首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 203 毫秒
1.
为研究邢台市秋季PM2.5污染特征,于2017年10月15日~11月14日在邢台市区对PM2.5样品进行了采集,并对其中水溶性离子(包括Cl-、NO3-、SO42-、NH4+、Ca2+、Na+、Mg2+、K+)进行了分析.结果显示,观测期间邢台市ρ(PM2.5)平均值为(130.0±74.9)μg/m3,其中水溶性离子质量浓度为(69.8±11.4)μg/m3,占ρ(PM2.5)的53.3%,NO3-、SO42-和NH4+为主要离子,占水溶性离子比例达到了89.7%. 当污染加重,水溶性离子质量浓度随ρ(PM2.5)增大而升高,且NO3-、NH4+及SO42-占比亦逐渐升高,但其他离子占比随之下降,Ca2+尤为明显,表明ρ(PM2.5)升高时主要受二次无机转化影响;观测期间SOR(硫转化率)与NOR(氮转化率)的平均值分别为0.36和0.25,表明秋季SO2与NO2转化速率较强,二次无机污染严重,另外SOR及NOR与温度及相对湿度呈正相关,且SOR对二者更为敏感;邢台市秋季PM2.5呈弱碱性,NH4+主要以(NH42SO4和NH4NO3的形式存在;ρ(NO3-)/ρ(SO42-)平均值为2.13,表明移动源对秋季大气颗粒物的来源贡献较大;PMF分析结果表明,二次转化源、燃烧源及扬尘源为邢台市秋季PM2.5中水溶性离子的主要来源.  相似文献   

2.
使用MARGA离子在线分析仪ADI 2080对2017年12月27日~2018年1月5日南京市PM2.5化学组分进行连续采样分析,结合气象要素和大气环境监测数据,探讨了霾污染过程中水溶性离子的时间分布特征及其来源特征.结果表明:霾日中南京水溶性离子浓度为121.41μg/m3,是洁净日的3.2倍.霾污染过程中水溶性离子平均浓度大小顺序为NO3- > SO42- > NH4+ > Cl- > K+ > Ca2+ > Mg2+,SNA离子占总水溶性离子浓度的91.97%.霾日中水溶性离子日变化均为三峰型,洁净日中Cl-、SO42-和NH4+的日变化为单峰型,Ca2+为双峰型,K+、Mg2+为三峰型.随着空气污染状况的加重,总水溶性离子在PM2.5中的占比不断减少,空气质量为优时占比95.93%,严重污染时为63.25%.霾日中随着污染加重,NH4+占总离子的比例稳定在23%左右,SO42-占比缓慢减小,NO3-占比不断增大.NOR、SOR的日变化在霾日呈双峰型分布,洁净日则较为平稳.观测期间的水溶性离子主要来源有二次转化、煤烟尘、扬尘以及生物质燃烧.  相似文献   

3.
利用高时间分辨率MARGA于2017年2月17日~3月24日在桂林市开展PM2.5组分监测,结合同一点位环境和气象监测数据,分析桂林市大气PM2.5水溶性无机离子组分特征及气溶胶酸性.结果表明:MARGA监测的PM2.5中8种水溶性离子与PM2.5变化趋势一致.8种水溶性离子总浓度均值29.27μg/m3,3种二次水溶性离子SO42-、NO3-和NH4+浓度均值26.91μg/m3,占水溶性离子总浓度的93.50%,是桂林市大气PM2.5的主要组分.二次水溶性离子SO42-、NH4+和NO3-两两之间存在显著正相关性(相关系数均>0.80),提示二次离子产生的机制及在大气中的演化、沉积具有一定的相似性.无论有无降雨,能见度(Vis)均随着水溶性离子,尤其是二次水溶性离子浓度的增加呈幂函数规律递减.24h累计降雨量≥ 10.0mm时,湿清除作用明显.晴天及降雨量不大的天气下,需注意管控机动车尾气、生物质燃烧和扬尘污染.SOR、NOR分别为0.35、0.12,SO2同时通过均相和非均相氧化反应转化为SO42-,NOx主要是通过白天光化学反应转化为NO3-.大多数离子和气态前体物均存在明显的日变化规律,这与物质的来源、形成机制和气象条件不同有关.CE/AE摩尔浓度均值为1.5,桂林市PM2.5总体偏碱性.PM2.5中SO42-、NO3-、Cl-主要以(NH42SO4、NH4NO3和NH4Cl形式存在.PM2.5中NH4+可能与监测点位交通源排放有关,桂林市应加强交通污染物排放管控.  相似文献   

