首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phosphatasic activities in four alkaline soils and two acidic ones were studied. In all cases, the values for soil pH determined the prominent phosphatasic activity. The results indicated that acidic phosphatase was prominent in acidic soils, alkaline phosphatase was prominent in alkaline ones.We studied the action of 16 herbicides in two soils, an alkaline one and an acid one. We did not find any significant effect on the phosphatasic activities.  相似文献   

2.

The aim of this study was to determine the bioavailability of metals in field soils contaminated with chromated copper arsenate (CCA) mixtures. The uptake and elimination kinetics of chromium, copper, and arsenic were assessed in the earthworm Eisenia andrei exposed to soils from a gradient of CCA wood preservative contamination near Hartola, Finland. In soils contaminated with 1480–1590 mg Cr/kg dry soil, 642–791 mg Cu/kg dry soil, and 850–2810 mg Ag/kg dry soil, uptake and elimination kinetics patterns were similar for Cr and Cu. Both metals were rapidly taken up and rapidly excreted by Eisenia andrei with equilibrium reached within 1 day. The metalloid As, however, showed very slow uptake and elimination in the earthworms and body concentrations did not reach equilibrium within 21 days. Bioaccumulation factors (BAF) were low for Cu and Cr (< 0.1), but high for As at 0.54–1.8. The potential risk of CCA exposure for the terrestrial ecosystem therefore is mainly due to As.

  相似文献   

3.
The effect of four triazinyl-sulfonylurea herbicides (cinosulfuron, prosulfuron, thifensulfuron methyl, triasulfuron) on soil microbial biomass, soil respiration, metabolic activity, metabolic quotient, and some enzymatic activities (acid and alkaline phosphatase, β-glucosidase, arylsulphatase, and fluorescein diacetate hydrolysis) were monitored under controlled conditions over 30 days. The herbicides were applied at the normal field dose (FD) and at ten-fold (10 FD) the field dose, in order to mimic a long term toxic effect. The measured soil microbial parameters showed that the FD had slight effects on soil microflora, while at 10 FD the tested herbicides exerted a stronger detrimental effect on soil microbial biomass and its biochemical activities.  相似文献   

4.
The effect of four triazinyl-sulfonylurea herbicides (cinosulfuron, prosulfuron, thifensulfuron methyl, triasulfuron) on soil microbial biomass, soil respiration, metabolic activity, metabolic quotient, and some enzymatic activities (acid and alkaline phosphatase, β-glucosidase, arylsulphatase, and fluorescein diacetate hydrolysis) were monitored under controlled conditions over 30 days. The herbicides were applied at the normal field dose (FD) and at ten-fold (10 FD) the field dose, in order to mimic a long term toxic effect. The measured soil microbial parameters showed that the FD had slight effects on soil microflora, while at 10 FD the tested herbicides exerted a stronger detrimental effect on soil microbial biomass and its biochemical activities.  相似文献   

5.
The main process controlling soil-pesticide interaction is the sorption-desorption as influenced by active soil surfaces. The sorption phenomena can influence translocation, volatility, persistence and bioactivity of a pesticide in soil. The present investigation was conducted on natural and artificial soils in order to enumerate the effect of soil components such as montmorillonite and ferrihydrite on the sorption behaviour of the fungicide metalaxyl and if sorption-desorption of the chiral pesticide affects the enantiomeric ratio. The sorption-desorption characteristics of metalaxyl were investigated by batch equilibration technique in a natural soil, two artificial soils, and in pure montmorillonite and ferrihydrite. After extraction, pesticide residues were analyzed by conventional and chiral chromatography using tandem mass spectrometry. A KdSorp (2.3–6.5) suggests low level sorption of metalaxyl with an appreciable risk of run-off and leaching. Thus, metalaxyl poses a threat to surface and ground water contamination. Furthermore, desorption tests revealed a hysteretic effect (H ≤ 0.8) in natural and artificial soils. Significant amount of metalaxyl was found tightly bound to the adsorbents without desorbing readily after desorption cycle. Desorption of 22–56% of the total amount of the retained metalaxyl was determined. This study reveals that an artificial soil derived from different soil constituents can be used to assess their influence on sorption/desorption processes. The present investigation showed that both montmorillonite and ferrihydrite play a significant role in the sorption of metalaxyl. The sorption doesn't influence the enantiomeric ratio of racemic metalaxyl.  相似文献   

