首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Remediation technologies for heavy metal contaminated groundwater   总被引:9,自引:0,他引:9  
The contamination of groundwater by heavy metal, originating either from natural soil sources or from anthropogenic sources is a matter of utmost concern to the public health. Remediation of contaminated groundwater is of highest priority since billions of people all over the world use it for drinking purpose. In this paper, thirty five approaches for groundwater treatment have been reviewed and classified under three large categories viz chemical, biochemical/biological/biosorption and physico-chemical treatment processes. Comparison tables have been provided at the end of each process for a better understanding of each category. Selection of a suitable technology for contamination remediation at a particular site is one of the most challenging job due to extremely complex soil chemistry and aquifer characteristics and no thumb-rule can be suggested regarding this issue. In the past decade, iron based technologies, microbial remediation, biological sulphate reduction and various adsorbents played versatile and efficient remediation roles. Keeping the sustainability issues and environmental ethics in mind, the technologies encompassing natural chemistry, bioremediation and biosorption are recommended to be adopted in appropriate cases. In many places, two or more techniques can work synergistically for better results. Processes such as chelate extraction and chemical soil washings are advisable only for recovery of valuable metals in highly contaminated industrial sites depending on economical feasibility.  相似文献   

2.
A procedure to optimize the design of a Permeable Adsorptive Barrier (PAB) for the remediation of a contaminated aquifer is presented in this paper. A computer code, including different routines that describe the groundwater contaminant transport and the pollutant capture by adsorption in unsteady conditions over the barrier solid surface, has been developed. The complete characterization of the chemical–physical interactions between adsorbing solids and the contaminated water, required by the computer code, has been obtained by experimental measurements. A case study in which the procedure developed has been applied to a tetrachloroethylene (PCE)-contaminated aquifer near a solid waste landfill, in the district of Napoli (Italy), is also presented and the main dimensions of the barrier (length and width) have been evaluated. Model results show that PAB is effective for the remediation of a PCE-contaminated aquifer, since the concentration of PCE flowing out of the barrier is everywhere always lower than the concentration limit provided for in the Italian regulations on groundwater quality.  相似文献   

3.
Awareness of groundwater protection has increased substantially in recent decades. In the Province of Quebec, Canada, the Groundwater Catchment Regulation (GWCR) was promulgated in 2002 to protect water quality in public wells. The goal of the present study was to document groundwater protection in the context of emerging regulations and identify factors explaining the propensity of municipalities applying protection strategies. Two types of information were used in this study: data from a questionnaire-based survey conducted among 665 municipalities in the Province of Quebec and complementary information gathered from various sources. Data from the survey revealed that fewer than half of the municipalities have been able to comply with the GWCR, mainly because of financial limitations. Also, close to half of the municipalities have either identified or are expecting land use conflicts to arise between protection areas required by the GWCR and other land usage, with agriculture being the main conflicting activity. Multivariate logistic regression models served to identify factors explaining the likelihood of municipalities to take groundwater protection measures. Those factors were municipality revenue, history of water contamination in distribution systems, land use near wellheads, location of municipalities within a provincial priority watershed and the importance of groundwater use in a region. Results of the study may prove helpful for government authorities in better understanding the groundwater protection issue and in implementing strategies that improve the ability of municipalities to protect groundwater.  相似文献   

4.
In the hard rock areas of India, overdraft of groundwater has led to negative externalities. It increased costs of groundwater irrigation and caused welfare losses. At the same time informal groundwater markets are slowly emerging and are believed to improve water distribution and to increase water use efficiency in the irrigation sector. These claims are evaluated in this study. For this purpose data was collected from a sample containing three different groups of water users: water sellers, water buyers and a control group of non-traders. First the socio-economic characteristics of these groups are compared. Then the efficiency of water use of the three groups is studied using Data Envelopment Analysis. The results indicate that groundwater markets provide resource poor farmers access to irrigation water, giving them the opportunity to raise their productivity. Water buyers are furthermore shown to be most efficient in their water use, while water sellers are also shown to be more efficient than the control group. The differences in efficiency between the groups are statistically significant. The demonstrated potential of groundwater markets to improve the efficiency of water use and to increase equity in resource access should be taken into account by the Indian government when deciding on their attitude towards the emerging groundwater markets.  相似文献   

