首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
ABSTRACT: Toxic organic compounds, such as DBCP, EDB, and c TCP, that are associated with pineapple cultivation in Hawaii have been discovered in drinking water wells on Oahu. In order to reach and contaminate the Pearl Harbor aquifer, pesticides must be transported quickly downward away from the soil surface prior to complete volatilization, degradation, or adsorption of residuals. This paper assesses the role of pesticide application timing relative to subsequent rainfall-induced recharge events in determining the amount and extent of chemical leaching from the soil. A water balance model for a pineapple crop is developed to estimate the time series of recharge from two fields for which soil contamination profiles are available. In general, the amounts of DBCP, EDB, and TCP found in the soil profiles of the two fields are consistent with expectations of leaching based on an analysis of the recharge time series. The results indicate that recharge during and immediately following the application of pesticides is important in determining whether groundwater contamination will result.  相似文献   

2.
Volatile organic compounds (VOCs) are an important source of contamination of groundwater supplies in Massachusetts and many parts of the United States. One local response is to require sewering in wellhead protection areas as an easily enforceable policy designed to reduce the probability of VOC contamination of groundwater. Data were collected for 238 wellhead protection areas in Massachusetts on VOC contamination levels and the sewered and unsewered land uses in those aquifer recharge areas. Logistic regression procedures were used to see whether sewering had any statistical effect on likelihood of contamination of well water. The results provided limited, but not overpowering, support for the idea that requiring commercial and industrial land uses to use sewers would reduce the chance of VOC contamination.  相似文献   

3.
Ground and surface water selenium (Se) contamination is problematic throughout the world, leading to harmful impacts on aquatic life, wildlife, livestock, and humans. A groundwater reactive transport model was applied to a regional‐scale irrigated groundwater system in the Lower Arkansas River Basin in southeastern Colorado to identify management practices that remediate Se contamination. The system has levels of surface water and groundwater Se concentrations exceeding the respective chronic standard and guidelines. We evaluate potential solutions by combining the transport model with an assessment of the cost to employ those practices. We use a framework common in economics and engineering fields alike, the Pareto frontier, to show the impact of four different best management practices on the tradeoffs between Se and cost objectives. We then extend that analysis to include institutional constraints that affect the economic feasibility associated with each practice. Results indicate that although water‐reducing strategies have the greatest impact on Se, they are the hardest for farmers to implement given constraints common to western water rights institutions. Therefore, our analysis shows that estimating economic and environmental tradeoffs, as is typically done with a Pareto frontier, will not provide an accurate picture of choices available to farmers where institutional constraints should also be considered.  相似文献   

4.
The cost of developing groundwater resources in northeastern Illinois from 198cL2020 is estimated for the purpose of providing a basis for comparing alternative sources. Demands for each township in the study area are estimated at 10-year increments and are satisfied, where the supply is sufficient, in such a way as to minimize the cost subject to constraints on supply. Sources of water are two shallow aquifers with known potential yields and a series of deep aquifers treated as a single unit and modeled on a digital computer. For each township the costs of wells, pumps, power and rehabilitation is estimated for each aquifer on a per million gallons of water per day basis. In addition the cost of groundwater treatment necessary to raise the quality to that of treated Lake Michigan water is considered. Raw water costs are found to vary from 2 to 14 cents per 1000 gallons depending upon the depth to the deep aquifer water. Treated water costs vary from 22 to 53 cents per 1000 gallons, the lower costs applying to the largest users because of the economy of scale. It is found that with proper distribution of pumpage there is sufficient water in storage in the deep aquifers to meet groundwater demands through 2020.  相似文献   

5.
ABSTRACT: About one-third of all West Virginians obtain domestic water from private water wells. In this research, mail and telephone surveys were used to investigate household responses to bacteria, mineral, and organic chemical contamination of domestic water supplies. Of households who were informed of contamination and acknowledged the problem, over 85 percent took action to avoid exposure to water contamination problems. The most common action was to clean and/or repair the water system (55.9 percent of valid surveys). Approximately 45 percent of households made investments of either a water treatment system, a new water source, or correction of contamination source. The average, annual economic cost of rural household actions was $320 for bacteria, $357 for minerals, and $1,090 for organic contamination. These economic costs represent a lower bound estimate for rural household willingness-to-pay (WTP) for a reduction in domestic water contamination from government action. On average, investment actions had lower annual economic costs than noninvestment actions of boiling and hauling water so that households who undertook investment actions in response to water contamination would have a lower WTP for government action to reduce water contamination. When effectiveness of water treatment systems was evaluated, treatment systems which require minimal household maintenance were found to reduce exposure to water contamination to safe levels as households intended when they installed the system. Treatment systems which were commonly ineffective included those which required continual maintenance (e.g., chiorinators) or were not designed to solve the contaminant problem for which they were purchased (e.g., filter systems for bacteria).  相似文献   