6.
The rate of degradation of kresoxim methyl and its effect on soil extra-cellular (acid phosphatase, alkaline phosphatase and β-glucosidase) and intra-cellular (dehydrogenase) enzymes were explored in four different soils of India. In all the tested soils, the degradation rate was faster at the beginning, which slowed down with time indicating a non-linear pattern of degradation. Rate of degradation in black soil was fastest followed by saline, brown and red soils, respectively and followed 1st or 1st + 1st order kinetics with half-life ranging between 1–6 days for natural soil and 1–19 days for sterile soils. The rate of degradation in natural against sterilized soils suggests that microbial degradation might be the major pathway of residue dissipation. Although small changes in enzyme activities were observed, kresoxim methyl did not have any significant deleterious effect on the enzymatic activity of the various test soils in long run. Simple correlation studies between degradation percentage and individual enzyme activities did not establish any significant relationships. The pattern and change of enzyme activity was primarily due to the effect of the incubation period rather than the effect of kresoxim methyl itself.  相似文献   

7.
The rate of degradation of forchlorfenuron, a cytokinin-based plant growth regulator (PGR) was explored in typical grapevine soils of India with simultaneous evaluation of its effect on biochemical attributes of the test soils in terms of the activities of specific soil microbial enzymes. In all the test soils, namely clay, sandy-loam and silty-clay, the dissipation rate was faster at the beginning, which slowed down with time, indicating a non-linear pattern of degradation. Degradation in soils could best be explained by two-compartment 1st + 1st order kinetics with half-life ranging between 4–10 days. The results suggest that organic matter might be playing a major role in influencing the rate of degradation of forchlorfenuron in soil. The rate of degradation in sandy-loam soil was fastest followed by clay and silty-clay soils, respectively. Comparison of the rate of degradation in natural against sterilized soils suggests that microbial degradation might be the major pathway of residue dissipation. Changes in soil enzyme activities as a consequence of forchlorfenuron treatment were studied for extra-cellular enzymes namely acid phosphatase, alkaline phosphatase and β -glucosidase and intracellular enzyme-dehydrogenase. Although small changes in enzyme activities were observed, forchlorfenuron did not have any significant deleterious effect on the enzymatic activity of the test soils. Simple correlation studies between degradation percentage and individual enzyme activities did not establish any significant relationships. The pattern and change of enzyme activity was primarily the effect of the incubation period rather than the effect of forchlorfenuron itself.  相似文献   

8.
The rate of degradation of forchlorfenuron, a cytokinin-based plant growth regulator (PGR) was explored in typical grapevine soils of India with simultaneous evaluation of its effect on biochemical attributes of the test soils in terms of the activities of specific soil microbial enzymes. In all the test soils, namely clay, sandy-loam and silty-clay, the dissipation rate was faster at the beginning, which slowed down with time, indicating a non-linear pattern of degradation. Degradation in soils could best be explained by two-compartment 1st+1st order kinetics with half-life ranging between 4-10 days. The results suggest that organic matter might be playing a major role in influencing the rate of degradation of forchlorfenuron in soil. The rate of degradation in sandy-loam soil was fastest followed by clay and silty-clay soils, respectively. Comparison of the rate of degradation in natural against sterilized soils suggests that microbial degradation might be the major pathway of residue dissipation. Changes in soil enzyme activities as a consequence of forchlorfenuron treatment were studied for extra-cellular enzymes namely acid phosphatase, alkaline phosphatase and beta -glucosidase and intracellular enzyme-dehydrogenase. Although small changes in enzyme activities were observed, forchlorfenuron did not have any significant deleterious effect on the enzymatic activity of the test soils. Simple correlation studies between degradation percentage and individual enzyme activities did not establish any significant relationships. The pattern and change of enzyme activity was primarily the effect of the incubation period rather than the effect of forchlorfenuron itself.  相似文献   

