首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
乌鲁木齐市机动车排放清单研究   总被引:3,自引:3,他引:3  
近年来随着乌鲁木齐市机动车数量的快速增加,致使机动车排放污染突出. 通过调查乌鲁木齐市2007年机动车的保有情况及技术水平分布,研究了各类型机动车的排放因子以及年均行驶里程,并测算了该市2007年机动车污染物排放总量、分区排放量及各类型机动车的分担率. 结果表明:2007年在乌鲁木齐市注册的各类型机动车排放的CO总量为11.09×104 t,HC总量为1.53×104 t,NOx总量为2.73×104 t,PM总量为0.38×104 t;其中CO和HC排放主要集中在城区,NOx和PM排放主要集中在外埠;在城区的机动车排放中,CO和HC排放以轻型载客汽车为主,NOx排放以中重型公交车为主,PM排放以中、重型载货汽车为主.   相似文献   

2.
非道路机械是大气污染物的重要来源,已经逐渐引起了人们的关注.本研究旨在建立2020年京津冀地区典型非道路机械排放清单,分析排放控制政策和成本.结果表明:2020年京津冀地区典型非道路机械CO、HC、NOx、PM2.5、SO2的排放量分别为286.96×103、232.17×103、364.30×103、34.15×103、4.14×103 t.农业机械的排放量明显大于建筑机械的排放量,约占总量的46.36%~91.62%.在综合情景(IS)下,2030年CO、HC、NOx、PM2.5、SO2的排放量与2020年基准情景(BAU)相比分别增加了-54.16%、-33.76%、-42.46%、-54.07%、-10.37%.在单一控制措施下,更新排放标准(UES)对5种污染物的减排效果最好,淘汰老旧非道路机械(CIV)对NOx和P...  相似文献   

3.
机动车排放已经成为城市地区大气污染的主要来源.基于COPERT模型和ArcGIS技术,建立了2000~2030年辽宁省机动车排放清单,分析6类污染物(CO、NMVOC、NOx、PM10、SO2和CO2)排放的总体趋势与空间演变特征,同时以2016年为基准年,基于情景分析法设置8类控制措施情景并评估不同控制措施对污染物的减排效果.结果表明2000~2016年,机动车的CO、NMVOC、NOx和PM10排放量呈现先增后降的趋势,SO2排放量呈现波动变化,而CO2排放量则呈现持续增长态势.轻型载客车和摩托车是CO和NMVOC排放的主要贡献车型,重型载客车和重型载货车是NOx和PM10的主要排放源,SO2和CO2则主要是由轻型载客车排放.辽宁省中部及南部机动车排放量明显高于辽东和辽西.从城市层面来看,排放主要集中在沈阳市和大连市.情景分析表明,实施更加严格的排放标准可以增强减排效果,且升级排放标准的时间越提前减排效果越好.综合情景将实现减排最大化,强化综合情景对CO、NMVOC、NOx、PM10、CO2和SO2的削减率达到了30.7%、14.3%、81.7%、29.4%、12.3%和12.1%.  相似文献   

4.
通过对哈尔滨市道路机动车信息的调研,完成了2016年哈尔滨市道路机动车尾气排放清单的建立,同时分析了研究区域内机动车尾气的排放特征。结果表明,2016年哈尔滨市道路机动车尾气CO、NOx、HC、PM2.5、PM10排放总量分别约为76 569.55、10 763.78、35 014.53、1 106.04、1 228.39吨。其中,小型载客汽车是CO、HC的主要贡献源,而载货汽车是NOx、PM2.5、PM10的主要贡献源;就燃料类型而言,汽油是CO、HC的主要贡献源,而NOx、PM2.5及PM10的主要贡献源是柴油。  相似文献   

