首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tests were conducted to evaluate the repellency of methiocarb-treated grapes to European starlings (Sturnus vulgaris), American robins (Turdus migratorius) and house finches (Carpodacus mexicanus). Birds were individually caged, and provided with grape bunches during a series of daily 5-h feeding trials, and repellency was determined by comparing damage done to the methiocarb-treated grapes with each bird's earlier damage to untreated grapes. A significant R50 (the estimated concentration that repels 50% of the birds) of 7.3 g methiocarb per 1 water was found during the 1st day that starlings were exposed to treated grapes. However, during 4 subsequent days of exposure damage became quite variable while generally increasing to near pretreatment levels. During their 3rd day of exposure to methiocarb, a significant R50 of 2.8 g/l was recorded for the robins, and repellency was more uniform during the course of the five treatment feeding trials than for either the starlings or finches. The most pronounced repellency was for the finches, which had significant R50's ranging from 0.3 to 0.9 g/l. The amount of damage caused by finches declined sharply between the 1st and 5th days of exposure to the repellent.  相似文献   

2.
Two trials were carried out to test the effects of field applications of snail baits on populations of house mice (Mus domesticus) inhabiting cereal-cropping fields during a mouse plague in South Australia. In the first trial, grain based pellets containing 2% w/w active ingredient methiocarb, were laid in trails across fields before crops were sown. The second tested the effect of whole wheat grains treated with 1% w/w methiocarb when broadcast across maturing barley crops. Treatment effects were estimated by comparison with untreated control plots. In the methiocarb-treated wheat trial, comparison was also made with 0.3% w/w strychnine-treated wheat treatments. Methiocarb baiting reduced estimated mouse numbers by 0–46%. Surviving mice did not accept the excess bait material available. In contrast, strychnine-treated wheat reduced estimated mouse numbers by 86–94%. These trials indicate that methiocarb is not likely to be a useful field rodenticide. Furthermore, the consumption of bait by mice is not likely to jeopardise snail control operations. However, methiocarb baits could cause sufficient mortality to pose a threat to rare or endangered granivorous rodents inhabiting agricultural fields.  相似文献   

3.
Many insects form groups through interactions among individuals, and these are often mediated by chemical, acoustic, or visual cues and signals. In spite of the diversity of soil-dwelling insects, their aggregation behaviour has not been examined as extensively as that of aboveground species. We investigated the aggregation mechanisms of larvae of the Japanese rhinoceros beetle Trypoxylus dichotomus, which live in groups in humus soil. In two-choice laboratory tests, 2nd- and 3rd-instar larvae gathered at conspecific larvae irrespective of the kinship. The ablation of maxillae, which bear chemosensilla, abolished aggregation behaviour. Intact larvae also exhibited aggregation behaviour towards a larval homogenate. These results suggest that larval aggregation is mediated by chemical cues. We also demonstrated that the mature larvae of T. dichotomus built their pupal cells close to a mesh bag containing a conspecific pupal cell, which indicated that larvae utilize chemical cues emanating from these cells to select the pupation site. Thus, the larvae of T. dichotomus may use chemical cues from the conspecifics in two different contexts, i.e. larval aggregation and pupation site selection. Using conspecific cues, larvae may be able to choose suitable locations for foraging or building pupal cells. The results of the present study highlight the importance of chemical information in belowground ecology.  相似文献   

4.
Umami is one of basic tastes that humans and other vertebrates can perceive. This taste is elicited by L-amino acids and thus has a special role of detecting nutritious, protein-rich food. The T1R1 + T1R3 heterodimer acts as the principal umami receptor. The T1R1 protein is encoded by the Tas1r1 gene. We report multiple inactivating (pseudogenizing) mutations in exon 3 of this gene from four phocid and two otariid species (Pinnipedia). Jiang et al. (Proc Natl Acad Sci U S A 109:4956–4961, 2012) reported two inactivating mutations in exons 2 and 6 of this gene from another otariid species. These findings suggest lost or greatly reduced umami sensory capabilities in these species. The widespread occurrence of a nonfunctional Tas1r1 pseudogene in this clade of strictly carnivorous mammals is surprising. We hypothesize that factors underlying the pseudogenization of Tas1r1 in pinnipeds may be driven by the marine environment to which these carnivorans (Carnivora) have adapted and may include: the evolutionary change in diet from tetrapod prey to fish and cephalopods (because cephalopods and living fish contain little or no synergistic inosine 5′-monophosphate that greatly enhances umami taste), the feeding behavior of swallowing food whole without mastication (because the T1R1 + T1R3 receptor is distributed on the tongue and palate), and the saltiness of sea water (because a high concentration of sodium chloride masks umami taste).  相似文献   