9.
Bioconcentration and biokinetics of heavy metals in the earthworm   总被引:3,自引:0,他引:3  
This study examines the steady state and non-steady state kinetics of five metals, cadmium, copper, lead, nickel, and zinc in earthworms. The steady state kinetics are based on field studies in which worms from contaminated and uncontaminated sites were collected and measurements were made of concentrations in the earthworms and soils. For each of the metals, evidence suggests that bioconcentration depends on the metal concentrations in the soil; bioconcentration is greater at lower soil concentrations. The studies of non-steady state kinetics involve uptake and elimination experiments in which worms are transferred from an uncontaminated soil to a contaminated soil (uptake studies) or from a contaminated soil to an uncontaminated soil (elimination studies). The voiding time is shown to be an important experimental variable in determining the measured levels of metal in earthworms because experimental measurements are usually made on a worm-soil complex (i.e. the soft tissue of the worm and the soil in the gut of the worm). Thus, for metals that are bioconcentrated in worm tissue, increasing the voiding period increases the concentration of the metal in the worm-soil complex. Conversely, for metals that are not bioconcentrated, increasing the voiding time leads to a decrease in concentrations in the worm-soil complex.  相似文献   

10.
The effectiveness of two amendments for the in situ remediation of a Cd- and Ni-contaminated soil in the Louis Fargue long-term field experiment was assessed. In April 1995, one replicate plot (S1) was amended with 5% w/w of beringite (B), a coal fly ash (treatment S1+B), and a second plot with 1% w/w zerovalent-Fe iron grit (SS) (treatment S1+SS), with the aim of increasing metal sorption and attenuating metal impacts. Long-term responses of daily respiration rates, microbial biomass, bacterial species richness and the activities of key soil enzymes (acid and alkaline phosphatase, arylsulfatase, beta-glucosidase, urease and protease activities) were studied in relation to soil metal extractability. Seven years after initial amendments, the labile fractions of Cd and Ni in both the S1+B and S1+SS soils were reduced to various extents depending on the metal and fractions considered. The soil microbial biomass and respiration rate were not affected by metal contamination and amendments in the S1+B and S1+SS soils, whereas the activity of different soil enzymes was restored. The SS treatment was more effective in reducing labile pools of Cd and Ni and led to a greater recovery of soil enzyme activities than the B treatment. Bacterial species richness in the S1 soil did not alter with either treatment. It was concluded that monitoring of the composition and activity of the soil microbial community is important in evaluating the effectiveness of soil remediation practices.  相似文献   

11.
Extracellular, oxidative soil enzymes like monophenol oxidases and peroxidases play an important role in transformation of xenobiotics and the formation of organic matter in soil. Additionally, these enzymes may be involved in the formation of non-extractable residues (NERs) of xenobiotics during humification processes. To examine this correlation, the fate of the fungicide 14C metalaxyl in soil samples from Ultuna (Sweden) was studied. Using different soil sterilization techniques, it was possible to differentiate between free, immobilized, and abiotic (“pseudoenzyme”-like) oxidative activities. A correlation between the formation of metalaxyl NER and soil organic matter content, biotic activities, as well as extracellular phenoloxidase and peroxidase activities in the bulk soil and its particle size fractions was determined. Extracellular soil-bound enzymes were involved in NER formation (up to 8% of applied radioactivity after 92 days) of the fungicide independently from the presence of living microbes and different distributions of the NER in the soil humic subfractions.  相似文献   

12.
锰矿尾渣污染土壤商陆根际和非根际土壤酶活性   总被引:1,自引:0,他引:1  
对湘潭锰矿尾渣库地区商陆根际和非根际土壤酶的活性特征进行了研究,结果表明,商陆根际土壤各种酶的活性显著大于非根际土壤。商陆根际环境对土壤酶活性的影响表现为:蔗糖酶>脲酶>脱氢酶>酸性磷酸酶>过氧化氢酶,根际效应值(R/S)分别为:1.622、1.598、1.586、1.485和1.328。除过氧化氢酶活性外,土壤各种酶活性与重金属复合污染程度显著负相关,表现出重金属复合污染对土壤酶活性的抑制效应。商陆可有效改善土壤环境,提高土壤各种酶的活性,是锰污染土壤植物修复的理想植物。  相似文献   