4.
为了分析南京北郊水溶性离子污染特征及其消光贡献,于2017年3月15日~4月15日、7月和10月开展了PM2.5观测实验,分析了南京春夏秋3个季节的PM2.5及其组分浓度特征、水溶性离子及其前体物转化特征以及水溶性离子的光学特性.结果表明,采样期间PM2.5的质量浓度为(93.8±40.3)μg/m3,其中54.2%为水溶性离子,其总质量浓度为(50.9±25.6)μg/m3,而二次水溶性离子(SNA)占水溶性离子的76.8%.各水溶性离子组分分布为:NO3- > SO42- > NH4+ > Ca2+ > Cl- > NO2- > K+ > F- > Mg2+ > Na+.在季节变化上,PM2.5和主要水溶性离子均为春季高,夏季低,但夏季NO3-42-.硫转化率(SOR)和氮转化率(NOR)在采样期的均值分别为0.38、0.22,这说明南京有较强的二次转化过程.采样期间,平均[NO3-]/[SO42-]的值为1,这说明水溶性离子主要来源于移动源的排放.通过IMPROVE公式计算的大气消光系数低于实际值,但能够较为准确的反映出南京消光系数的趋势.各组分消光贡献从大到小分别为(NH42SO4(38.9%)、NH4NO3(36.7%)、POM(13.6%)、EC(9.3%)、NO2(1.5%).其中SNA的消光贡献占70%以上,春季的SNA消光贡献最大,而夏季的最小.  相似文献   

5.
为探讨东北亚冬季PM2.5水溶性离子空间分布特征及来源,测定了2017~2018年沈阳冬季PM2.5水溶性离子浓度.结果显示:沈阳冬季PM2.5水溶性离子平均质量浓度为28.5±11.9μg/m3,二次离子(SO42-、NO3-和NH4+)的浓度最高,分别占总水溶性离子质量浓度的31.0%、22.4%和19.2%.运用离子化学计量学关系、相关性和主成分分析,探讨了沈阳冬季PM2.5水溶性离子的可能来源.并整合了东北亚冬季(中国东北、韩国、日本)近20a来PM2.5水溶性离子数据,发现沿着东亚冬季风,东北亚冬季PM2.5水溶性离子浓度从中国东北,经韩国海岸、韩国和济州岛,日本海岸至日本整体呈下降趋势,在韩国和日本出现局部上升,且在不同区域,不同水溶性离子占比明显不同.其中,韩国冬季PM2.5中SO42-、Ca2+和K+受外来源影响显著,NO3-和NH4+主要来自本地源,Cl-、Na+和Mg2+主要来自本地源或海源;日本中部冬季PM2.5中SO42-、NO3-、NH4+和K+主要来自本地源,Cl-、Ca2+、Na+和Mg2+主要来自本地源或海源.  相似文献   

6.
2014年5~6月在东海海域采集PM2.5和PM10气溶胶样品,通过离子色谱法对样品中主要水溶性阳离子(Na+、K+、NH4+、Mg2+、Ca2+)和阴离子(Cl-、NO3-、SO42-、MSA)的浓度进行测定,并结合相关数理统计方法探讨了其主要来源.结果表明,PM2.5和PM10样品中主要水溶性离子的总浓度范围分别为7.9~23.7μg/m3和10.4~47.9μg/m3,平均值分别为(14.9±5.8)μg/m3和(21.3±10.7)μg/m3.二次离子(nss-SO42-、NO3-和NH4+)浓度最高,分别占测定离子总浓度的80.8%和73.3%,其中SO42-和NH4+主要富集在细颗粒物(PM2.5)中,NO3-主要富集在粗颗粒物(PM10)中.富集因子及相关性分析表明K+主要来自陆源,Mg2+受海源和陆源双重输入影响.阴阳离子浓度平衡计算结果表明,细颗粒物样品呈弱碱性;粗颗粒物样品酸碱基本中和.两种样品中NH4+的主要结合方式均为(NH42SO4和NH4NO3.来源分析结果表明,PM2.5和PM10样品中生源硫化物对nss-SO42-的贡献率分别为13.7%和8.7%.根据估算的干沉降通量结果,NH4+对氮沉降的贡献程度小于NO3-.  相似文献   