5.
This paper discusses the environmental waste management of the Heap-Leach Uranium Production Facility of Caetité located in a semi-arid region in Brazil. A comparison is made with the first uranium production site of the country located in Poços de Caldas. It is demonstrated that differences in the operational process along with different environmental conditions can lead to different impacts. In the present case groundwater is the potential most sensitive environmental medium despite the well-established consensus in the literature that radon and aerosol emissions may turn-out to be the most relevant environmental aspects of an installation located at this type of region. Most of the 226Ra content in the ore remains in the leached ore that is deposited with the waste rock. A lack in appropriate prediction of the hydrological balance has been causing unanticipated emissions of liquid effluents into the environment. Chemical treatment of this effluent may be needed. Contamination of groundwater in the short term by the waste ponds is not to be expected but it can be a relevant issue in the long term. As a consequence, careful closure schemes will need to be put in place. Finally, the overall costs with remediation in the Caetité production center are lower than those observed at the Poços de Caldas mining site.  相似文献   

6.
The Kohonen neural network was applied to hydrochemical data from the Detritic Aquifer of the Lower Andarax, situated in a semiarid zone in the southeast of Spain. An activation map was obtained for each of the sampling points, in which the spatial distribution of the activated neurons indicated different water qualities. To extract the information contained in the activation maps, they were divided into nine quadrats. Cartesian coordinates were assigned to each quadrant (x, y), and for each sampling point, three derived variables were selected, which were assigned the values x and y of the corresponding quadrat. A classification was defined based on this simple matrix system which allows an easy and rapid means of evaluating the water quality. This assessment highlights the various processes that affect groundwater quality. The method generates output that is easier to interpret than from traditional statistical methods. The information is extracted from the activation maps without significant loss of information. The method is proposed for assessing water quality in hydrogeochemically complex areas, where large numbers of observations are made.  相似文献   

7.
This study assessed volatile organic compound (VOC) emission characteristics from wastewater treatment plants (WWTPs) in five Taiwanese industrial districts engaged in numerous manufacturing processes, including petrochemical, science-based industry (primarily semiconductors, photo-electronics, electronic products and biological technology), as well as multiple manufacturing processes (primarily pharmaceuticals and paint manufacturing). The most aqueous hydrocarbons dissolved in the wastewater of Taiwanese WWTPs were acetone, acrylonitrile, methylene chloride, and chloroform for the petrochemical districts; acetone, chloroform, and toluene for the science-based districts; and chlorinated and aromatic hydrocarbons for the multiple industrial districts. The aqueous pollutants in the united WWTPs were closely related to the characteristics of the manufacturing plants in the districts. To effectively prevent VOC emissions from the primary treatment section of petrochemical WWTPs, the updated regulations governing VOC emissions were issued by the Taiwanese Environmental Protection Administration in September 2005, legally mandating a seal cover system incorporating venting and air purification equipment. Cost analysis indicates that incinerators with regenerative heat recovery are optimal for treating high VOC concentrations, exceeding 10,000ppm as CH(4), from the oil separation basins. However, the emission concentrations, ranging from 100 to 1000ppm as CH(4) from the other primary treatment facilities and bio-treatment stages, should be collected and then injected into the biological oxidation basins via existing or new blowers. The additional capital and operating costs required to treat the VOC emissions of 1000ppm as CH(4) from primary treatment facilities are less than US$0.1 for perm(3) wastewater treatment capacity.  相似文献   

8.
Economic instrument is indubitably perceived as effective for encouraging or forcing contractors to conduct environmentally friendly construction practices. Previous studies in relation to this topic mainly put emphasis on economic analysis of construction and demolition (C&D) waste management from a static point of view, which failed to consider its dynamics nature by integrating all essential activities throughout the waste chain. This paper is thus intended to highlight the dynamics and interrelationships of C&D waste management practices and analyze the cost-benefit of this process using a system dynamics approach. Data related to concrete and aggregate of a construction project in Shenzhen was collected for the application of the proposed model. The findings reveal that net benefits from conducting C&D waste management will occur, but a higher landfill charge will lead to a higher net benefit, as well as an earlier realization of the net benefit. In addition, the general public under a higher landfill charge will suffer from a higher environmental cost caused by illegal dumping. The simulation results also suggest that current regulation in Shenzhen should be promoted to facilitate a dramatic increase in net benefit from the implementation of C&D waste management. This research is of value in facilitating better understanding on the dynamics of C&D waste management activities throughout the waste chain, as well as providing a tool for simulating the cost-benefit of C&D waste management practices over the project duration.  相似文献   