5.
基于实时交通信息的道路机动车动态排放清单模拟研究   总被引:1,自引:7,他引:1  
黄成  刘娟  陈长虹  张健  刘登国  朱景瑜  黄伟明  巢渊 《环境科学》2012,33(11):3725-3732
以上海市为例开展了实际道路车流分布、行驶工况和车辆技术的实地调查,建立了道路车流、VSP分布和车辆技术数据库.在此基础上,基于实时的车流、车速等交通信息,构建了动态化的道路机动车污染物排放清单模拟方法,并开展了城区典型道路的机动车小时排放模拟案例研究.调查结果表明,上海市城区道路车流以轻型客车和出租车为主,分别占各时段车流总量的48%~72%和15%~43%;VSP分布与平均车速存在较好的规律,各车型VSP峰值随平均车速的上升向高负荷去移动,且峰值逐渐降低;当前上海市车辆以国2和国3车型为主,经过年检站调查结果的校正,国2和国3车型分别占各车型的11%~70%和17%~51%.模拟案例结果显示,道路机动车CO、VOC、NOx和PM日排放峰谷比可达3.7、4.6、9.6和19.8左右,CO和VOC排放主要来自轻型客车和出租车,与车流变化的相关性较好,而NOx和PM排放主要来自重型客车和公交车,且主要集中在早晚高峰时段.采用建立的动态排放模拟方法可实时反映实际道路的机动车排放变化,获取高排放路段和时段,为交通环境管理提供重要的技术手段和决策依据.  相似文献   

6.
基于环保检测数据,提出“里程-车龄”曲线用以获取满足“车辆类型-燃料种类-排放标准”三级分类的精细化年均行驶里程.使用《道路机动车大气污染物排放清单编制技术指南(试行)》推荐值、车辆类型均值、“里程-车龄”曲线3种方式获取年均行驶里程并分别建立排放清单,发现年均行驶里程的本地化与精细化可以极大降低行驶里程不确定性对排放清单准确性的影响.采用精细化年均行驶里程,计算得到青岛市2017年机动车CO、VOCs、NOx、PM10、NH3和SO2的排放量分别为7.07,1.14,2.84,0.10,0.08和0.08万t.分析排放构成可知,老旧车淘汰在当前仍可作为青岛市机动车排放治理的有效举措.结合路网信息与交通数据,得到0.01°×0.01°高时空分辨率网格化排放清单.结果表明,青岛市机动车排放分布在不同时段变化明显.以NOx为例,排放的早晚高峰分别出现在8:00与17:00,占到了全天总排放的8.17%和7.53%.同时,排放分布存在着空间异质性,排放从城市中心至边缘呈逐渐降低趋势,沿高速路呈明显带状分布.  相似文献   

7.
通过van Aerde速度-流量模型模拟和交通流量调查获取了阳泉市路网的车流量、车型构成和车速基础数据,利用自下而上的方法,基于实际交通流量数据、机动车排放因子和路段,构建了阳泉市道路机动车排放清单,并分析了机动车污染物排放特征。结果表明:2017年阳泉市道路机动车排放的CO、HC、NOx、PM分别为4.56×104、0.96×104、1.76×104、0.024×104 t。按道路类型划分,高速公路(含城市快速路)机动车污染物排放量较大,CO、HC、NOx、PM排放量分别占排放总量的48.4%、48.9%、40.0%和34.3%;按车辆类型划分,小型客车是CO、HC排放的主要贡献者,重型货车是NOx、PM排放的主要贡献者;按排放阶段划分,国4机动车排放的CO和HC占比较高,国3机动车排放的NOx和PM占比较高;按区县划分,污染物排放量最大的为盂县,其次是平定县和郊区。机动车在道路上的实际排放量与道路类型、道路所属行政区域及车辆类型密切相关。  相似文献   