7.
为探究云贵高原区域城市PM2.5中水溶性离子的污染特征及来源,该文选取贵阳市和遵义市作为典型城市进行PM2.5样品采集,分析样品中8种水溶性无机离子(WSIIs)的污染特征,并采用主成分-多元线性回归法(PCA-MLR)解析其来源。结果表明,研究期间贵阳市和遵义市WSIIs浓度均值分别为22.64、14.44μg/m3,呈夏季最低、冬季最高的季节变化特征。2个站点氮氧化率(NOR)平均值分别为0.15、0.12,说明NO3-二次转化不明显,且夏季NOR的值远小于0.1,表明研究区域夏季NO3-来自于一次源。硫氧化率(SOR)平均值分别为0.44、0.35,表明SO42-主要由二次反应形成。阴阳离子平衡分析表明,贵阳市春、夏、秋3个季节的PM2.5呈碱性,冬季PM2.5呈弱酸性,而遵义市全年PM2.5呈碱性,主要由SO...  相似文献   

8.
为研究成都市西南郊区PM1中水溶性离子的季节特征及其来源,于2019年1,4,7,10月采集PM1样品并对其中的8种水溶性离子(NO3-、SO42-、NH4+、Ca2+、Cl-、K+、Na+和Mg2+)进行分析,开展PM1和水溶性离子质量浓度及其相关关系的对比分析。结果表明:2019年,成都市西南郊区PM1和水溶性离子年均总浓度分别为(30.1±12.5),(8.5±6.2)μg/m3,各离子浓度高低顺序为NO3->SO42->NH4+>K+>Ca2+>Cl->Na+>Mg2+;二次离子SNA(SO42-、NO3-、NH4+)占总水溶性离子比例达到90.0%以上,其在PM1中占比的季节差异明显,冬季(35.0%)>春季(23.6%)>秋季(22.0%)>夏季(17.5%)。春、夏季NO3-/SO42-分别为0.9和0.6,而秋、冬季NO3-/SO42-分别为1.2和2.1,说明春夏季固定源对PM1贡献更大,秋冬季移动源对PM1的贡献更加显著。受来源和气象条件影响,SOR和NOR年均值分别为0.37和0.04,表明观测期间SO2的二次生成率更为突出。主成分分析结果显示,成都市西南郊区PM1中水溶性离子的主要来源有二次无机源、燃煤、生物质燃烧和扬尘。  相似文献   

9.
为研究南京夏季大气复合污染的特征,2016年8月15日~9月15日期间开展了强化观测实验,本文利用仙林、鼓楼80m楼顶2个站点的强化观测资料,结合草场门常规监测资料,统计分析了南京不同地区夏季O3和颗粒物(PM2.5、PM10)的浓度特征和相关性,以及郊区水溶性离子与其气态前体物的转化率变化特征.研究表明:3个站点O3平均小时浓度为100.3μg/m3.PM2.5和PM10浓度分别为41.1和67.8μg/m3,郊区夜间存在颗粒物浓度高值.SO42-、NO3-、NH4+浓度总和占PM2.5浓度的比值达到61%,OC(有机碳)/EC(元素碳)比值范围为0.8~4.0,日均值超过2.0的天数占77%,城、郊均存在二次污染.白天O3与颗粒物(PM2.5)浓度呈显著正相关变化,硫转化率(SOR)、氮转化率(NOR)分别与O3浓度、湿度显著正相关.HONO主要在夜间积累,HCl和HNO3浓度峰值出现在下午.与其它无机盐相比,NH4+在总氨中所占比例明显偏低,大气中的氨主要以气态NH3存在.观测期间O3污染较重,O3与颗粒物的正相关关系显著,化学反应在颗粒物积累过程中具有重要贡献,此外还可能存在城区向郊区的污染输送.  相似文献   

