别为5.55%、1.27%(P>0.05);而低于阈值时BC所致上、下感风险相当,均在0.55%左右.BC对呼吸系统发病的急性影响与感染部位和气温水平紧密相关,不同年龄段间也体现差异化特征.  相似文献   

4.
利用成都市2014~2016年逐日呼吸系统疾病和心脑血管疾病死亡资料、同期气象资料和PM2.5日均浓度和每日臭氧最大8h平均浓度(O3)资料,采用分布滞后模型以及广义相加模型中的独立效应模型、非参数二元响应模型和温度分层模型探究了成都市气温、PM2.5和O3单效应,以及气温与PM2.5(或O3)交互作用对当地呼吸和心脑血管疾病死亡人数的影响.单效应分析结果表明,气温与两种疾病死亡人数的累计暴露-反应关系均呈反“J”型分布,最适温度在22.2℃,该温度对应的疾病死亡人数最少;累积滞后1d的PM2.5(或O3)对应的健康风险最大,此时,PM2.5和O3浓度每升高10μg/m3,呼吸系统疾病死亡风险分别增加0.58%和0.54%,心脑血管疾病死亡风险分别增加0.35%和0.66%.分季节研究结果表明,PM2.5对两种疾病死亡影响的健康风险冬季最高,而O3的健康风险在秋季最显著.交互作用的研究结果表明,高温与高浓度的PM2.5(或O3)对疾病死亡的影响存在协同放大效应,当气温高于22.2℃时,PM2.5和O3浓度每升高10μg/m3,对应的呼吸系统疾病死亡风险分别增加2.30%和1.14%,心脑血管疾病死亡风险分别增加1.09%和1.03%.研究结果提示O3对人群健康的影响也不容忽视,应该引起足够的重视.  相似文献   

5.
探讨兰州市空气污染对不同性别和年龄的儿童呼吸疾病就诊人数的影响以及季节性变化.通过收集2013~2017年兰州市空气污染物PM2.5、PM10、SO2、NO2、CO和O38h浓度数据、气象数据及3家三甲医院儿童呼吸疾病门诊资料,采用广义相加模型(GAM)控制星期几效应、气象因素、假期效应等混杂因素,分析空气污染物浓度与儿童呼吸系统疾病日门诊量的关系及滞后效应.研究期间,兰州市3家三甲医院儿童呼吸系统疾病日门诊量平均为387人次,范围1~1413人次.单污染物模型结果显示,PM2.5、NO2、SO2、CO均在累积滞后一天(lag01)时效应量达到最大值,其浓度每增加10μg/m3(CO单位为1mg/m3),儿童呼吸系统疾病就诊人次的超额危险度(ER)及95%可信区间(95% CI)分别为0.245%(95% CI:0.127%~0.363%),0.568%(95% CI:0.327%~0.808%),1.661%(95% CI:1.022%~2.302%),2.245%(95% CI:1.610%~2.883%);PM10和O38h在各滞后天数均无统计学意义.对不同性别、年龄、季节分析发现,性别分层中PM2.5对女童的影响略高于男童,NO2、SO2和CO的影响男童略高于女童;年龄分层发现PM2.5、NO2和CO的影响6~14岁组大于0~5岁组,SO2的影响0~5岁组大于6~14岁组;季节分层中PM2.5、NO2、SO2和CO对门诊量的影响只在冬季有意义,PM10和O38h在各个季节均无意义.双污染物模型结果显示,分别调整其他5种污染物后,PM10和O38h对儿童呼吸系统疾病门诊量的增加均无统计学意义;调整PM10和O38h后,其他污染物呼吸系统疾病门诊量的增加均有统计学意义.兰州空气污染物(PM2.5、NO2、SO2、CO)与呼吸系统疾病门诊量密切相关,并且SO2和CO浓度增加更易增加儿童呼吸系统疾病的发病风险.性别、年龄和季节对空气污染物和呼吸系统疾病门诊就诊人次的关系有影响.  相似文献   

6.
通过收集北京市2010~2016年逐日呼吸和心脑血管疾病死亡数据、污染物(BC、PM2.5、SO2、O3和NO2)日均浓度资料以及同期的气象资料,采用广义相加模型(GAMs)中的主效应模型、非参数二元响应模型和温度分层模型探讨了北京市气温、PM2.5和BC单效应,以及气温与PM2.5和BC交互作用分别对呼吸和心脑血管疾病死亡人数的影响.单效应分析结果表明,气温与两种疾病死亡人数的累计暴露-反应关系均呈“J”型分布特征,最适温度为24℃;累计滞后一天情况下PM2.5和BC的健康效应均最显著,此时PM2.5和BC浓度每升高四分位间距(IQR),呼吸系统疾病死亡人数超额增加百分比(ER)分别为2.21%和1.80%,心脑血管疾病死亡人数ER分别为2.02%和1.48%.交互作用的研究结果表明,高温与高浓度的PM2.5(或BC)对疾病死亡的影响存在协同效应,且高温条件下BC对疾病死亡影响的健康风险大于PM2.5,当气温大于24℃时,BC和PM2.5浓度每升高IQR对应的呼吸系统疾病死亡人数ER分别为6.22%和6.17%,心脑血管疾病死亡人数ER分别为5.01%和3.97%.虽然BC只占PM2.5的一部分,但BC对人群健康的影响不容忽视,应该引起足够的重视.  相似文献   

