共查询到19条相似文献,搜索用时 62 毫秒
1.
文章从碳源、碳氮比、pH、温度及投菌浓度5个方面对好氧反硝化芽孢杆菌Bacillus sp.H2进行脱氮特性的研究.研究结果表明,以葡萄糖、乳糖作为碳源时,菌株Bacillus sp.H2的好氧反硝化效率要显著高于以乙醇、酒石酸钾钠、丁二酸钠、醋酸钠作为碳源时的效率,且葡萄糖略高于乳糖;当C/N≥6(质量比)时可进行完... 相似文献
2.
该研究从烟台某水产养殖公司循环海水养殖系统(MRAS)的曝气生物滤器中成功分离出一株高效好氧反硝化菌,结合形态学特征和16S r RNA基因鉴定确定为海杆菌属,命名为Marinobacter sp.strain B108。采用单因素实验确定了Marinobacter sp.strain B108好氧脱氮最适条件,并明确其在最适条件下的生长特性、好氧反硝化性能及氮平衡特征。Marinobacter sp.strain B108具有高效的好氧反硝化性能,无异养硝化能力。该菌好氧反硝化脱氮最适条件为:碳源为CH3COONa、C/N为16、盐度为30‰。以NO3--N为底物时,Marinobacter sp.strain B108在最适条件下24 h对102.86 mg/L NO3--N去除率为100%,TN去除率为98.89%;以NH4+-N为底物时,该菌在最适条件下24 h对100.08 mg/L NH4+... 相似文献
3.
针对生物法处理贫营养水源水存在脱氮效率不高,脱氮过程电子转移不清楚等问题,以具有高效脱氮功能的贫营养好氧反硝化菌Acinetobacter junii ZMF5为研究对象,探究了菌株脱氮性能、环境适应性及反硝化过程中的电子转移.结果表明:①菌株ZMF5具有高效的异养硝化和好氧反硝化能力,氨氮和硝氮去除速率分别为0.211 mg·(L·h)-1和0.236 mg·(L·h)-1,并且在反应过程中无中间产物的累积;②通过氮素去除率以及菌株生长动力学分析,菌株ZMF5对不同类型的碳源均有一定的利用效果,在低C/N、低pH、低温的条件下仍表现出较好的氮去除性能;③氮平衡分析可知,比起碳水化合物羧酸盐化合物更能促进好氧反硝化过程的发生,使菌株脱氮途径发生变化,转化为气态氮(38.81%)的比例大于同化作用的氮(29.81%);④碳平衡分析可得,在反硝化过程中大部分碳源用于电子供体,而用于硝氮还原的电子较少,不同类型的碳源通过不同的还原势、电子供体的丰度和分子量来调节电子向硝酸盐呼吸链的转移.琼氏不动杆菌(Acinetobacter junii ZMF5... 相似文献
4.
异养硝化-好氧反硝化菌YL的脱氮特性 总被引:3,自引:9,他引:3
针对传统自养硝化-厌氧反硝化工艺流程长、脱氮效率低的问题,从驯化成熟且具有高效同步硝化反硝化作用的SBR反应器中筛得1株异养硝化菌YL,经鉴定为铜绿假单胞菌(Pseudomonas aeruginosa),并通过单因子试验和正交试验对其异养硝化和好氧反硝化特性进行了研究.结果表明,菌株YL进行氨氧化作用的最适条件为:碳源为琥珀酸钠、C/N为10、p H为7.0、温度为30℃、转速为160~200 r·min-1,此时氨氧化速率为5.05 mg·(g·h)-1,TOC转化速率为45.95 mg·(g·h)-1,氨氮和TOC去除率分别为100%和90.8%;菌株YL还能够利用亚硝酸盐、硝酸盐和羟胺进行生长代谢,去除率分别为92.7%、93.6%和94.8%;影响菌株YL好氧反硝化性能最主要的因素为C/N,在最优条件(C/N=10,T=30℃,r=200 r·min-1,p H=7)下,硝氮去除率为94.6%,总氮去除率76.3%.表明菌株YL能够独立快速高效地完成异养硝化和好氧反硝化脱氮过程. 相似文献
5.