10.
通过实时在线监测了2018年11月27日~2019年1月15日北京市城区PM2.5、水溶性无机离子(Na+、NH4+、K+、Mg2+、Ca2+、F-、Cl-、NO2-、NO3-、SO42-、PO43-)、碳质组分(有机碳OC、元素碳EC)的质量浓度以及气态污染物浓度和气象要素,收集整理了近20年北京市冬季PM2.5、主要离子组分以及碳质组分浓度,分析研究了1999~2018年北京市冬季PM2.5、离子、碳质组分的变化特征,重点探讨了监测期间清洁日与两个典型重污染事件PM2.5及其组分的演变特征.结果表明:研究期间PM2.5浓度为53.5μg/m3,达到近20年北京市冬季较低值,且大气主要污染源由煤烟型污染源转变为燃煤型与机动车尾气复合型污染源.监测期间,湿度高、微弱的西南风导致重污染产生,清洁日、污染事件I与污染事件II PM2.5平均浓度分别为32.5,138.9,146.8μg/m3且不同时段PM2.5日变化趋势存在差异.各离子浓度变化为:NO3- > NH4+ > SO42- > Cl- > K+ > Ca2+ > Na+ > PO43- > F- > NO2-~Mg2+,总水溶性离子浓度为24.6μg/m3占PM2.5总浓度的46.0%,其中SNA浓度占总离子浓度的83.7%,是离子中最主要的组分.碳质组分浓度达到近二十年北京市冬季最低值,变化为:一次有机碳POC > EC > 二次有机碳SOC,OC与EC相关系数达到0.99,一次燃烧源对污染过程有较大贡献.NH4+在清洁日与污染II中富集,主要以(NH42SO4、NH4NO3和NH4Cl形式存在,在污染I中较少,仅以(NH42SO4和NH4NO3存在.在污染I和II期间,SO42-的形成昼夜均受相对湿度与NH3影响;NO3-的形成白天受O3与NH3的影响,夜间受相对湿度和NH3的影响.  相似文献   

11.
本研究采用Aerodyne气溶胶化学组成在线监测质谱仪ACSM,于2019年春季、夏季后期、秋季和冬季典型代表月对北京市东南城区非难熔亚微米颗粒物NR-PM1进行了实时监测与分析,研究了NR-PM1及其物种在不同时段,特别是霾污染期间的演变特征,以及4个季节有机物的来源.结果表明,整个研究期间NR-PM1的平均浓度为22.06μg/m3,其季节变化呈现出春季>冬季>秋季>夏季后期的特征.整个研究期间,Org (有机物)的平均浓度为7.12μg/m3,占NR-PM1的32.30%;NO3-和SO42-的平均浓度分别为5.91和6.20μg/m3,分别占NR-PM1的26.80%和28.12%;而NH4+和Cl-的平均质量浓度和质量百分数均较低.所有物种呈现出Org> SO42-~NO3-> NH4+>Cl-的特征.清洁天NR-PM1以Org为主要特征,各季节所有物种的日变化均较小,而霾污染天NR-PM1以二次无机物种为主要特征,不同季节各物种表现出不同的日变化特征.OA (有机气溶胶)在不同季节解析出的物种有所不同.一次有机气溶胶POA对OA的贡献随春夏秋冬逐渐升高,而二次有机气溶胶SOA则随之逐渐降低.  相似文献   