7.
兰州市空气污染对呼吸系统疾病入院人数的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
为评价兰州市空气污染对居民呼吸系统疾病日入院人数的影响,采用时间序列半参数广义相加模型(GAM),在控制了长期趋势、“星期几效应”及气象因子等混杂因素的影响后,分析2007~2009年兰州市空气污染物与呼吸系统疾病日入院人数的暴露-反应关系,并按性别和年龄层建立模型.3种空气污染物有一定的滞后效应,PM10滞后2d或5d,SO2滞后3d,NO2在当天或滞后3d对呼吸系统疾病入院人数的相对危险度(RR)值达到最大,其中PM10、SO2和NO2对呼吸系统疾病全人群的RR值分别为1.015、1.049和1.040.年龄£15岁的人群对兰州市空气污染最为敏感,其次为年龄365岁的老年人群;空气污染对男性的影响较女性明显.  相似文献   

8.
北京市空气污染物对呼吸系统疾病门诊人数的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
为评价北京市大气污染对居民呼吸系统疾病门诊人数的影响,采用时间序列半参广义相加模型(GAM),在控制了长期趋势、“星期几效应”及气象因素的影响后,分析2009~2011年北京市空气污染物与呼吸系统疾病门诊人数的暴露-反应关系,并按性别和年龄层建立模型.结果表明,3种污染物有一定的滞后效应,PM10在滞后0~3d(avg03)或0~5d(avg05)的移动平均值,SO2和NO2均在滞后0~2d(avg02)的移动平均值使呼吸系统疾病门诊人数的增加百分比(PI%)值达到最大,其中PM10、SO2和NO2浓度每增加10μg/m3,对应的呼吸系统疾病全人群的PI%分别为1.72%、1.34%和2.57%.年龄365岁的老年人群对北京市空气污染物最为敏感,其次为年龄£14岁的人群;空气污染对女性的影响较男性明显.  相似文献   

9.
气温与湿度的交互作用对呼吸系统疾病的影响   总被引:2,自引:0,他引:2  
为评价平均气温、相对湿度及其交互作用对呼吸系统疾病急诊就诊人数的影响,采用广义相加模型(GAM),在控制了时间长期趋势、"星期几效应"、节假日效应、空气污染等因素的影响后,分析2009~2011年北京市平均气温、相对湿度及其交互作用对呼吸系统疾病急诊就诊人数影响的暴露反应关系.结果显示,平均气温与呼吸系统疾病急诊就诊人数呈现近似U型的非线性关系,其作用临界点为12℃,当平均气温低于12℃时,气温每升高1℃,呼吸系统疾病急诊就诊人数减少2.26%(95%CI-2.43,-2.09);当气温高于12℃时,气温每升高1℃,呼吸系统疾病急诊就诊人数增加0.92%(95%CI 0.72, 1.11).相对湿度与呼吸系统疾病的效应也呈现U型的分布特征,作用阈值为51%,当相对湿度≤51%时,相对湿度每增加10%,呼吸系统疾病急诊就诊人数减少3.43%(95%CI -3.47%,-3.38%);当相对湿度>51%时,其每增加10%呼吸系统疾病急诊就诊人数增加1.80%(95%CI 1.76%,1.85%).平均气温对呼吸系统疾病的影响受相对湿度水平的调节.在低温环境下,相对湿度越小,气温对呼吸系统疾病的影响越显著,气温每升高1℃,呼吸系统疾病急诊就诊人数减少2.71%(95%CI -2.88,-2.53);;而高温环境下,当相对湿度较大时气温健康效应较强,即气温每升高1℃,呼吸系统疾病急诊就诊人数增加1.37%(95%CI 1.13, 1.61).  相似文献   

10.
利用时间序列的半参数广义相加模型,分析沈阳市2015年12月~2016年12月整个观测期间和污染期间大气污染物与气象因素及其交互作用对呼吸系统疾病门诊就诊人数的影响.结果表明:无论是全人群、不同性别、还是不同年龄人群中,HONO对门诊人数的影响均非常显著.最佳滞后时间下,PM10、PM2.5、SO2、NO2、HONO和NH3的浓度每增加10μg/m3或1个IQR,对应的呼吸系统疾病日门诊人数增加百分比(ER)分别为1.29%(1.18%~1.4%),1.31%(1.2%~1.43%),3.28%(3.07%~3.50%),5.26%(4.91%~5.61%),12.89%(4.45%~22.01%)和11.09%(9.84%~12.36%).HONO、NH3和PM2.5对女性的影响远比对男性的影响大,污染日当日对门诊量的影响最大;PM2.5对≥65岁的老人影响大;NH3、HONO和SO2对15~65岁人群影响大.污染天气条件下HONO和NO2对门诊人数影响最高,均为污染日当日对门诊量的影响最大.沙尘天气Ca2+等土壤性离子影响最大.多污染物模型中,不同污染物对呼吸疾病的影响具有协同作用或拮抗作用.气温对各呼吸疾病的影响最强,低温和高污染物浓度对呼吸系统疾病门诊人数的影响有交互作用.  相似文献   