6.
An innovative management strategy is proposed for optimized and integrated environmental management for regional or national groundwater contamination prevention and restoration allied with consideration of sustainable development. This management strategy accounts for availability of limited resources, human health and ecological risks from groundwater contamination, costs for groundwater protection measures, beneficial uses and values from groundwater protection, and sustainable development. Six different categories of costs are identified with regard to groundwater prevention and restoration. In addition, different environmental impacts from groundwater contamination including human health and ecological risks are individually taken into account. System optimization principles are implemented to accomplish decision-makings on the optimal resources allocations of the available resources or budgets to different existing contaminated sites and projected contamination sites for a maximal risk reduction. Established management constraints such as budget limitations under different categories of costs are satisfied at the optimal solution. A stepwise optimization process is proposed in which the first step is to select optimally a limited number of sites where remediation or prevention measures will be taken, from all the existing contaminated and projected contamination sites, based on a total regionally or nationally available budget in a certain time frame such as 10 years. Then, several optimization steps determined year-by-year optimal distributions of the available yearly budgets for those selected sites. A hypothetical case study is presented to demonstrate a practical implementation of the management strategy. Several issues pertaining to groundwater contamination exposure and risk assessments and remediation cost evaluations are briefly discussed for adequately understanding implementations of the management strategy.  相似文献   

7.
ABSTRACT: Extensive use is made of on-site wastewater disposal systems of cesspools due to the absence of a sanitary sewerage system in Saudi urban areas. This system has caused the groundwater table to rise to a public nuisance level. A health risk has also evolved. There are several infrastructural, environmental, and social impacts from this, resulting in great financial losses. Examples are: surface water flooding, damage to foundations of buildings and asphalt street pavements, flooded basements and added construction costs required for excavation, dewatering, insulation materials, and special cements. Most of these costs are indirectly being paid by the private and public sectors. This study compares the estimated costs of damage and losses with the estimated costs of building, operating, and maintaining sanitary sewerage systems in the cesspool-served areas. The annual cost of the cesspool system, depending on the severity of the adverse impacts, ranges from 2.2 to 4.4 times the annual cost of the sanitary sewerage system. Remedies for these impacts are very expensive, and delays in the implementation of the sanitary sewerage facility will make the damage recovery more expensive, and in some cases, impossible. Thus, it is recommended that highest priority to be given to the sanitary sewerage systems in Saudi urban areas.  相似文献   

8.
ABSTRACT: In the United States, millions of dollars are currently spent to monitor water quality for a whole suite of organic compounds. However, results of several surveys conducted in the past decade indicate that only a few pesticides occur in a small proportion of wells. Screening methods based on historical evidence of contamination patterns and knowledge of the locales will have significant potential to reduce these costs and effectively identify contamination problems. In this paper, the economics of utilizing two screening methods, sequential analysis and sample compositing, in the design of monitoring strategies is captured In the form of mathematical models and illustrated for a state-level monitoring program. When the two methods are adopted, the total analytical cost to conclusively identify contaminated wells in a network of 4,000 wells is shown to range from $12,500 to $1,575,000 depending on the extent of contamination. In contrast, the total analytical cost of a conventional program where all the wells in the network are sampled and tested for a standard suite of pesticides at a cost of $250/sample is one million dollars. Given such wide range in costs, it is prudent to incorporate the screening concepts presented in this paper in the development of cost-effective monitoring programs.  相似文献   

9.
Carroll, Rosemary W.H., Greg Pohll, David McGraw, Chris Garner, Anna Knust, Doug Boyle, Tim Minor, Scott Bassett, and Karl Pohlmann, 2010. Mason Valley Groundwater Model: Linking Surface Water and Groundwater in the Walker River Basin, Nevada. Journal of the American Water Resources Association (JAWRA) 46(3):554-573. DOI: 10.1111/j.1752-1688.2010.00434.x Abstract: An integrated surface water and groundwater model of Mason Valley, Nevada is constructed to replicate the movement of water throughout the different components of the demand side of water resources in the Walker River system. The Mason Valley groundwater surface water model (MVGSM) couples the river/drain network with agricultural demand areas and the groundwater system using MODFLOW, MODFLOW’s streamflow routing package, as well as a surface water linking algorithm developed for the project. The MVGSM is capable of simulating complex feedback mechanisms between the groundwater and surface water system that is not dependent on linearity among the related variables. The spatial scale captures important hydrologic components while the monthly stress periods allow for seasonal evaluation. A simulation spanning an 11-year record shows the methodology is robust under diverse climatic conditions. The basin-wide modeling approach predicts a river system generally gaining during the summer irrigation period but losing during winter months and extended periods of drought. River losses to the groundwater system approach 25% of the river’s annual budget. Reducing diversions to hydrologic response units will increase river flows exiting the model domain, but also has the potential to increase losses from the river to groundwater storage.  相似文献   