为探究深水水库沉积物微生物功能特征及利用价值,于2019年在实验室对小湾水库表层沉积物微生物进行了驯化分离,并分析了其中一株细菌的脱氮效率.结果表明,分离出的细菌XW731经鉴定属于假单胞菌属(Pseudomonas sp.),是一种贫营养型好氧反硝化菌;在分别以NH4+-N、NO3--N和NO2--N为唯一氮源时,该菌对NH4+-N、NO3--N和NO2--N去除率分别为33.6%、68.5%和9.1%;以NH4+-N和NO3--N为氮源时,对NH4+-N和NO3--N去除率分别为66.4%、89.6%,同步硝化反硝化能力更强.将该菌投加到两种城市微污染水体后测试表明,该菌对城市河道水体的NH4+-N和NO3--N去除率分别为38.3%和42.4%,对城市降雨水体的NH4+-N和NO3--N去除率分别为22.2%和7.7%. 相似文献
6.
文章从某垃圾渗滤液高氨氮源区污染的地下水中分离出2株具有异养硝化-好氧反硝化功能的兼性细菌,分别命名为H-8和H-9,经鉴定确定分别为绿针假单胞菌与弗里德里克斯堡假单胞菌。为探究菌株的脱氮特性,作者利用单因素及响应曲面法优化脱氮条件,并在最佳脱氮条件下,将单菌和复合菌应用于实际垃圾渗滤液高氨氮源区污染的地下水中。结果表明,2株HNAD菌的最佳碳源均为丁二酸钠,pH值为7~8、温度范围为22~28℃、碳氮比(C/N)为10~13、转速为100~150 r/min时2株菌脱氮性能最佳,对NH4+-N和TN的去除效率均在96%以上,表明菌株在高氨氮地下水中具有高效的异养硝化好氧反硝化作用;复合菌在72 h的氨氮和总氮去除率达到了81.56%和75.77%,比最高的单菌提高了26.32%和19.4%,证明复合菌比单菌更适用于实际水中的脱氮处理。该菌株高效同步的硝化反硝化性能表明其在处理高氨氮地下水方面有一定的潜力和应用价值。 相似文献
7.
拉乌尔菌属是肠杆菌科中新分类的一个属,具有降解多种环境污染物的能力.本研究通过异养硝化培养基富集,从活性污泥中筛选出1株拉乌尔菌,命名为sari01.通过单因素和响应曲面实验研究,得出菌株sari01硝化作用的最适条件:碳源为柠檬酸钠、pH为7.0~7.5、温度为30℃、C/N为15、接种量为7.5%、溶氧以装液量计取50 mL,此时氨氮去除率可达99.9%,其中33.7%被转化成气体而去除,剩余部分转化为细胞生物量.菌株sari01能够利用亚硝酸盐和硝酸盐为唯一氮源进行生长,在优化培养条件下氮的去除率分别为98.4%和65.2%.说明菌株sari01具有很强的异养硝化和好氧反硝化特性,能够独立完成异养硝化和好氧反硝化脱氮过程,在污水处理中具有潜在的应用价值. 相似文献
8.
为消除医药化工废水高盐度及硝基化合物、杂环芳烃对微生物脱氮的抑制影响,该文以含有杂环化合物医药废水的处理厂活性污泥为对象,从中筛选对有毒有机物耐受的菌株X4。根据其系统发育和表型遗传鉴定为Acinetobacter haemolyticus。探究该菌株异养硝化-好养反硝化特性及在不同碳源、C/N、温度、转速、pH条件下的脱氮效能。结果表明,菌株X4在硝化、反硝化培养基中24 h内氨氮、硝酸盐氮去除率分别为99.14%、90.95%,在实际高盐难降解医药废水处理中氨氮去除率也有52.62%,36 h内对废水COD降解速率达到93.33 mg/(L·h)。当菌株X4在以碳源为丁二酸钠、C/N为12、温度为30℃、pH为9、转速为170 r/min条件时脱氮效果最佳。菌株X4对温度及p H耐受范围广,对C/N要求低,在高盐医药化工废水处理方面具备应用价值。 相似文献
9.