12.
为研究富氨地区秋冬季不同PM2.5污染级别气溶胶酸性及其影响因素, 于2018年10月15日~2019年2月28日, 选择郑州市2个非城区点位——新密和航空港进行PM2.5膜样本采集, 采用离子色谱法测定其水溶性离子, 通过ISORROPIA-Ⅱ模型计算气溶胶pH值, 并分不同污染等级探讨PM2.5主要离子浓度和pH值范围.结果显示: 采样期间NO3-、NH4+和SO42-是3种最主要的离子, 随着污染程度的加剧, NO3-、SO42-、NH4+呈现上升趋势, 其中NO3-和NH4+的增长速度较大; NH4+/SO42-的比值大于0.75, 大气处于富氨条件, NH4+主要存在形式是(NH4)2SO4、NH4NO3、NH4Cl; 所选两点位PM2.5的pH值呈中等酸性, 新密4.6±0.6、航空港4.6±0.7, 随着污染的加剧, pH值的变化范围逐渐收窄; 敏感性分析表明影响秋冬PM2.5的pH值变化的主要共同驱动因素是TNH3(总氨(气体+气溶胶))、SO42-和温度, 随着污染的加剧, 由TNH3对气溶胶酸度的影响最大变为SO42-对酸性的影响最大; 随着pH值增大, 总硝酸倾向于向颗粒态移动, 总氨倾向于向气态移动, 呈相反变化.  相似文献   

13.
采用傅里叶变换衰减全反射红外光谱法(ATR-FTIR)研究北京西北城区灰霾天气下PM_(2.5)中有机官能团(R-OH羟基、R-CH脂肪族碳氢基、R-CO-羰基、R-NO2硝基官能团)和无机离子(NH_4~+、SO_4~(2-)、NO_3~-)的变化规律.结果表明,PM_(2.5)中无机离子(NH_4~+、SO_4~(2-)、NO_3~-)的ATR-FTIR吸收峰值高于有机官能团(R-CH,R-CO-,R-NO_2,R-OH)的峰值;有机官能团R-CH的吸收峰峰值高于R-CO-和R-NO_2官能团的吸收峰,R-OH官能团的吸收峰峰值最低.灰霾天PM_(2.5)中各有机官能团和无机离子的ATR-FTIR吸收峰值明显高于非灰霾天.说明灰霾天气下PM_(2.5)中这些官能团及无机离子的质量浓度均高于非灰霾天.灰霾天PM_(2.5)中无机离子(NH_4~+、SO_4~(2-)、NO_3~-)质量浓度高于有机官能团(R-CH,R-CO-,R-NO_2,R-OH)的质量浓度,且有机官能团以R-CH为主,R-CO-,R-NO_2次之,R-OH最少.  相似文献   

14.
为研究天津市大气气溶胶中氮的来源,分析了2016年夏、冬两季昼夜采集的细颗粒物气溶胶(PM2.5)中无机离子浓度和氮同位素组成(δ15N).结果显示:天津市冬季平均PM2.5质量浓度(207 μg/m3)远高于夏季(40.1 μg/m3),冬季PM2.5δ15N值(+5.1‰)低于夏季(+10.7‰),即夏季PM2.5较冬季更富集15N;夏季PM2.5中NH4+的平均浓度高于c(NO3),但是冬季NO3浓度最高,其次是c(NH4+)>c(SO42–);此外,通过对比昼夜样品,夏季PM2.5中氮含量和氮同位素组成在昼夜均表现出明显差异,而冬季不明显.结果表明,天津市夏季气溶胶中含氮化合物在昼夜受海陆风的影响,即白天受海洋气溶胶影响较大而夜间则为陆源气溶胶物质影响,然而冬季受东亚季风的影响削弱了海陆风对海陆间大气气溶胶的交换作用,且在冬季化石燃料燃烧源氮贡献较大.  相似文献   

15.
选取北京、石家庄和唐山作为京津冀区域典型城市,基于实地样品采集和组分分析结果,探讨PM2.5组分中二次无机水溶性离子(SNA)浓度变化特征,并利用空气质量模型模拟结果分析重污染前后京津冀地区各类污染源大气污染物排放对PM2.5和SNA质量浓度的贡献.结果显示:3个城市PM2.5质量浓度整体呈现逐年下降的趋势,多数情况下SO42-、NO3-和NH4+浓度极大值同时出现在冬季,PM2.5化学组分较为稳定.相对于常规时段,重污染期间SO42-、NO3-和NH4+质量浓度明显增加,重污染前一天SNA浓度占PM2.5比值达到最高.重污染的形成是本地源排放和外来区域传输共同作用的结果,外来源对NO3-的贡献整体高于SO42-和NH4+.交通源、居民源和工业源对PM2.5、SO42-和NO3-浓度贡献最高,NH4+主要来自居民源的排放.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号