5.
 In darkness, hamsters commute between their nest and a feeding site through path integration only, and therefore show cumulative errors in the return direction to the nest. We examined whether a brief presentation of familiar room cues could reset the path integrator. The hamsters could see the room cues either during, or at the end of, the outward journey to the food place, in a conflict situation where motion cues and visual information were set at variance. In both conditions, the animals used mainly visual information to return home. Thus, hamsters can determine their azimuth, and possibly their location, through a visual fix, and can reset their path integrator through the fix. This allows them to update their position during further locomotion in the dark and thus to compute a correct homing vector with respect to a visually induced reference frame. Taking episodic positional fixes may greatly enhance the functional value of path integration. Received: 17 May 2000 / Accepted in revised form: 11 September 2000  相似文献   

6.
In-air hearing in birds has been thoroughly investigated. Sound provides birds with auditory information for species and individual recognition from their complex vocalizations, as well as cues while foraging and for avoiding predators. Some 10% of existing species of birds obtain their food under the water surface. Whether some of these birds make use of acoustic cues while underwater is unknown. An interesting species in this respect is the great cormorant (Phalacrocorax carbo), being one of the most effective marine predators and relying on the aquatic environment for food year round. Here, its underwater hearing abilities were investigated using psychophysics, where the bird learned to detect the presence or absence of a tone while submerged. The greatest sensitivity was found at 2 kHz, with an underwater hearing threshold of 71 dB re 1 μPa rms. The great cormorant is better at hearing underwater than expected, and the hearing thresholds are comparable to seals and toothed whales in the frequency band 1–4 kHz. This opens up the possibility of cormorants and other aquatic birds having special adaptations for underwater hearing and making use of underwater acoustic cues from, e.g., conspecifics, their surroundings, as well as prey and predators.  相似文献   

7.
Bilateral symmetry has been considered as an indicator of phenotypic and genotypic quality supporting innate preferences for highly symmetric partners. Insect pollinators preferentially visit flowers of a particular symmetry type, thus leading to the suggestion that they have innate preferences for symmetrical flowers or flower models. Here we show that flower-naïve bumblebees (Bombus terrestris), with no experience of symmetric or asymmetric patterns and whose visual experience was accurately controlled, have innate preferences for bilateral symmetry. The presence of color cues did not influence the bees original preference. Our results thus show that bilateral symmetry is innately preferred in the context of food search, a fact that supports the selection of symmetry in flower displays. Furthermore, such innate preferences indicate that the nervous system of naïve animals may be primed to respond to relevant sensory cues in the environment.  相似文献   

8.
The ability to distinguish between familiar and unfamiliar conspecifics is important for many animals, especially territorial species since it allows them to avoid unnecessary interactions with individuals that pose little threat. There are very few studies, however, that identify the proximate cues that facilitate such recognition in visual systems. Here, we show that in tawny dragons (Ctenophorus decresii), males can recognize familiar and unfamiliar conspecific males based on morphological features alone, without the aid of chemical or behavioural cues. We further show that it is the colour pattern of the throat patches (gular) that facilitates this recognition.  相似文献   

9.
Predators are often confronted with a broad diversity of potential prey. They rely on cues associated with prey quality and palatability to optimize their hunting success and to avoid consuming toxic prey. Here, we investigate a predator’s ability to assess prey cues during capture, handling, and consumption when confronted with conflicting information about prey quality. We used advertisement calls of a preferred prey item (the túngara frog) to attract fringe-lipped bats, Trachops cirrhosus, then offered palatable, poisonous, and chemically manipulated anurans as prey. Advertisement calls elicited an attack response, but as bats approached, they used additional sensory cues in a sequential manner to update their information about prey size and palatability. While both palatable and poisonous small anurans were readily captured, large poisonous toads were approached but not contacted suggesting the use of echolocation for assessment of prey size at close range. Once prey was captured, bats used chemical cues to make final, post-capture decisions about whether to consume the prey. Bats dropped small, poisonous toads as well as palatable frogs coated in toad toxins either immediately or shortly after capture. Our study suggests that echolocation and chemical cues obtained at close range supplement information obtained from acoustic cues at long range. Updating information about prey quality minimizes the occurrence of costly errors and may be advantageous in tracking temporal and spatial fluctuations of prey and exploiting novel food sources. These findings emphasize the sequential, complex nature of prey assessment that may allow exploratory and flexible hunting behaviors.  相似文献   

