首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
通风方式对高含水率垃圾生物干化的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
以高含水率混合收集生活垃圾为研究对象,研究了不同的通风方式(间隙通风10min/20min、间隙通风5min/25min、40℃热空气通风和间隙-连续通风)对生物干化影响.结果表明,40℃热空气通风和间隙-连续通风可提高产物含水率下降幅度、单位质量垃圾水分去除率、单位有机物降解脱水容量、产物低位热值;但堆体高温持续时间短,VS消耗量小,并且有机物稳定化程度低.经过18d的干化试验,4组试验产物含水率分别为39.6%,34.4%,23.7%,24.5%,相应的单位去除率(以原生垃圾质量计)为0.437,0.476,0.523,0.517kg/kg,低位热值为11954,12994,15760,14801kJ/kg,与原生垃圾相比,热值分别提高了121%、140%、191%及173%,以40℃空气通风产物热值最高.  相似文献   

2.
开发了一种新型连续进料全混合式厨余垃圾生物干化工艺,通过中试试验探究了该工艺运行效能及其对物料温度、含水率和热值的影响规律.结果表明,该工艺可显著缩短升温时间,维持物料>50℃的高温区段20h/d;在最佳运行条件(通风速率0.171m3/(kg·h),最低控制温度45℃,干化周期7d)下,厨余垃圾含水率可降至(34.86±1.71)%,水分单位去除量达(716±23) kg/t垃圾,运行能耗仅为77.91kW·h/t垃圾,低位热值高达(6681±119) kJ/kg,满足垃圾焚烧进炉要求,可有效实现厨余垃圾快速衍生燃料化.  相似文献   

3.
通过对干化后典型有机废弃物生物水解固相残渣制备垃圾衍生燃料(RDF)颗粒的优化,研究了含水率及添加剂对RDF物理化学性质的影响。以果蔬、厨余和园林等典型有机废弃物生物水解后的固相残渣作为原料,经生物干化处理后,在不同含水率及不同比例添加剂条件下,对其制备RDF的抗压强度、膨胀率、成型率以及热值等指标进行对比研究,结果表明:当含水率为30%时,RDF颗粒成型率可达到99.47%;含水率为25%左右时,RDF颗粒的成型性能更好,抗压强度为8.28 MPa,膨胀率为40.41%;当含水率为10%时,低位热值为15.98 MJ/kg,满足固体回收燃料3级标准(EN 15359—2011《固体燃料的恢复和规范》)。在RDF制备中,添加5%的硅酸钠粉末可有效提升其成型效果,且灰分含量可控制在8.55%左右,能更好地满足RDF颗粒储存、运输以及燃烧的需求。  相似文献   

4.
以高含水率生活垃圾为研究对象,研究了不同的通风温度(室温、40℃低温、55℃中温、65℃高温)对生物干化的影响。结果表明,通风温度变化对堆体温度影响较小;高温通风(65℃)能有效地降低垃圾含水率,但不利于有机物的降解,产物的挥发性固体(VS)和可生物降解物质(BDM)值最高,稳定度最低;经过15 d的干化作用,4组反应器垃圾含水率显著降低,水分去除率分别为77.99%,79.37%,79.85%,79.47%;另外还伴随着厨余和纸张的降解;通风温度与热值提升呈正相关关系,各组出料的湿基低位热值分别为7 202 kJ/kg,9 276.4 kJ/kg,9 358.5 kJ/kg,10 064 kJ/kg,分别提高了72.2%,122.7%,123.7%,140.6%。  相似文献   

5.
通风、翻堆和添加剂对垃圾生物干化和臭气排放的影响   总被引:2,自引:2,他引:0  
采用自制的生物干化装置探索了通风、翻堆及不同添加剂对垃圾生物干化和臭气排放的影响。通风量增加,有助于水分散失和H2S减排,也利于生化反应的进行,添加自制除臭剂和生物菌对H2S的排放有显著的抑制作用,添加自制除臭剂和桔秆对NH3的排放有显著的抑制作用,添加自制除臭剂可作为生物干化除臭剂的优选。翻堆工艺对干化产品含水率有一定影响,物料含水率随翻堆次数增加逐渐下降,翻堆2次的干化产品含水率最终达到25%,翻堆3次的含水率达到22.5%,翻堆4次的含水率达到19.1%,增加翻堆次数可显著降低物料含水率。  相似文献   