10.
Geographically‐related information is needed for several elements of an integrated ground water quality management programme, including ground water monitoring planning, prioritization of pollution sources, usage of permits and inspections for source control, and planning and completion of remedial actions. Geographic Information Systems (GISs) can be used to support these elements along with delineating wellhead protection areas (WHPAs), prioritizing existing contaminant sources and evaluating proposed changes in land usage in such areas. Eight case studies of the use of GISs in wellhead protection programmes are summarized, including examples from Rhode Island, Mississippi, New Jersey, New York, Pennsylvania, Kansas, Massachusetts and Texas. Six additional examples are mentioned relative to the use of GISs for evaluating ground water pollution potential, facilitating data analysis for environmental restoration of a large area with numerous waste sites, evaluating trends in ground water nitrate contamination, establishing a national database for ground water vulnerability to agricultural chemicals, simulating water table altitudes from stream and drainage basin locations, and selecting radioactive waste dump sites. The applicability of GISs and their associated advantages in wellhead protection and other ground water management studies are demonstrated via the case studies. The GIS technology provides a unique opportunity for analysing and visualizing spatial data. Contaminant and source prioritization within WHPAs is needed for both extant conditions and in the evaluation of proposed land use changes. The coupling of a GIS with contaminant/source prioritization would provide a strategic tool which could be used to plan targeted ground water monitoring programmes, to identify appropriate management or mitigation measures, minimize introduction of contaminants from existing sources into the subsurface environment, and to evaluate the potential of proposed land use activities for causing ground water contamination. GISs can be useful in providing current information for policy makers, planners and managers engaged in ground water quality decision making.  相似文献   

11.
Groundwater over-pumping is a major problem in several countries around the globe. Since controlling groundwater pumping through water flow meters is hardly feasible, the surrogate is to control electricity usage. This paper presents a framework to restrict groundwater pumping by implementing an annual individual electricity quota without interfering with the electricity pricing policy. The system could be monitored online through prepaid electricity meters. This provides low transaction costs of individual monitoring of users compared to the prohibitive costs of water flow metering and monitoring. The public groundwater managers' intervention is thus required to determine the water and electricity quota and watch the electricity use online. The proposed framework opens the door to the establishment of formal groundwater markets among users at very low transaction costs. A cost–benefit analysis over a 25-year period is used to evaluate the cost of non-action and compare it to the prepaid electricity quota framework in the Batinah coastal area of Oman. Results show that the damage cost to the community, if no active policy is implemented, amounts to (−$288) million. On the other hand, the implementation of a prepaid electricity quota with an online management system would result in a net present benefit of $199 million.  相似文献   

12.
In regions characterized by water scarcity, such as coastal Southern California, groundwater containing chromophoric dissolved organic matter is a viable source of water supply. In the coastal aquifer of Orange County in California, seawater intrusion driven by coastal groundwater pumping increased the concentration of bromide in extracted groundwater from 0.4 mg l?1 in 2000 to over 0.8 mg l?1 in 2004. Bromide, a precursor to bromate formation is regulated by USEPA and the California Department of Health as a potential carcinogen and therefore must be reduced to a level below 10 μg l?1. This paper compares two processes for treatment of highly coloured groundwater: nanofiltration and ozone injection coupled with biologically activated carbon. The requirement for bromate removal decreased the water production in the ozonation process to compensate for increased maintenance requirements, and required the adoption of catalytic carbon with associated increase in capital and operating costs per unit volume. However, due to the absence of oxidant addition in nanofiltration processes, this process is not affected by bromide. We performed a process analysis and a comparative economic analysis of capital and operating costs for both technologies. Our results show that for the case studied in coastal Southern California, nanofiltration has higher throughput and lower specific capital and operating cost, when compared to ozone injection with biologically activate carbon. Ozone injection with biologically activated carbon, compared to nanofiltration, has 14% higher capital cost and 12% higher operating costs per unit water produced while operating at the initial throughput. Due to reduced ozone concentration required to accommodate for bromate reduction, the ozonation process throughput is reduced and the actual cost increase (per unit water produced) is 68% higher for capital cost and 30% higher for operations.  相似文献   