异养硝化-好氧反硝化菌脱氮同时降解苯酚特性 总被引:3,自引:0,他引:3
研究了异养硝化-好氧反硝化菌Diaphorobacter sp. PDB3去除氨氮同时降解苯酚的特性.在最佳碳氮比7和摇床转速160r/min下,该菌在21h内对初始浓度365mg/L苯酚的降解率达94.9%,总有机碳去除率达90.8%,同时40mg N/L氨氮被完全去除,中间代谢物硝态氮和亚硝态氮逐渐积累并在后期降低.氮平衡分析表明,52.3%的氨氮转化为胞内氮,37.2%转化为氮气,菌株主要通过细胞同化作用和异养硝化-好氧反硝化作用去除氨氮.检测到羟胺氧化酶、硝酸还原酶及亚硝酸还原酶活性,表明菌株PDB3具有完整的异养硝化-好氧反硝化偶联途径.随着苯酚浓度升高,抑制作用增强,脱氮效率降低. 相似文献
10.
从胶州湾沉积物中分离出1株异养硝化-好氧反硝化菌株B307,采用16S rRNA基因序列分析对该菌株进行鉴定,采用单因素实验对其进行条件优化和耐盐特性研究,并在最优条件下考察其在单一和混合氮源中的脱氮效果.结果表明,该菌为Zobellella sp.,其最佳碳源为丁二酸钠,最适C/N为5,最适初始p H为9,最适温度为35~40℃.该菌株在混合氮源体系中12 h对NH_4~+-N和NO_3~--N的去除率分别为98.35%和99.75%;在盐度为75 g·L~(-1)(以NaCl计)条件下24 h对NH_4~+-N和NO_3~--N去除率仍分别保持在97.67%和94.39%.表明该菌株具有高效的异养硝化-好氧反硝化能力和较强的耐盐特性,在高盐废水脱氮等领域具有广泛的应用前景. 相似文献
11.
基于Miseq的好氧反硝化菌源水脱氮的种群演变 总被引:1,自引:0,他引:1
为了研究好氧反硝化菌源水脱氮过程中水体微生物群落的演变,利用Miseq高通量测序法对投菌和对照两系统水体样本的微生物信息进行统计,并对两组样品进行了优化序列统计,OTU分布统计和分类学分析的基础分析;以及细菌群落结构,PCA,Rank-Abundance,Hcluster,Specaccum和OTU分布的高级分析.结果显示,投加贫营养好氧反硝化菌的源水系统的氮素得到有效去除,脱氮效果明显;层次聚类和主成分分析显示两系统内的群落结构发生变化,投菌系统与对照系统主要表现为变形菌和拟杆菌门;细菌主要门类和水质参数的相关性分析得出,水质指标对两系统群落变化作用明显;与此同时,投菌系统中有关氮循环的细菌有上升的变化过程. Miseq高通量测序研究源水脱氮过程的微生物种群演变可行,为研究原位生物脱氮过程的水体微生物群落演变提供技术支撑. 相似文献
12.
贫营养好氧反硝化菌的分离鉴定及其脱氮特性 总被引:2,自引:0,他引:2
为了分离贫营养好氧反硝化菌,研究其系统发育地位和脱氮特性,以期为微污染水库水体生物修复提供依据.从水库底层沉积物中,采用改良的富集驯化方法分离好氧反硝化菌,通过N-J法进行系统发育分析以及选择培养基研究其脱氮特性.初筛分离出196株好氧反硝化菌,其中14株为高效菌株(ZHF2、ZHF3、ZHF5、ZHF6、ZHF8、ZMF2、ZMF5、ZMF6、N299、G107、81Y、SF9、SF18和SXF14).经形态学,生理生化,和16S rRNA基因序列分析,ZHF3、ZHF5、ZHF6、ZMF2、G107、81Y、SF18和SXF14为不动杆菌(Acinetobacter sp.),ZHF2和ZHF8为新鞘脂菌属(Novosphingobium sp.),ZMF5为水杆菌属(Aquabacterium sp.),ZMF6为鞘脂单胞菌属(Sphingomonas sp.),N299为动胶杆菌属(Zoogloea sp.),SF9为代尔夫特菌属(Delftia sp.).其中菌株G107和81Y的反硝化效果最好,72h的硝氮去除率达到98.88% 和99.44%.并以G107和81Y为代表进行一系列的脱氮实验,结果显示出良好的短程反硝化、硝化和源水脱氮能力.贫营养好氧反硝化菌的分离,补充和丰富了好氧反硝化菌的种类,其高效的脱氮特性为低氮微污染水体的生物修复提供了技术支撑. 相似文献
13.