11.
为探究气象环境条件对消化系统疾病的影响,结合分布滞后非线性模型与广义相加模型,分析了2009~2011年气象环境要素与北京市消化系统疾病急诊人数的暴露-反应关系.结果显示,气温对消化系统疾病的影响主要体现为“高温效应”,高于25℃的气温其危险度RR随气温升高而增加,且滞后效应能达到10d以上.较为极端的湿度(RH<10%或RH>90%)会显著增加消化系统疾病的发病,并有持久的作用,其与高温结合会形成“高温低湿”和“高温高湿”2种让人不适的情况.0~2m/s的风速在短的滞后期(5d)最能增加发病危险性.而3~4m/s的风速对疾病的危险性小,说明适度的风速不影响健康.浓度高于200μg/m3的PM10和浓度高于70μg/m3的 NO2具有即时的危险性(5d内显著);而较高浓度(>55μg/m3)的SO2滞后一定时期后效应更加明显.  相似文献   

12.
为揭示黄石市二氧化氮(NO2)的健康效应和人群暴露风险特征,收集2015~2020年黄石市NO2浓度、非意外死亡、呼吸系统和循环系统疾病每日死亡人数、内科疾病每日住院人数以及气象要素等资料,探究了黄石市NO2时空变化,采用时间序列的半参数广义相加模型(GAM)定量评价NO2对黄石市死亡病例和内科住院病例人数的影响,并对居民的暴露风险(R*)进行评估.结果表明:黄石市NO2的浓度年内变化呈“U”型,春冬污染较严重,人群密集和工业区NO2浓度稍高.在最佳滞后时间下,NO2浓度每增加10μg/m3,非意外死亡、呼吸系统和循环系统病例的死亡人数在lag01、lag3、lag1时达到最大,增加百分比(ER)值分别为1.93%(95%CI:-2.10,6.14),2.13%(95%CI:-6.56,11.62),4.82%(95%CI:-0.22,10.02),内科疾病每日住院人数在lag05时达到最大,增加百分比(IP)值...  相似文献   

13.
Recent years have shown a rise in mean global temperatures and a shift in the geographical distribution of ectothermic animals. For a cause and effect analysis the present paper discusses those physiological processes limiting thermal tolerance. The lower heat tolerance in metazoa compared with unicellular eukaryotes and bacteria suggests that a complex systemic rather than molecular process is limiting in metazoa. Whole-animal aerobic scope appears as the first process limited at low and high temperatures, linked to the progressively insufficient capacity of circulation and ventilation. Oxygen levels in body fluids may decrease, reflecting excessive oxygen demand at high temperatures or insufficient aerobic capacity of mitochondria at low temperatures. Aerobic scope falls at temperatures beyond the thermal optimum and vanishes at low or high critical temperatures when transition to an anaerobic mitochondrial metabolism occurs. The adjustment of mitochondrial densities on top of parallel molecular or membrane adjustments appears crucial for maintaining aerobic scope and for shifting thermal tolerance. In conclusion, the capacity of oxygen delivery matches full aerobic scope only within the thermal optimum. At temperatures outside this range, only time-limited survival is supported by residual aerobic scope, then anaerobic metabolism and finally molecular protection by heat shock proteins and antioxidative defence. In a cause and effect hierarchy, the progressive increase in oxygen limitation at extreme temperatures may even enhance oxidative and denaturation stress. As a corollary, capacity limitations at a complex level of organisation, the oxygen delivery system, define thermal tolerance limits before molecular functions become disturbed.  相似文献   

14.
Adjusting to low temperatures is important for animals living in cold environments. We studied the chill–coma recovery time in temperate ant workers (Temnothorax nylanderi) from colonies collected in autumn and spring in Germany. We experimentally acclimated these ant colonies to cold temperatures followed by warm temperatures. As expected, cold-acclimated workers recovered faster from freezing temperatures, but subsequent heat acclimation did not change the short recovery times observed after cold acclimation. Hence, either heat acclimation improves cold tolerance, possibly as a general response to stress, or at least it does not negate enhanced cold tolerance following cold acclimation. Colonies collected in spring showed similar cold tolerance levels to cold-acclimated colonies in the laboratory. Next, we compared the chill–coma recovery time of different worker castes and found that exterior workers recovered faster than interior workers. This difference may be related to their more frequent exposure to cold, higher activity level, or distinct physiology. Interior workers were also heavier and showed a higher gaster-to-head ratio and thorax ratio compared to exterior workers. An obvious difference between exterior and interior workers is activity level, but we found no link between activity and cold tolerance. This suggests that physiology rather than behavioral differences could cause the increased cold tolerance of exterior workers. Our study reveals the importance of acclimation for cold tolerance under natural and standardized conditions and demonstrates differences in cold tolerance and body dimensions in monomorphic behavioral castes of an ant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号