10.
An experimental group of homing pigeons (Columba livia f. domestica) learned to associate food with a magnetic anomaly produced by bar magnets that were fixed to the bowl in which they received their daily food ration in their home loft; the control group lacked this experience. Both groups were trained to search for two hidden food depots in a rectangular sand-filled arena without obvious visual cues; for the experimental birds, these depots were also marked with three 1.15 × 106 μT bar magnets. During the tests, there were two food depots, one marked with the magnets, the other unmarked; their position within the arena was changed from test to test. The experimental birds searched within 10 cm of the magnetically marked depot in 49% of the test sessions, whereas the control birds searched there in only 11% of the sessions. Both groups searched near the control depot in 11 and 13% of the sessions, respectively. The significant preference of the magnetically marked food depot by the experimental birds shows that homing pigeons cannot only detect a magnetic anomaly but can also use it as a cue for locating hidden food in an open arena.  相似文献   

11.
Seasonal food insecurity in Bangladesh is a multidimensional socioeconomic issue emanated from more than just access and availability of food. In general, it has been considered that the northern areas of Bangladesh, treated as monga-prone, is more vulnerable to seasonal food insecurity as compared to any other region of the country. The manifestation of monga is essentially food insecurity and consequent vulnerabilities. The paper investigates the seasonal food insecurity status, coping strategies along with its possible determinants linked to socioeconomic conditions of the affected households in Kurigram, one of the monga-prone districts of northern Bangladesh. A primary survey was conducted to explore the food insecurity status and diverse factors leading to food insecurity in terms of food consumption, livelihood and consequent family experiences in mitigating the severity of food insecurity during the monga (lean) period. The nature of household food insecurity seems to be an outcome of a variety of risk factors, as well as inability to manage those risks due to income and resource constraints. Moreover, a reduction in food intake during the monga period is one of the common scenarios in the study area. Marginal effects and elasticities after probit regression reveal that household’s income, share of per capita medical expenditure, safety net(s) involvement and the area of residence appear to be the leading factors affecting seasonal food insecurity during the monga period to a significant extent. Households with more medical expenditure (68 %), cultivable landholding (9 %) and households residing by the riverside (4 %) have a higher probability of food insecurity than their counterparts. On the contrary, relatively large size family (-16 %), higher income (-4 %) and safety net coverage (-19 %) have reduced the probability of food insecurity during the monga period. Finally, the paper concludes with some policy issues based on on-site observation and econometric analysis to overcome this transitory food insecurity in the monga-prone areas.  相似文献   

12.
Parasitoids of phytophagous insects face a detectability–reliability dilemma when foraging for hosts. Plant-related cues are easily detectable, but do not guarantee the presence of the host. Host-related cues are very reliable, but much harder to detect from a distance. Little is known in particular about the way coleopteran parasitoid females use these cues when foraging for a suitable place to lay their eggs. The question is of interest because, unlike hymenopteran larvae, coleopteran parasitoid larvae are highly mobile and able to forage for hosts on their own. We assessed whether females of the parasitoid rove beetle Aleochara bipustulata (L.) (Coleoptera: Staphylinidae) are attracted to plant (Swede roots, Brassica napus) and host-related cues [pupae of the cabbage root fly Delia radicum (L.) (Diptera: Anthomyiidae)]. In the field, A. bipustulata adult females were captured in selective pitfall traps containing pieces of roots damaged by D. radicum larvae, but not in traps containing pieces of healthy roots or D. radicum pupae. However, in the laboratory, the odour of D. radicum pupae attracted A. bipustulata females to mini-pitfalls. Video monitoring in the laboratory showed that foraging A. bipustulata females preferred a zone containing D. radicum pupae and larval tracks rather than one containing an extract of D. radicum-infested roots. Our results suggest a behavioural sequence where A. bipustulata females use plant-related cues at a distance, but then switch their preference to host-related cues at a close range. This would be the first observation of this behaviour in coleopteran parasitoids.  相似文献   

13.
The feeding behavior in nectar-feeding insects is triggered by a sugar-receptor response in contact chemosensilla. The contact chemosensilla are distributed not only on tarsi and the outside of the proboscis but also on the inside of the food canal in Lepidoptera. Although the chemosensilla inside the food canal are assumed to detect sweet taste during the passage of nectar through the food canal, their electrophysiological function has received little attention. In the nectar-feeding Asian swallowtail butterfly, Papilio xuthus (Lepidoptera: Papilionidae), we found 15- to 30-μm-long sensilla neatly lined up along the inside galea wall, which forms the food canal in the proboscis. The receptor neurons of these sensilla responded to sucrose. We hypothesized that starch and sucrose compete with each other for a taste receptor site on the sensilla. When we added starch and sucrose to the food-canal sensilla, the electrophysiological responses of food-canal sensilla were inhibited in parallel with the food-sucking behavior of the butterflies. These results suggest that the food-canal sensilla are involved in the behavioral control of nectar-sucking in this butterfly species.  相似文献   