碳源和氮源对异养硝化好氧反硝化菌株Y1脱氮性能的影响 总被引:7,自引:1,他引:7
从焦化废水活性污泥中筛选到一株高效脱氮细菌,命名为Acinetobacter sp.Y1.本实验对菌株Y1在不同碳源、氮源、碳氮比及底物浓度下的脱氮特性进行了研究,结果表明,菌株Y1可以利用氨氮、亚硝氮和硝氮生长,不能利用羟胺;以氨氮为唯一氮源进行硝化作用时,柠檬酸钠和乙酸钠是最佳碳源,最佳碳氮比为15,菌株Y1可降解高浓度氨氮,在36h内将400 mg·L-1氨氮全部去除,1600 mg·L-1氨氮的去除率可达21.3%,最大降解速率随着初始氨氮浓度的升高而增大.以硝氮或亚硝氮为唯一氮源进行反硝化时,菌株Y1可以适应高浓度氮源但不能完全去除氮源,当碳氮比为20,经36h培养硝氮和亚硝氮的去除率均达到100%. 相似文献
14.
不同碳源和碳氮比对一株好氧反硝化细菌脱氮性能的影响 总被引:18,自引:2,他引:18
利用间歇培养装置研究了好氧条件下丁二酸盐、乙酸盐和苹果酸盐3种不同碳源对好氧反硝化细菌X31脱氮性能的影响,并就不同碳氮比(C/N)条件下菌株X31的反硝化能力展开了研究.结果显示,不同碳源种类对菌株硝酸还原酶活性有明显影响.以丁二酸盐和乙酸盐作为碳源时,其脱氮效果均要明显好于苹果酸盐作为碳源.以乙酸盐作为碳源时菌株的反硝化速率要稍高于丁二酸盐作为碳源,其反硝化速率可以达到11.86 mg·g-1·h-1.不同碳氮比(C/N)条件下,X31菌株的好氧反硝化能力亦不相同.当C/N大于5时,脱氮率能达到90%以上.最适宜的碳氮比是5~6,在此区间能进行完全的反硝化.当C/N在1~14之间变化时,硝酸盐还原基本都发生在菌株生长的第4~10 h,整个反硝化过程中亚硝酸盐浓度一直保持在极低的水平. 相似文献
15.
采用SBR反应器,考察了温度对好氧颗粒污泥处理纤维素乙醇废水脱氮性能的影响.研究结果表明,当进水为纤维素乙醇废水原水时,稳定阶段不同温度(10、20、30℃)条件下体系对COD的去除率分别为10.2%、12.7%、13.7%;总无机氮的去除率分别为42.8%、53.6%、70.5%,温度的升高明显地提高了硝化菌的活性和生长速率,进而促进了脱氮效果.当进水为纤维素乙醇废水经IC工艺处理后的厌氧出水时,3个温度条件下系统对废水中有机物的去除效果无较大差异,去除率均低于15%,主要因为纤维素乙醇废水的厌氧处理出水中的有机物很难被微生物利用;而温度对脱氮效果影响较大,30℃下NH_4~+-N去除率达到60.9%,分别是10℃和20℃时的2.0和1.3倍,并且,随着温度的升高总无机氮的去除率增强,NO_3~--N的去除量增加.由于体系COD去除率低说明反硝化可利用的碳源不足,因此,系统内可能存在内碳源反硝化作用,而且内碳源反硝化作用也随着温度的升高而增强.通过氮平衡计算可知,3个温度条件下氮损失分别为37.6%、45.0%、53.6%,说明温度的升高不仅提高了硝化菌活性,还促进了内碳源反硝化,进而提高了对氮素的去除. 相似文献
16.