9.
/ Data were collected from 245 farmers within the Darby Creek hydrologic unit in central Ohio to assess perceptions of risk associated with use of farm chemicals. Farmers were asked to evaluate the level of risk associated with use of agricultural chemicals for water quality, food safety, food quality, health of applicator, health of farm animals, wildlife, beneficial plants, beneficial insects, and human health. Study findings revealed that respondents perceived use of farm chemicals posed little or no threat to any of the assessed items. A composite index was formulated from the responses to the nine items and was titled Perceived Risk. Variance in the Perceived Risk index was regressed against social learning variables. The findings revealed that approximately 32% of the variance was explained by the predictive variables included in the model. It was concluded that the theoretical perspective was somewhat useful for understanding perceptions held about agricultural chemical use at the farm level. The findings are discussed in the context of future conservation and educational-information programs within the study region.KEY WORDS: Risk perception; Risk assessment; Groundwater; Pesticide contamination; Food safety; Environmental quality  相似文献   

10.
Since 2006, around 600 rainwater harvesting systems have been constructed for agricultural irrigation in Beijing. The financial and economic implications of using these systems are discussed less. It is important to understand the effectiveness of the investments spent on the rainwater harvesting systems. The paper aims to analyze economic and financial performance of the constructed rainwater harvesting systems in rural areas of Beijing through the method of cost benefit analysis. The economic analysis focuses on determining the contribution of rainwater harvesting systems to the development of society, carried out from the point of view of government. The financial analysis allows comparison of the financial implications of using groundwater with using rainwater for agricultural irrigation from the point of view of individual participant, namely the local farmers. The results show that the rainwater harvesting systems are economically feasible. This means rainwater harvesting have positive effects for society. However, the financial feasibility of rainwater harvesting systems depends on the charge for groundwater and on the size of the rainwater harvesting systems. If groundwater is not charged, the rainwater harvesting systems are not financially feasible. If groundwater is charged at 2 Yuan/m3, only large size systems are financially feasible while small and middle sizes systems are not financially feasible. Under these circumstances, only large systems can run smoothly, while farmers may not use the small and medium-size systems.  相似文献   

11.
This study examines the impact of contaminated sites on urban property values in Sydney, Nova Scotia, Canada. The property value effects are examined using an inverse distance specification from the property to the site. A hedonic method employing ordinary least-square technique was used for model estimation. The results show that the presence of contaminated sites has had significant negative effect on the value of residential property. This negative effect, however, is largely localized to within few hundred metres of the sites. The total property value loss in urban Sydney from the contaminated sites is estimated to be $CDN 36 million.  相似文献   

12.
Groundwater (well water) from a residential area within the vicinity of an industrial estate in Lagos, Nigeria were sampled and analysed by Flame Atomic Absorption Spectroscopy for their heavy metals content. This was with a view of assessing the quality of the water, which was being used for domestic activities, especially, drinking usually without treatment. Total trace metal determination by mineral acid digestion of water samples was applied. This method proved to be better than an extractive concentration technique in the quality assurance protocols with the recovery range being 90.7 ± 0.006–97.6 ± 0.003%. Mean concentration of trace metals in water samples ranged from Fe: 0.05–0.47 mg l−1; Al: 0.1–1.54 mg l−1; Cu: 0.14–1.39 mg l−1; Zn: 0.04–0.43 mg l−1; Cd: trace–0.02 mg l−1; Pb: trace–0.03 mg l−1, Mn: 0.01–0.18 mg l−1 and Ni: 0.02–0.11 mg l−1. Physical parameters of water samples examined were within the drinking water safety limits except for conductivity. Results generally indicate the presence of heavy metal constituents in groundwater samples. Detection of metals such as cadmium and lead which have serious health implications above WHO and USEPA limits in drinking water gives cause for concern.  相似文献   