14.
Norovirus (NoV) gastroenteritis outbreaks appear frequently in food service operations (FSOs), such as in restaurants and canteens. In this study the presence of NoV and adenovirus (AdV) genomes was investigated on the surfaces of premises, especially in kitchens, of 30 FSOs where foodborne gastroenteritis outbreaks were suspected. The objective was to establish a possible association between the presence of virus genomes on surfaces and a visual hygienic status of the FSOs. NoV genome was found in 11 and AdV genome in 8 out of 30 FSOs. In total, 291 swabs were taken, of which 8.9% contained NoV and 5.8% AdV genome. The presence of NoV genomes on the surfaces was not found to associate with lower hygiene level of the premises when based on visual inspection; most (7/9) of the FSOs with NoV contamination on surfaces and a completed evaluation form had a good hygiene level (the best category). Restaurants had a significantly lower proportion of NoV-positive swabs compared to other FSOs (canteens, cafeteria, schools etc.) taken together (p = 0.00014). The presence of a designated break room for the workers was found to be significantly more common in AdV-negative kitchens (p = 0.046). Our findings suggest that swabbing is necessary for revealing viral contamination of surfaces and emphasis of hygiene inspections should be on the food handling procedures, and the education of food workers on virus transmission.  相似文献   

15.
Some members of the family Tachinidae (Insecta: Diptera) deposit numerous very small eggs, termed “microtype” eggs, on the food plants of their caterpillar hosts. Parasitization is successful only when the hosts ingest these eggs. To increase the chance of hosts encountering the eggs, microtype tachinid parasitoids have to choose a suitable plant that harbors hosts and lay their eggs near the hosts. In their host location process, semiochemicals emitted by host-infested plants offer the tachinids a reliable cue. We investigated the behavioral responses of two microtype tachinid parasitoids, Pales pavida and Zenillia dolosa, to maize plants infested with their caterpillar host, Mythimna separata, in a wind tunnel. P. pavida females showed a significantly higher rate of landing on caterpillar-infested plants than on mechanically wounded or intact plants, whereas Z. dolosa landed on both the caterpillar-infested and mechanically wounded plants at significantly higher rates than on intact plants. We also examined which part of a caterpillar-infested maize leaf induces oviposition. P. pavida deposited eggs on the margin of the leaf, whereas Z. dolosa preferentially laid eggs around a caterpillar-infested area or a mechanically wounded spot. P. pavida eggs retained their parasitization ability for more than 15?days after they were deposited, whereas the eggs of Z. dolosa could not survive more than 5?days after oviposition. Our results suggest that each tachinid parasitoid employs a different host location strategy to exploit semiochemicals coming from plant–herbivore interaction as cues in order to increase their parasitization success.  相似文献   

16.
In this study we test one central prediction from sociogenomic theory—that social and non-social taxa share common genetic toolkits that regulate reproduction in response to environmental cues. We exposed Drosophila females of rover (for R) and sitter (for s) genotypes to an ovary-suppressing pheromone derived from the honeybee Apis mellifera. Surprisingly, queen mandibular pheromone (QMP) affected several measures of fitness in flies, and in a manner comparable to the pheromone’s normal effect on bee workers. QMP-treated sitter flies had smaller ovaries that contained fewer eggs than did untreated controls. QMP-treated rover flies, by contrast, showed a more variable pattern that only sometimes resulted in ovary inhibition, while a third strain of fly that contains a sitter mutant allele in a rover background (for s2) showed no ovarian response to QMP. Taken together, our results suggest that distinctly non-social insects have some capacity to respond to social cues, but that this response varies with fly genotype. In general, the interspecific response is consistent with a conserved gene set affecting reproductive physiology. The differential response among strains in particular suggests that for is itself important for modulating the fly’s pheromonal response.  相似文献   

17.
Nestmate recognition in ants is possible without tactile interaction   总被引:1,自引:0,他引:1  
Ants of the genus Camponotus are able to discriminate recognition cues of colony members (nestmates) from recognition cues of workers of a different colony (non-nestmates) from a distance of 1 cm. Free moving, individual Camponotus floridanus workers encountered differently treated dummies on a T-bar and their behavior was recorded. Aggressive behavior was scored as mandibular threat towards dummies. Dummies were treated with hexane extracts of postpharyngeal glands (PPGs) from nestmates or non-nestmates which contain long-chain hydrocarbons in ratios comparable to what is found on the cuticle. The cuticular hydrocarbon profile bears cues which are essential for nestmate recognition. Although workers were prevented from antennating the dummies, they showed significantly less aggressive behavior towards dummies treated with nestmate PPG extracts than towards dummies treated with non-nestmate PPG extracts. In an additional experiment, we show that cis-9-tricosene, an alkene naturally not found in C. floridanus' cuticular profile, is behaviorally active and can interfere with nestmate recognition when presented together with a nestmate PPG extract. Our study demonstrates for the first time that the complex multi-component recognition cues can be perceived and discriminated by ants at close range. We conclude that contact chemosensilla are not crucial for nestmate recognition since tactile interaction is not necessary.  相似文献   