8.
调查统计北京市延庆区机动车类型、车流量、汽车里程、燃油类别等,运用COPERT模型计算了小客车、大客车、小货车、中货车、特大货车的CO、HC、NOx、PM排放因子。基于现场调查和卫星影片解译建立延庆区机动车行驶里程(VKT)数据库,应用ArcGIS建立机动车高分辨率排放清单,以实际车流量信息计算出VKT和对应的各污染物排放量。结果表明:CO、HC、NOx、PM的年排放量分别为1 995.49、478.84、2 466.06、156.65 t/a。小客车对CO和HC排放量的贡献率最大,分别为36%和72%;特大货车对NOx和PM排放量的贡献率最大,分别为54%和49%。污染物高排放量主要分布在城区,原因是城区路网密集,车流量较大。  相似文献   

9.
杭州市机动车污染物排放清单的建立   总被引:8,自引:0,他引:8       下载免费PDF全文
基于调研的基础数据,运用修正后的IVE排放模型及GIS系统建立了杭州市2010年1km×1km的高时空分辨率的机动车排放清单.结果表明,2010年杭州市机动车污染物CO、HC、NOx、PM的年排放量分别为44.06,2.31,4.43,0.65万t,主要来自线源道路的排放.各车型污染物分担率各不相同,汽油乘用车和公交车排放CO和HC最大,柴油重型货车和公交车是NOx和PM排放的主要来源,两种燃油下的机动车排放差异十分明显.机动车污染排放与路网密集程度及道路长度密切相关,因此西湖区和江干区排放总量远远高出其他区域.机动车各污染物排放强度空间分布均呈现由城市中心向城市边缘的递减趋势,各污染物中心城区排放量占总排量的70%以上.机动车污染物排放日变化十分明显,与人群出行规律有极大的相关性.  相似文献   

10.
潘玉瑾  李媛  陈军辉  石嘉诚  田红  张季  周敬  陈霞  刘政  钱骏 《环境科学》2020,41(8):3581-3590
提出一种基于交通流监测数据的道路机动车高分辨率排放清单建立方法,对成都市道路交通流特征进行分析并建立了成都市机动车尾气高分辨率排放清单.结果表明,成都市道路车流量及排放均呈现明显的"双峰"分布,早晚高峰时段机动车通行量占全天的39.85%,车队结构中排放标准以国Ⅳ车为主,车辆类型以小型车为主,燃料类型以汽油车为主;道路机动车SO2、NOx、CO、PM10、PM2.5、BC、OC和VOCs(不含驻车蒸发)日排放量分别为3.89、 162.08、 324.11、 4.79、 4.36、 1.89、 0.78和44.37 t,空间分布整体呈现从城市中心到外围排放强度逐渐降低趋势,时间分布基本呈现"双峰"分布,颗粒物相关指标受货车流量影响较大; NOx、PM10、PM2.5、BC和OC主要来源为大型柴油车,CO主要来源为小型汽油车,其中大型车对NOx的贡献率达80%;基于保有量的计算方法对成都市道路机动车污染物排放存在一...  相似文献   

11.
基于环境统计数据,采用排放因子法建立2020年京津冀地区燃煤工业锅炉县级大气污染物排放清单.结果表明,2020年京津冀地区燃煤工业锅炉常规大气污染物SO2、NOx、颗粒物(PM)、PM10、PM2.5排放量分别为6351,7399,2952,825,399t.,其中PM10和PM2.5分别占PM排放总量的27.9%和13.5%.重金属Hg、Pb、Cd、Cr、As的排放量分别为197.9,1391.3,32.0,1214.2,362.4kg.65t/h及以上燃煤工业锅炉为主要的排放贡献源,各类污染物的排放量占京津冀地区工业锅炉各类污染物排放总量的比重为51.1%~81.2%,是污染控制及监管的重点.河北省承德市、唐山市、张家口市为污染物排放量最大的3个城市,3个城市各类污染物排放量占京津冀地区工业锅炉各类污染物排放总量的14.6%~71.9%.污染物排放强度大的区域主要集中在天津市、河北省廊坊市、唐山市的一些区县.  相似文献   