13.
Evidence of groundwater management by aquifer users emerging under Integrated Water Resources Management (IWRM) initiatives is presented, by analyzing the Consejos Técnicos de Aguas (COTAS; Technical Water Councils or Aquifer Management Councils) in the state of Guanajuato, Mexico, established between 1998 and 2000 by the Guanajuato State Water Commission (CEAG). Two contrasting models influenced this attempt to promote user self-regulation of groundwater extractions: locally autonomous aquifer organizations with powers to regulate groundwater extractions versus aquifer organizations with advisory powers only. The COTAS were conceived as locally autonomous IWRM organizations consisting of all aquifer users that would work together to reduce groundwater over-extraction and stabilize aquifer levels, at a later stage. CEAG followed an expedient IWRM approach to develop the COTAS, setting achievable targets for their development and explicitly focusing on active stakeholder participation. The article shows that, due to struggles between the state and federal levels, the COTAS have become advisory bodies that have not led to reductions in groundwater extractions. It concludes that achieving user self-regulation of groundwater extractions requires a fuller delegation of responsibilities to the COTAS which would not be possible without addressing the institutional struggles over water governance at the state and federal levels.  相似文献   

14.
Prediction of construction cost of wastewater treatment facilities could be influential for the economic feasibility of various levels of water pollution control programs. However, construction cost estimation is difficult to precisely evaluate in an uncertain environment and measured quantities are always burdened with different types of cost structures. Therefore, an understanding of the previous development of wastewater treatment plants and of the related construction cost structures of those facilities becomes essential for dealing with an effective regional water pollution control program. But deviations between the observed values and the estimated values are supposed to be due to measurement errors only in the conventional regression models. The inherent uncertainties of the underlying cost structure, where the human estimation is influential, are rarely explored. This paper is designed to recast a well-known problem of construction cost estimation for both domestic and industrial wastewater treatment plants via a comparative framework. Comparisons were made for three technologies of regression analyses, including the conventional least squares regression method, the fuzzy linear regression method, and the newly derived fuzzy goal regression method. The case study, incorporating a complete database with 48 domestic wastewater treatment plants and 29 industrial wastewater treatment plants being collected in Taiwan, implements such a cost estimation procedure in an uncertain environment. Given that the fuzzy structure in regression estimation may account for the inherent human complexity in cost estimation, the fuzzy goal regression method does exhibit more robust results in terms of some criteria. Moderate economy of scale exists in constructing both the domestic and industrial wastewater treatment plants. Findings indicate that the optimal size of a domestic wastewater treatment plant is approximately equivalent to 15,000 m3/day (CMD) and higher in Taiwan. Yet the optimal size of an industrial wastewater treatment plant could fall in between 6000 CMD and 20,000 CMD.  相似文献   

15.
A method for quality screening is suggested to detect volatile impurities in inorganic coagulants that are used for drinking water treatment. Static headspace gas chromatography with mass spectrometry detection (HS–GCMS) is sensitive and selective to detect volatiles in low concentrations. This study has discovered that volatile organic impurities are detectable in ferric and aluminium-based coagulants which are used for drinking water treatment. For ferric chloride, 2-propanol was detected at a level of 17–24 μg ml−1, acetone at 0.7–1.7 μg ml−1, 1,1,1-trichloroacetone at 0.02–0.04 μg ml−1, trichloromethane at 0.01–0.02 μg ml−1 and toluene at 0.01–0.12 μg ml−1. For ferric chloride sulfate, acetone was detected at a level of 0.12 μg ml−1, 1,1,1-trichloroacetone at 0.06–0.08 μg ml−1, trichloromethane at 0.13–0.23 μg ml−1, bromodichloromethane at 0.04–0.06 μg ml−1 and dibromochloromethane at 0.04–0.05 μg ml−1. For aluminium hydroxide chloride, only trichloromethane was detectable, but below the method detection limits (MDL). Although the concentrations of these impurities in commercial coagulants are low, this observation is important and should have impact on water industries for them to pay attention to the chemicals they are using for drinking water production.  相似文献   

16.
Water reuse is an emerging and promising non-conventional water resource. Feasibility studies are essential tools in the decision making process for the implementation of water-reuse projects. However, the methods used to assess economic feasibility tend to focus on internal costs, while external impacts are relegated to unsubstantiated statements about the advantages of water reuse. Using the concept of shadow prices for undesirable outputs of water reclamation, the current study developed a theoretical methodology to assess internal and external economic impacts. The proposed methodological approach is applied to 13 wastewater treatment plants in the Valencia region of Spain that reuse effluent for environmental purposes. Internal benefit analyses indicated that only a proportion of projects were economically viable, while when external benefits are incorporated all projects were economically viable. In conclusion, the economic feasibility assessments of water-reuse projects should quantitatively evaluate economic, environmental and resource availability.  相似文献   