18.
Prey-specialised predators have evolved specific cognitive adaptations that increase their prey searching efficiency. In particular, when the prey is social, selection probably favours the use of prey intraspecific chemical signals by predatory arthropods. Using a specialised ant-eating zodariid spider, Zodarion rubidum, which is known to prey on several ant species and possesses capture and venom adaptations more effective on Formicinae ants, we tested its ability to recognise chemical cues produced by several ant species. Using an olfactometer, we tested the response of Z. rubidum towards air with chemical cues from six different ant species: Camponotus ligniperda, Lasius platythorax and Formica rufibarbis (all Formicinae); and Messor structor, Myrmica scabrinodis and Tetramorium caespitum (all Myrmicinae). Z. rubidum was attracted to air carrying chemical cues only from F. rufibarbis and L. platythorax. Then, we identified that the spiders were attracted to airborne cues coming from the F. rufibarbis gaster and Dufour's gland, in particular. Finally, we found that among several synthetic blends, the decyl acetate and undecane mixture produced significant attraction of spiders. These chemicals are produced only by three Formicine genera. Furthermore, we investigated the role of these chemical cues in the communication of F. rufibarbis and found that this blend reduces their movement. This study demonstrates the chemical cognitive capacity of Z. rubidum to locate its ant prey using chemical signals produced by the ants. The innate capacity of Z. rubidum to olfactory detect different ant species is narrow, as it includes only two ant genera, confirming trophic specialisation at lower than subfamily level. The olfactory cue detected by Zodarion spiders is probably a component of the recruitment or trail pheromone.  相似文献   

19.
Prey perceiving predation risk commonly change their behavior to avoid predation. However, antipredator strategies are costly. Therefore, according to the threat-sensitive predator avoidance hypothesis, prey should match the intensity of their antipredator behaviors to the degree of threat, which may depend on the predator species and the spatial context. We assessed threat sensitivity of the two-spotted spider mite, Tetranychus urticae, to the cues of three predatory mites, Phytoseiulus persimilis, Neoseiulus californicus, and Amblyseius andersoni, posing different degrees of risk in two spatial contexts. We first conducted a no-choice test measuring oviposition and activity of T. urticae exposed to chemical traces of predators or traces plus predator eggs. Then, we tested the site preference of T. urticae in choice tests, using artificial cages and leaves. In the no-choice test, T. urticae deposited their first egg later in the presence of cues of P. persimilis than of the other two predators and cue absence, indicating interspecific threat-sensitivity. T. urticae laid also fewer eggs in the presence of cues of P. persimilis and A. andersoni than of N. californicus and cue absence. In the artificial cage test, the spider mites preferred the site with predator traces, whereas in the leaf test, they preferentially resided on leaves without traces. We argue that in a nonplant environment, chemical predator traces do not indicate a risk for T. urticae, and instead, these traces function as indirect habitat cues. The spider mites were attracted to these cues because they associated them with the existence of a nearby host plant.  相似文献   

20.
This 6-year experimental study measured the response of bird populations and abundance to combinations of mixed cropping and low pesticide regimes associated with a commercial crop rotation. The results show a rapid and sustained population increase among a wide range of bird species, in contrast to local regional trends for the same species. Seventy percent of the increase occurred within the first 3 years of the experiment, with species of high conservation concern, and those monitored as environmental indicators on lowland farmland in the UK, increasing on average, by 30% and 20% respectively (reaching respective peaks of 44% and 33% after 4 years). For some individual species, the increase was higher still, i.e., 300% (1–4 pairs) for grey partridge (Perdix perdix) and 46% (13–19 pairs) for skylarks (Alauda arvensis) in peak years. The results demonstrate that bird species typical of lowland arable farmland in the UK are responsive to suitable farm-scale changes in habitat and food provision (roughly, manipulation within less than 1-km2). They show that the carrying capacity of modern, commercially viable, arable farmland can be increased significantly for birds, in this case, mainly by using crops mosaics to create habitats alongside the appropriate use of herbicides on non-cropped habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号