12.
京津冀地区火电企业的大气污染影响   总被引:5,自引:0,他引:5  
以在线监测、环评、验收等火电企业排放数据为基础,自下而上编制京津冀火电企业排放清单,利用气象模式WRF生成中尺度气象数据,采用CALPUFF空气质量模式模拟了不同情境下京津冀地区火电企业排放SO2、NOx、一次PM10,以及二次生成硫酸盐、硝酸盐等污染情况.结果显示,2011年京津冀地区火电行业排放污染物对京津冀西南部地区影响较大,各污染物年均最大浓度均出现在石家庄市;采取减排措施后,京津冀地区火电排放量SO2、NOx、烟粉尘总量与2011年火电排放现状相比 ,分别下降了33%、71%、68%;减排后火电行业对各城市SO2、NOx、一次PM10,以及二次生成硫酸盐、硝酸盐年均贡献浓度均大幅度减少,年均贡献最大值分别降低46.34%、78.43%、76.34%、39.49%、73.87%.  相似文献   

13.
基于唐山市机动车定期环保检测数据获取不同类型车辆的本地年均行驶里程,建立城区内典型车辆的"里程-注册年"特征曲线.采用车载排放测试法获取唐山市典型国Ⅵ阶段轻重型汽车实际道路排放因子.利用COPERT模型进行机动车排放因子本地化修正,建立涵盖不同排放阶段和燃料动力类型的唐山市机动车排放清单,结合唐山市路网信息,建立基于ArcGIS的3km×3km高时空分辨率网格化排放清单,并分析了国三及以下中重型柴油车(简称高排放车)不同淘汰与DPF排放治理比例情景下机动车减排与投入成本效益.研究表明,2020年机动车CO,HC,NOx,PM2.5,PM10年排放量分别为92403.51,10034.53,70568.35,2036.51,2160.65t,其中:NOx,PM2.5和PM10排放主要来源于柴油车,分担率分别为92%,89%和89%;CO和HC排放主要来自汽油车,分担率分别为71%和73%.唐山市实施二环内国Ⅳ及以下柴油货车限行区政策后,二环内CO和HC年排放量削减率分别为22.41%和21.68%;而NOx,PM10和PM2.5污染物排放强度显著降低,年排放量削减率分别为78.60%,84.85%和84.79%.在高排放车淘汰与治理情景下,随着高排放车淘汰比例的增长,投入成本和NOx年均减排量呈线性上升趋势,且NOx减排效果更加显著,而PM减排辆略呈下降趋势.高排放车淘汰率每增长10%,NOx年均减排量增加892.41t,PM年均减排量减少7.56t,年投入成本增加1.13亿元.  相似文献   

14.
为研究京津冀地区民用散煤燃烧大气污染物的排放情况,结合散煤燃烧活动水平与燃用特征,根据排放因子法自下而上建立了2018年京津冀地区民用散煤燃烧污染物排放清单,研究了污染物排放的时空分布特征并使用蒙特卡罗方法对排放清单进行了不确定性分析.结果表明:2018年京津冀地区民用散煤燃烧量共计3799.22万t,PM2.5、CO、SO2、NOx的排放量分别为9.27,341.31,5.17,5.44万t.污染物排放集中在11月份~次年3月份,大多数地区呈现出相同的日排放趋势.8:00、11:00、18:00、21:00左右出现污染物排放峰值,小时排放系数平均值分别为11%,6%,7%,13%.PM2.5排放高值区主要集中在北部、东部及部分南部地区,CO主要集中在北京和天津地区,SO2和NOx主要集中在天津和承德地区.  相似文献   