17.
The Ala Wai Canal Watershed Model (ALAWAT) is a planning-level watershed model for approximating direct runoff, streamflow, sediment loads, and loads for up to five pollutants. ALAWAT uses raster GIS data layers including land use, SCS soil hydrologic groups, annual rainfall, and subwatershed delineations as direct model parameter inputs and can use daily total rainfall from up to ten rain gauges and streamflow from up to ten stream gauges. ALAWAT uses a daily time step and can simulate flows for up to ten-year periods and for up to 50 subwatersheds. Pollutant loads are approximated using a user-defined combination of rating curve relationships, mean event concentrations, and loading/washoff parameters for specific subwatersheds, land uses, and times of year. Using ALAWAT, annual average streamflow and baseflow relationships and urban suspended sediment loads were approximated for the Ala Wai Canal watershed (about 10,400 acres) on the island of Oahu, Hawaii. Annual average urban suspended sediments were approximated using two methods: mean event concentrations and pollutant loading and washoff. Parameters for the pollutant loading and washoff method were then modified to simulate the effect of various street sweeping intervals on sediment loads.  相似文献   

18.
This work was performed to develop an operational map for the objective diagnosis of the process operating states of a municipal wastewater treatment plant, for which multivariate statistical analysis techniques were applied. PCA (principal component analysis) was used to reduce the dimension of the data sets obtained from the field municipal wastewater treatment plant. A K-means clustering analysis was used to classify the group according to the property of the process operating state. A Fisher's linear discriminant analysis was used to derive the discriminant function of each classified group. An operational map was developed by scatter-plotting the derived principal components (PCs) on a two-dimensional coordinate according to the classified groups. Using the new data sets not used for developing the operational map, the practical usefulness of the operational map and discriminant function in diagnosing the process operating state were evaluated. Hence, the process operating state could be easily and quickly diagnosed and the dynamic trend of the process operating state was also able to be estimated using the operational map.  相似文献   

19.
The Murcia Este Wastewater Treatment Plant is the largest wastewater treatment plant in Murcia (Spain). The plant operators have continuously found pipe blockage and accumulation of solids on equipment surfaces during the anaerobic digestion and post-digestion processes. This work studies the precipitation problems in the Murcia Este Wastewater Treatment Plant in order to locate the sources of precipitation and its causes from an exhaustive mass balance analysis. The DAF thickener and anaerobic digester mass balances suggest that most of the polyphosphate is released during excess sludge thickening. Despite the high concentrations achieved in the thickened sludge, precipitation does not occur at this point due to the low pH. The increases in ammonium and pH during anaerobic digestion cause precipitation to take place mainly inside the digesters and in downstream processes. This study shows that 50.7% of the available phosphate is fixed in the digester of which 52.0% precipitates as ammonium struvite, 39.2% precipitates as hydroxyapatite and the remaining 8.8% is adsorbed on the surface of the solids. Thermodynamic calculations confirm the precipitation of struvite and hydroxyapatite and also confirm that potassium struvite does not precipitate in the anaerobic digesters.  相似文献   

20.
Earthworms’ body works as a ‘biofilter’ and they have been found to remove the 5 days’ BOD (BOD5) by over 90%, COD by 80–90%, total dissolved solids (TDS) by 90–92%, and the total suspended solids (TSS) by 90–95% from wastewater by the general mechanism of ‘ingestion’ and biodegradation of organic wastes, heavy metals, and solids from wastewater and also by their ‘absorption’ through body walls. Earthworms increase the hydraulic conductivity and natural aeration by granulating the clay particles. They also grind the silt and sand particles, increasing the total specific surface area, which enhances the ability to ‘adsorb’ the organics and inorganic from the wastewater. Intensification of soil processes and aeration by the earthworms enable the soil stabilization and filtration system to become effective and smaller in size. Suspended solids are trapped on top of the vermifilter and processed by earthworms and fed to the soil microbes immobilized in the vermifilter. There is no sludge formation in the process which requires additional expenditure on landfill disposal. This is also an odor-free process and the resulting vermifiltered water is clean and disinfected enough to be reused for farm irrigation and in parks and gardens G. Bharambe—GU & Research Assistant (Under Rajiv K. Sinha), U. Chaudhari—GU (Worked on vermiculture project).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号