13.
ABSTRACT. Adequate and good-quality water supply for medium sized towns is costly when there are insufficient quantity and low quality of groundwater or surface water. In a central water supply system serving a number of towns, the economies of scale may permit a sufficient and good-quality supply at lesser rates. Such a system has the flexibility of supplying rural population through small service lines. The system may be an interbasin or intrabasin conveyance depending on the location of a suitable water source and the economics of the supply network. Seven cost elements are pertinent to the optimum or least-cost design of network consisting of pipelines and pumping stations. The relevant cost functions are based on the available data gathered from various sources. Water conveyance costs are calculated for various flow rates, pipeline diameters, flow variabilities, static heads, and interest rates, thus providing a measure of sensitivity of the conveyance cost to such variations. The economies of scale, the sensitivity of optimum unit conveyance costs, and variations in unit costs with change in cost functions are useful in making a feasibility study for a proposed conveyance system.  相似文献   

14.
Since 2006, around 600 rainwater harvesting systems have been constructed for agricultural irrigation in Beijing. The financial and economic implications of using these systems are discussed less. It is important to understand the effectiveness of the investments spent on the rainwater harvesting systems. The paper aims to analyze economic and financial performance of the constructed rainwater harvesting systems in rural areas of Beijing through the method of cost benefit analysis. The economic analysis focuses on determining the contribution of rainwater harvesting systems to the development of society, carried out from the point of view of government. The financial analysis allows comparison of the financial implications of using groundwater with using rainwater for agricultural irrigation from the point of view of individual participant, namely the local farmers. The results show that the rainwater harvesting systems are economically feasible. This means rainwater harvesting have positive effects for society. However, the financial feasibility of rainwater harvesting systems depends on the charge for groundwater and on the size of the rainwater harvesting systems. If groundwater is not charged, the rainwater harvesting systems are not financially feasible. If groundwater is charged at 2 Yuan/m3, only large size systems are financially feasible while small and middle sizes systems are not financially feasible. Under these circumstances, only large systems can run smoothly, while farmers may not use the small and medium-size systems.  相似文献   

15.
Generally, one expects evapotranspiration (ET) maps derived from optical/thermal Landsat and MODIS satellite imagery to improve decision support tools and lead to superior decisions regarding water resources management. However, there is lack of supportive evidence to accept or reject this expectation. We “benchmark” three existing hydrologic decision support tools with the following benchmarks: annual ET for the ET Toolbox developed by the United States Bureau of Reclamation, predicted rainfall‐runoff hydrographs for the Gridded Surface/Subsurface Hydrologic Analysis model developed by the U.S. Army Corps of Engineers, and the average annual groundwater recharge for the Distributed Parameter Watershed Model used by Daniel B. Stephens & Associates. The conclusion of this benchmark study is that the use of NASA/USGS optical/thermal satellite imagery can considerably improve hydrologic decision support tools compared to their traditional implementations. The benefits of improved decision making, resulting from more accurate results of hydrologic support systems using optical/thermal satellite imagery, should substantially exceed the costs for acquiring such imagery and implementing the remote sensing algorithms. In fact, the value of reduced error in estimating average annual groundwater recharge in the San Gabriel Mountains, California alone, in terms of value of water, may be as large as $1 billion, more than sufficient to pay for one new Landsat satellite.  相似文献   

16.
ABSTRACT: Several factors affect the occurrence and transport of pesticides in surface waters of the 29,400 km2 White River Basin in Indiana. A relationship was found between pesticide use and the average annual concentration of that pesticide in the White River, although this relationship varies for different classes of pesticides. About one percent of the mass applied of each of the commonly used agricultural herbicides was transported from the basin via the White River. Peak pesticide concentrations were typically highest in late spring or early summer and were associated with periods of runoff following application. Concentrations of diazinon were higher in an urban basin than in two agricultural basins, corresponding to the common use of this insecticide on lawns and gardens in urban areas. Concentrations of atrazine, a corn herbicide widely used in the White River Basin, were higher in an agricultural basin with permeable, well‐drained soils, than in an agricultural basin with less permeable, more poorly drained soils. Although use of butylate and cyanazine was comparable in the White River Basin between 1992 and 1994, concentrations in the White River of butylate, which is incorporated into soil, were substantially less than for cyanazine, which is typically applied to the soil surface.  相似文献   