同步脱氮好氧颗粒污泥的特性及其反应过程 总被引:28,自引:4,他引:28
厌氧颗粒污泥经过驯化后,成为具有同步硝化与反硝化(SND)功能的好氧颗粒污泥.实验在2L反应器中进行,温度,pH值,溶解氧分别控制在25℃,pH7~8,3~4mg/L.在实验条件下,SND好氧颗粒污泥COD去除率90%,氨氮去除率100%,出水检测不出NO2--N和NO3--N.反应器中SND颗粒污泥粒径在2.0~2.7mm的占全部颗粒污泥的50%,SVI为15~30mL/gTSS;污泥所能承受的最大压力为23.236N;SND好氧颗粒污泥中挥发性固体为9.92mg/mL,占总固体的2/3.采用SND好氧颗粒污泥进行脱氮研究,反应6h后氨氮去除率达100%,废水中检测不到NO2--N,仅残留2mg/L的NO3--N. 相似文献
17.
High nitrogen removal from wastewater with several new aerobic bacteria isolated from diverse ecosystems 总被引:1,自引:0,他引:1
Introduction The presence of nitrogenous substance has attracted attention because of the role of nitrogen in eutrophication of receiving waters. Denitrification is the ability of bacteria to use nitrogen oxides (NO3- and NO2-) as electron acceptors produ… 相似文献
18.
一株异养硝化好氧反硝化菌的筛选鉴定及其脱氮特性 总被引:6,自引:1,他引:6
从长期施用农家肥的土壤中筛选出一株异养硝化好氧反硝化菌SQ2,经形态学和16S rRNA同源性分析,初步确定该菌株为不动杆菌Acinetobacter sp..实验研究了菌株SQ2对氨氮、硝酸盐和亚硝酸盐的去除特性,通过改变碳氮比、pH、接种量、碳源、温度和转速考察了菌株异养硝化条件,并探究了菌株耐高氨氮特性.结果表明,在28℃、180 r·min~(-1)好氧条件下,菌株SQ2对氨氮、亚硝态氮和硝态氮去除率分别达到100%、99.6%和96.9%,异养硝化体系中氮源降解速率、COD去除速率及菌株生长量均要高于好氧反硝化体系.菌株SQ2异养硝化最适条件为:碳氮比为12,pH为7~9,接种量为5%,碳源为琥珀酸钠,温度为28℃,转速为180~220 r·min~(-1).菌株SQ2具有良好的耐高氨氮特性,对实际高氨氮猪场废水脱氮效果良好,在高氨氮污水等生物处理方面具有良好的应用前景. 相似文献
19.
采用序批式反应器-厌氧序批式反应器(SBR-ASBR)组合工艺处理常温低C/N比实际生活污水,通过调控SBR缺氧:好氧时间分别为80min:60min、120min:60min和150min:60min时,实现半亚硝化,将其出水直接泵入ASBR反应器中,考察不同进水NO2--N/NH4+-N和COD/NH4+-N对厌氧氨氧化耦合反硝化同步脱氮除碳的影响,并采用响应面法设计正交批次试验.结果表明:在NO2--N/NH4+-N为1.55,COD/NH4+-N为4.22时,出水NH4+-N、NO2--N和COD的浓度分别为2.79,0.47,38.37mg/L,其去除率分别高达87.56%,98.45%和62.69%.ΔNO2--N/ΔNH4+-N为2.23,生成的NO3--N的量比理论值小2.47mg/L,厌氧氨氧化和异养反硝化共同完成氮素去除,系统脱氮除碳性能最佳.当NO2--N/NH4+-N和COD/NH4+-N分别由0.84增加到1.55和3.24增加到4.22时,厌氧氨氧化和异养反硝化对脱氮贡献率分别由80.40%降至53.33%和19.60%增加到46.67%.NO2--N/NH4+-N和COD/NH4+-N对TN和COD去除的正交影响显著,均呈现正相关,R2分别为0.9243和0.9700. 相似文献