6.
外加碳源对厨余垃圾生物干化效果的影响   总被引:1,自引:0,他引:1  
为降低厨余垃圾含水率,选择木本泥炭和玉米秸秆作为辅料,研究其作为外加碳源对厨余垃圾生物干化效果的影响.结果表明,各处理生物干化过程中最高温度可达70℃以上,添加秸秆和木本泥炭处理可不同程度地缩短进入高温期的时间.经21d生物干化后,纯厨余处理和分别添加木本泥炭与秸秆的处理含水率分别降低了15.25%,20.3%和28.0%,有机质分别降解了26.8%,15.1%和19.3%,有机质和含水率之间存在显著的正相关关系,尤其添加秸秆处理利用较少的有机质降解实现了最大水分去除.纯厨余生物干化渗滤液产生率分别为0.16kg/kg,添加木本泥炭处理仅为0.04kg/kg,添加秸秆处理未产生渗滤液.纯厨余处理、添加秸秆和木本泥炭处理生物干化过程累积水分去除率分别为0.40,0.54和0.42kg/kg,水分去除率和温度存在显著正相关关系.作为主原料的厨余垃圾初始低位热值为266kJ/kg,经生物干化后含水率有所降低,低位热值仅提高到1331kJ/kg.添加木本泥炭处理干化产品热值可达6331kJ/kg,添加秸秆处理热值可增加至8400kJ/kg.  相似文献   

7.
城市垃圾生物干化最佳工艺参数的优化研究   总被引:1,自引:1,他引:0  
对董村综合垃圾处理厂的有机垃圾进行生物干化,以正交试验确定其最佳工艺运行参数。利用生活垃圾生物干化反应仓开展垃圾生物干化中试试验,以新鲜餐厨垃圾为试验材料,通过正交试验来探讨工艺参数(堆高、初始含水率、通风方式、翻堆方式)对干化效果的影响变化,从而确定生物干化的最佳工艺参数。试验结果表明:垃圾生物干化工艺中各因素影响水分去除率的大小顺序为:翻堆方式>通风方式>初始含水率>堆高。垃圾生物干化的最佳工艺条件如下:堆高1.5 m,初始含水率60%,通风方式(通风10 min,静止30 min),翻堆方式为2天1翻。  相似文献   

8.
机械生化处理技术(EMBT,eco-mechanical biological treatment)是在欧洲广泛应用的MBT工艺基础上发展起来的生活/厨余垃圾资源化处理新技术。以某厨余垃圾处理示范项目为依托,对EMBT工艺的工艺特点、设计经验和处理效果进行总结。该项目占地面积约5 000 m2,平均垃圾处理成本约140元/t。厨余垃圾经过处理产生的主要资源化产品为沼气和垃圾衍生燃料(RDF,refuse derived fuel)。原生垃圾产气量在60 m3/t以上,甲烷浓度为65%左右。RDF产品有3种:生物水解系统固相物料含水率约40%,低位热在7 536 k J/kg以上;生物干化后的高热值物料,含水率约20%,低位热值在12 560 k J/kg以上;机械预处理分选出的高热值塑料、织物。RDF产品可通过洁净焚烧、工业窑炉协同处理等技术实现高效、生态的热能利用。  相似文献   

9.
陈峰  陈丹  胡勇有 《环境工程》2020,38(1):141-145
高温好氧生物干化技术是解决我国"高含水、高有机质"生活垃圾干化的有效技术手段,而垃圾高温好氧生物干化过程的微观机理及影响因素非常复杂。在进行多组垃圾高温好氧生物干化试验的基础上,指出影响生物干化的内外因素有机质含量、微生物菌种、通风风量、仓体构造、氧气浓度、颗粒粒径、仓体保温性;初步确定了高温好氧生物干化主要影响因素的适宜范围为垃圾中有机质含量>15%,接种适宜的高温好氧微生物菌种(活菌数为106~1010 CFU/mL,接种量约为1.5 L/t),垃圾粒径控制在95%<160mm,通风风量应同时满足有机质分解过程中O2的需要量和除湿的空气需要量,可为垃圾高温好氧生物干化技术的工艺机理研究提供了数据参考。  相似文献   

10.
通过对董村综合垃圾处理厂的垃圾进行生物干化最佳工艺运行参数进行研究。利用生活垃圾生物干化反应仓做垃圾生物干化中试试验,采用新鲜餐厨垃圾为试验材料,通过正交试验来探讨影响干化效果的工艺参数(堆高、初始含水率、通风方式、翻堆方式)的变化规律,确定生物干化的最佳工艺参数。试验结果表明,垃圾生物干化工艺中影响水分去除率因素的大小顺序是:翻堆方式通风方式初始含水率堆高。垃圾生物干化工艺的最佳工艺条件是:堆高1.5 m、初始含水率60%、通风方式(通风10 min,静止30 min)、翻堆方式(0.5次/天)。  相似文献   