13.
Laboratory soil sorption experiments were conducted on mefenoxam, formulated metalaxyl (F-metalaxyl), pure metalaxyl (P-metalaxyl) and metalaxyl acid metabolite to elucidate differences in their sorptive behaviour on typical Cameroonian forest soil (sand clay loam, pH 4.8 and 3.01% OC) and German soil (sandy loam, pH 7.2, 1.69% OC) using a batch equilibrium method. The data obtained on all test chemicals conformed to linear and Freundlich adsorption isotherms. The Langmuir equation failed to describe the sorption of the substances tested. All substances were adsorbed to a greater extent by the Cameroonian soil. The average percentage adsorptions for mefenoxam, F-metalaxyl, P-metalaxyl and the acid metabolite on the Cameroonian soil were 27.8%, 28.3%, 31.8% and 46.8% respectively while for the German soil they were 21.7%, 21.5%, 24.7% and 9.8% respectively. The KD and KF parameters and the Freundlich exponential term (1/n) were low, indicating that the interactions between soil particles and the fungicides were weak. The sorption parameters were lower in the German soil. P-metalaxyl exhibited a higher adsorption capacity than F-metalaxyl in both soils. Mefenoxam and F-metalaxyl exhibited similar sorption parameters in soils, whereas those of P-metalaxyl and acid metabolite differed. Differences observed in the adsorption between the two soils could be attributed to their properties. Desorption studies revealed that the adsorbed fungicides were not firmly retained by soil particles and their adsorption was reversible. Desorption of adsorbed mefenoxam, P-metalaxyl and of the acid metabolite from German soil was almost completely reversible with percentage desorption rates of more than 91.0%, whereas the rate for F-metalaxyl was 74.1%. All compounds exhibited some resistance to desorption from the Cameroonian soil, with percentage desorption rates less than 77.0%. Therefore if degradation in the soil is slow the fungicides described have a potential to leach to lower soil horizons.  相似文献   

14.
Intensive remediation of abandoned former organochlorine pesticides (OCPs) manufacturing areas is necessary because the central and surrounding soils contaminated by OCPs are harmful to crop production and food safety. Organochlorine and its residues are persistent in environments and difficult to remove from contaminated soils due to their low solubility and higher sorption to the soils. We performed a comprehensive study on the remediation of OCPs-contaminated soils using thermal desorption technique and solvent washing approaches. The tested soil was thermally treated at 225, 325, 400, and 500 °C for 10, 20, 30, 45, 60, and 90 min, respectively. In addition, we tested soil washing with several organic solvents including n-alcohols and surfactants. The optimal ratio of soil/solvent was tested, and the recycling of used ethanol was investigated. Finally, activities of polyphenol oxidase (PPO), urease (URE), alkaline phosphatase, acid phosphatase (ACP), and invertase (INV) were assayed in the treated soils. The tested soil was thermally treated at 500 °C for 30 min, and the concentration of contaminants in soil was decreased from 3,115.77 to 0.33 mg kg?1. The thermal desorption in soil was governed by the first-order kinetics model. For the chemical washing experiment, ethanol showed a higher efficiency than any other solvent. Using a 1:20 ratio of soil/solvent, the maximum removal of OCPs was achieved within 15 min. Under this condition, approximately 87 % of OCPs was removed from the soils. More than 90 % of ethanol in the spent wash fluid could be recovered. Activities of some enzymes in soils were increased after ethanol treatment. But ALP, ACP, and INV activities were decreased and PPO and URE showed slightly higher activities following remediation by thermal treatment. Both heating temperature and time were the key factors for thermal desorption of OCPs. The n-alcohol solvent showed higher removal of OCPs from soils than surfactants. The highly efficient removal of OCPs from soil was achieved using ethanol. More than 90 % of ethanol could be recovered and be reused following distillation. This study provides a cost-effective and highly efficient way to remediate the OCPs-contaminated soils.  相似文献   