15.
基于本地污染源调查的杭州市大气污染物排放清单研究   总被引:4,自引:0,他引:4  
基于实地调查数据并辅以统计数据,采用物料衡算法和排放因子法,估算了杭州市2015年大气污染物排放清单,并选取经纬度坐标、路网、航道、土地类型和人口等数据作为权重因子,研究了该地区各类排放源污染物排放空间分布特征.结果表明,杭州市2015年SO_2、NO_x、CO、VOCs、PM_(10)、PM_(2.5)和NH_3年排放总量分别为22.20×10~3、108.17×10~3、192.10×10~3、134.94×10~3、78.12×10~3、27.65×10~3和59.75×10~3t.工业源是杭州市SO_2排放的主要来源,移动源对NO_x和CO的排放贡献最为显著,扬尘源是杭州市PM_(10)和PM_(2.5)排放的最主要来源,其次为工业源;VOCs排放的主要来源依次为工业源、天然源和移动源;NH_3排放主要来自农业源.从空间分布来看,排放主要集中在中心城区及其周边的萧山、下沙、大江东、余杭和富阳等工业企业相对密集的区域.本研究建立的排放清单在污染源覆盖范围和排放因子方面仍然存在一定的不确定性,建议在后续研究中重点开展低、小、散企业及本地化排放因子调查研究工作,进一步提升大气污染物排放清单的准确度.  相似文献   

16.
京津冀地区钢铁行业高时空分辨率排放清单方法研究   总被引:13,自引:0,他引:13  
针对目前京津冀地区钢铁行业大气污染物排放量基数不清,排放清单缺失的现状,以钢铁行业调研、企业在线监测、污染源调查等数据为基础,综合考虑钢铁行业具体工艺设备、环保措施、产能等信息,按照自下而上的方法建立了一套高时空分辨率排放清单.经计算,2012年京津冀地区钢铁企业排放SO2为47.16万t,NOx为37.22万t,烟粉尘为34.15万t,其中烧结和高炉工艺为京津冀钢铁行业污染物的主要来源;从空间分布来看,唐山、邯郸两地区集中了整个京津冀地区一半以上的钢铁企业,其污染物排放量占到了整个区域钢铁企业排放总量的一半以上.  相似文献   

17.
京津冀地区是我国钢铁行业集中布局的地区,也是大气污染最突出的地区.分析京津冀地区钢铁行业各类治污工具的中长期减排影响,对于选择最优减排措施、加快推动该地区大气污染治理意义重大.构建基于LEAP模型的京津冀地区钢铁行业模型,以2015年为基准年,以每5 a为一个时间节点,结合规模减排、结构减排、技术减排、末端治理4种减排措施,模拟计算了4种单一政策情景及4种组合政策情景下2015-2030年京津冀地区钢铁行业主要污染物(SO2、NOx、PM10、PM2.5、CO2)排放量及相应的减排影响.结果表明:在单一政策情景下,规模减排情景对5种污染物减排效果均十分显著.在组合政策情景下,4种减排措施叠加的综合减排情景效果最好,在该情景下京津冀地区钢铁行业到2030年SO2、NOx、PM10、PM2.5、CO2排放量将分别削减27.73×104、17.85×104、42.94×104、27.35×104、23.15×107 t;在规模-末端治理情景下,除CO2外其余污染物减排效果仅次于综合减排情景;规模-结构减排情景对PM10和PM2.5的减排效果相对明显;规模-技术减排情景对CO2、SO2、NOx的减排效果相对明显.研究显示,京津冀地区钢铁行业需要在大力淘汰落后过剩产能、缩减产量等源头治理措施的基础上,持续加强末端治理、提高废钢比例、提升节能减排技术水平等协同治理能力,以提高治污减排效果.   相似文献   

18.
2013-2017年珠江三角洲主要大气污染控制措施减排效果评估   总被引:3,自引:0,他引:3  
自2013年《大气污染防治行动计划》发布以来,珠江三角洲(PRD)地区实施了严格的大气污染防控政策,在全国率先实现PM2.5浓度连续3年达标,然而,已实施的控制措施对污染物的减排效果尚不清楚,因此,本研究通过广泛收集2013-2017年珠三角地区大气污染源活动水平数据与控制措施,建立2013-2017年实际控制与未控制...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号