17.
Nonpoint source (NPS) pollutants such as phosphorus, nitrogen, sediment, and pesticides are the foremost sources of water contamination in many of the water bodies in the Midwestern agricultural watersheds. This problem is expected to increase in the future with the increasing demand to provide corn as grain or stover for biofuel production. Best management practices (BMPs) have been proven to effectively reduce the NPS pollutant loads from agricultural areas. However, in a watershed with multiple farms and multiple BMPs feasible for implementation, it becomes a daunting task to choose a right combination of BMPs that provide maximum pollution reduction for least implementation costs. Multi-objective algorithms capable of searching from a large number of solutions are required to meet the given watershed management objectives. Genetic algorithms have been the most popular optimization algorithms for the BMP selection and placement. However, previous BMP optimization models did not study pesticide which is very commonly used in corn areas. Also, with corn stover being projected as a viable alternative for biofuel production there might be unintended consequences of the reduced residue in the corn fields on water quality. Therefore, there is a need to study the impact of different levels of residue management in combination with other BMPs at a watershed scale. In this research the following BMPs were selected for placement in the watershed: (a) residue management, (b) filter strips, (c) parallel terraces, (d) contour farming, and (e) tillage. We present a novel method of combing different NPS pollutants into a single objective function, which, along with the net costs, were used as the two objective functions during optimization. In this study we used BMP tool, a database that contains the pollution reduction and cost information of different BMPs under consideration which provides pollutant loads during optimization. The BMP optimization was performed using a NSGA-II based search method. The model was tested for the selection and placement of BMPs in Wildcat Creek Watershed, a corn dominated watershed located in northcentral Indiana, to reduce nitrogen, phosphorus, sediment, and pesticide losses from the watershed. The Pareto optimal fronts (plotted as spider plots) generated between the optimized objective functions can be used to make management decisions to achieve desired water quality goals with minimum BMP implementation and maintenance cost for the watershed. Also these solutions were geographically mapped to show the locations where various BMPs should be implemented. The solutions with larger pollution reduction consisted of buffer filter strips that lead to larger pollution reduction with greater costs compared to other alternatives.  相似文献   

18.
ABSTRACT: The state of Minnesota seeks to reduce phosphorus loading to the Minnesota River by 40 percent from current levels. Looking at one major watershed in the river basin, we examined the cost effectiveness of targeting versus not targeting specific practices or regions within a watershed for controlling nonpoint phosphorus pollution from agriculture. Integrating biophysical simulation results from current and alternative farming systems with production cost and return estimates enabled us to analyze this policy. Our results indicated it is more cost effective to reduce nonpoint pollution by targeting particular regions or practices in a watershed compared to not targeting. Specifically, producers farming on cropland susceptible to erosion in close proximity to water will appreciably reduce phosphorus nonpoint pollution loading potential by switching from conventional tillage to conservation tillage and by reducing phosphorus fertilization levels to those recommended by the state extension service. Efforts to target those producers in the Minnesota River Basin could reduce potential transaction costs and compensation from “takings” by approximately $50 million (74 percent) over not targeting.  相似文献   

19.
ABSTRACT: This paper is a computer simulation analysis of an agricultural nonpoint pollution problem. Computer modeling is a universally applicable tool that can be used for establishing the linkages between and the quality of agricultural runoff in both surface and subsurface flow. The tradeoffs between the costs of soil conservation practices and water quality are reported, and the economic implications of such tradeoffs are discussed. Soil and nutrient losses resulting from crop production practices are analyzed using a field-scale computer simulation model (CREAMS). No-till planting, reduced tillage, and sod waterway systems are more cost effective than other practices for controlling soil and nutrient runoff losses. Nitrate leaching losses are increased slightly by most soil conservation practices. Terrace systems and permanent vegetative cover impose the greatest societal cost for water quality protection. Public cost sharing and tax incentives encourage farmers to adopt expensive structural practices, and policies are needed to get cost-effective practices implemented on critical acreage. Extensive treatment of land is necessary for agricultural best management practices (BMPs) to significantly improve water quality in areas that are intensively farmed.  相似文献   

20.
During oil and gas production, water is often extracted from geological formations along with the hydrocarbons. These "produced waters" have been discharged to Nueces Bay since the turn of the century. These effluents were found to be highly toxic, and sediments in the vicinity of the discharges were also toxic. We developed a map of wells and produced-water discharge sites in the vicinity of Nueces Bay and identified numerous unplugged wells suitable for conversion to produced water disposal wells. An economic analysis of conversion to subterranean injection of produced water indicates that most of the wells currently in production could pay out the cost of conversion to injection in one to three years. The use of one injection well for two or more water-producing wells could yield greater savings. Wells that could not support the cost of injection are small producers, and their loss would not constitute a major loss of jobs or dollars to the area. This study could serve as a useful model for evaluating the economic feasibility of conversion to injection in other areas of Texas and Louisiana.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号