15.
An indirect enzyme-linked immunosorbent assay (EIA) for metolachlor (2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamid e) detection in river water and soil was developed using serum obtained from rabbits immunized against the acid of metalaxyl ((N-(2,6-dimethylphenyl)-N-(methoxy-acetyl)-DL-alanine methyl ester) conjugated to bovine serum albumin. The assay had a linear working range from 1 to 50 ng/ml with a mean I50 value of 13.6 ng/ml and a lower detection limit of 2.0 ng/ml. Both the mean interwell and interassay coefficients of variation were less than 4% over the range of the standard curves for samples which had been prepared in phosphate buffered saline (PBS), river water, or soil extract. Assay cross-reactivity to the following four structurally related chloro-acetanilide pesticides were: propachlor (0%), metazachlor (0%), alachlor (23%), and metalaxyl (5,000%). Mean recoveries of metolachlor in spiked (2.0 to 32.0 ng/ml range) PBS, river water, and soil extract were 102%, 103%, and 110%, respectively. Soil samples were taken over a 56-d period from field plots treated with metolachlor and analyzed by GC and EIA. The correlation coefficient for comparison of the two methods was 0.96 with the slope of the linear regression line being 0.78. Furthermore, no statistical difference (P less than 0.05) was found between the dissipation curves of metolachlor derived from GC data versus EIA data.  相似文献   

16.
Singh J  Singh DK 《Chemosphere》2005,60(1):32-42
Impacts of diazinon, imidacloprid and lindane treatments on dehydrogenase and alkaline phosphomonoesterase enzyme activities were determined in groundnut (Arachis hypogaea L.) field for three consecutive years (1997-1999). Diazinon was applied as both seed and soil treatments but imidacloprid and lindane were used for seed treatments only at recommended rates. Experiments were conducted at Agricultural Research Station Durgapura, Jaipur, Rajasthan, India. Diazinon residues were persist up till 60 days in both the cases. Average half-lives (t(1/2)) of diazinon were found 29.3 and 34.8 days, respectively, for seed and soil treatments. Diazinon seed treatment had no significant effect on dehydrogenase and alkaline phosphomonoesterase enzymes activities. In diazinon soil treatment, there were a significant increase in dehydrogenase and decrease in alkaline phosphomonoesterase activities after 24 h of treatment, which continued till 30 days. In seed treatments, imidacloprid and lindane were present in soil up to 90 and 120 days with average half-lives (t(1/2)) of 40.9 and 53.3 days, respectively. Within 90 days, imidacloprid residues were declined up to 73.17% to 82.49% while decline in lindane residues ranged from 78.19% to 79.86% within 120 days. In imidacloprid seed treated field, both dehydrogenase and phosphomonoesterase activities were increased between 15 and 60 days after sowing. However, a significant decreases in both dehydrogenase and phosphomonoesterase enzyme activities were observed between 15 and 90 days after lindane seed treatment.  相似文献   

17.
An incubation study was conducted under laboratory conditions to compare the effects of soil amendment of combined paper mill sludge (PS) and decomposed cow manure (DCM) on selected microbial indicators. A lateritic soil (Typic Haplustalf) was amended with 0 (control), 20 or 80tha(-1) (wet weight) of PS or DCM. The amended soils were then adjusted to 60% water holding capacity (WHC) or submerged conditions, and incubated at 27 degrees C in dark for up to 120days (d). The microbial biomass C (MBC), the basal soil respiration and the enzyme activities of the beta-glucosidase, acid phosphatase and sulphatase were analyzed at day 15, 30, 45, 60 and 120. Compared to the unamended soil (control), the MBC, the basal soil respiration and the enzyme activities increased with the rate of PS and DCM. At similar rate, the DCM treatment increased significantly the MBC, the soil respiration and the enzyme activities compared to the PS treatment. Also, the water regimes affected the microbial activities. At 60% WHC, the MBC and soil respiration increased during the first 30d and decreased thereafter. The enzyme activities showed similar trends, where they increased for the first 60d, and decreased thereafter. In contrast, under submerged condition, the MBC and enzymes activities declined during 120d, whereas the soil respiration increased. Compared to the control, the used of PS and DCM had no negative impact of the soil microbial parameters, even at the highest application rate. Long-term field experiments are required to confirm these laboratory results.  相似文献   

18.
Two racemic herbicides, mecoprop (R,S-MCPP) and dichlorprop (R,S-DCPP), as well as their enantiopure R-forms, were incubated in three calcareous soils at 15 degrees C and 80% of their field capacity to try to elucidate their behaviour in soil and compare the dissipation rates when racemic and enantiopure compounds are used. Quantitation of pesticides is made by HPLC and the R/S ratio by GC-MS. The inactive S-enantiomer from the racemic forms persists longer than the R-forms in silt and sandy loam soils, but for shorter time in the clay loam soil. The pure R-enantiomers, both for MCPP and DCPP, after incubation in soil, are partially converted into their S-forms. In all cases, the dissipation of racemic and pure enatiomeric forms is lower in the clay loam soil than in the silt and sandy loam soils. The R-forms' peristence, in the three soils, is approximately two times lower when they are incubated alone than when they are incubated as racemic compounds. When peat is added, the persistence of these herbicides in the silt and sandy loam soils increases, while in the clay loam soil it decreases. Besides, in the clay loam soil, the enantiomeric ratio (ER) changes from its S-preferential degradation to a preferential degradation of its R-form, so an increase in the persistence of the inactive S-form occurs.  相似文献   

19.
Abstract

In order to solve the problem of heavy metal-organic compound soil pollution, in this paper, we developed a highly efficient electro kinetic-laccase combined remediation (EKLCR) system. The results showed that the EKLCR system had an obvious migration effect on heavy metals (copper and cadmium) and good migration-degradation effect on phenanthrene. The migration rates of copper and cadmium were 48.3% and 40.3%, respectively. Especially, with the presence of laccase, the removal rate of phenanthrene on Cu2+-contaminated soil was higher than that of Cd2+-contaminated soil due to the significant effect of heavy metals on the enzymatic activity of laccase. The average migration-degradation rate of phenanthrene by EKLCR system was 45.4%. Finally, gas chromatography-mass spectrometry (GC/MS) was used to analyze the degradation intermediates of phenanthrene in the soil, which included 9,10-Phenanthrenequinone, phthalic acid, and 2,2-Biphenyldicarboxylic Acid. In addition, we give the possible degradation pathways of phenanthrene, 2,2-Biphenyldicarboxylic Acid is further degraded to produce phthalic acid. The products of the phthalic acid metabolic pathway are protocatechuic acid, pyruvic acid or succinic acid, the final products of these organic acids are carbon dioxide and water.  相似文献   

20.
Effects of Cd and Pb on soil microbial community structure and activities   总被引:6,自引:0,他引:6  

Background, aim, and scope  

Soil contamination with heavy metals occurs as a result of both anthropogenic and natural activities. Heavy metals could have long-term hazardous impacts on the health of soil ecosystems and adverse influences on soil biological processes. Soil enzymatic activities are recognized as sensors towards any natural and anthropogenic disturbance occurring in the soil ecosystem. Similarly, microbial biomass carbon (MBC) is also considered as one of the important soil biological activities frequently influenced by heavy metal contamination. The polymerase chain reaction–denaturing gradient gel electrophoresis (DGGE) has recently been used to investigate changes in soil microbial community composition in response to environmental stresses. Soil microbial community structure and activities are difficult to elucidate using single monitoring approach; therefore, for a better insight and complete depiction of the soil microbial situation, different approaches need to be used. This study was conducted in a greenhouse for a period of 12 weeks to evaluate the changes in indigenous microbial community structure and activities in the soil amended with different application rates of Cd, Pb, and Cd/Pb mix. In a field environment, soil is contaminated with single or mixed heavy metals; so that, in this research, we used the selected metals in both single and mixed forms at different application rates and investigated their toxic effects on microbial community structure and activities, using soil enzyme assays, plate counting, and advanced molecular DGGE technique. Soil microbial activities, including acid phosphatase (ACP), urease (URE), and MBC, and microbial community structure were studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号