11.
提出厨余垃圾协同园林绿化垃圾及返料的静态生物干化工艺,并探讨了静态生物干化过程的温度、含水率等指标的变化规律,利用宏基因组学技术对生物干化过程中的微生物群落结构的演替进行了探究。结果表明,静态生物干化技术升温速率快,4 h内即可让物料从室温升至65 ℃以上。料堆的含水率在48 h内由36%迅速降低至20%左右。该过程中主要作用的菌门有厚壁菌(Firmicutes)和放线菌(Actinomycetes)。属层面分析则发现,主导的菌属有芽孢杆菌属(Bacillus)、糖单孢菌属(Saccharomonas)、葡萄球菌属(Staphylococcus)和高温放线菌属(Thermoactinomycetes)。静态生物干化工艺使物料主要处在高温发酵段,微生物群落结构和代谢通路相对稳定,保证了工业化操作的稳定性和高效率,是一种具有广泛应用潜力和前景的生物干化新策略。  相似文献   

12.
针对餐厨垃圾生物干化处理周期长、脱水效率低的问题,基于外源辅助加热的生物干化机,比较不同通风模式(温度控制通风设置4个处理:TFWD 45-50、TFWD 50-55、TFWD 55-60、TFWD 60-65;时间控制通风设置2个处理:TFSJ 20、TFSJ 60)对餐厨垃圾生物干化过程系统脱水能效及氮素损失的影响。结果表明:1)与温度控制通风的4个处理相比,时间控制通风的2个处理的总氮(TN)和铵态氮损失较小、发芽指数(GI)较高;2)连续通风TFSJ 60的水分去除效率最低(66.78%),TN和铵态氮损失最小(分别为8.14%、12.96%),腐熟度最高(EC为2.72 mS/cm、GI为75.00%),单位质量水分去除能耗最低(1.10 kW·h/kg);3)TFWD 50-55的水分去除效率最高(达到99%以上),TN和铵态氮损失最大(分别为16.95%、57.83%),腐熟度较低(EC为4.28 mS/cm、GI为19.58%)、去除单位质量水分的能耗较高(1.74 kW·h/kg)。Pearson相关性分析结果表明:TN、铵态氮与含水率呈显著正相关(P<0.05),与温度、EC、耗电量呈显著负相关(P<0.05)。因此,生物干化后的物料若进行好氧堆肥处理制成有机肥后回归土壤,则建议采用连续通风(TFSJ 60)处理餐厨垃圾;生物干化后的物料若焚烧或者填埋处理,则建议采用温度控制通风(TFWD 50-55)处理餐厨垃圾。研究结果为餐厨垃圾快速生物干化处理通风模式的选择提供了参考。  相似文献   

13.
王晓诚  郭颖  颜开红 《环境工程》2020,38(10):183-189
超高温自发热已被应用于剩余污泥好氧堆肥,然而该技术对生活垃圾好氧堆肥过程的影响尚不清晰。此外,固氮剂过磷酸钙(CS)对超高温自发热好氧堆肥处理生活垃圾的影响也不明确。以生活垃圾为研究对象,建立空白组(R1)和添加CS (R2)的生活垃圾超高温自发热堆肥体系,探究了CS影响下生活垃圾超高温自发热过程中温度、含氧量、含水率、温室气体释放、溶解性COD及腐熟指标的变化规律,分析CS对生活垃圾堆肥后微生物群落特征的影响。结果表明:实验组温度最高为80.3℃,高于空白组,且最低含氧量、含水率均低于R1。实验组中甲烷和N2O的最大释放速率分别为0.09,1.3 g/(kg·d),均显著低于空白组,CS存在有助于生活垃圾堆肥保氮。此外,实验组中溶解COD的最大含量为42.3 mg/g,略高于R1,CS利于堆体中有机物释放。微生物群落分析表明,实验组中Saccharomonospor和Planifilum的相对丰度分别为25.6%和10.3%,堆体腐熟程度较高。  相似文献   

14.
餐厨垃圾具有成分复杂、含水率高的特点,热解处理法虽可实现餐厨垃圾的快速、无害化减量和能源资源回用,但其处理过程依赖外部能量输入,处理过程的能量平衡问题不容忽视。为全面探究餐厨垃圾热解系统能量流分布,研究提出了热解产物燃烧回用思路,聚焦系统自供能特性,开展固定床热解实验,考察不同含水率的餐厨垃圾在不同热解温度下的产物分布,并计算理论热值,结合TG-DSC分析确定原料热解理论耗能,建立了系统自供能特性指标(ERPC),计算系统的能量产生与消耗比,判断餐厨垃圾热解自供能的运行条件。结果表明:热解温度由400 ℃升至800 ℃,餐厨垃圾热解固体产物产率降低,气体产率提高,热解油产率呈现先增后减的趋势,并在500 ℃时达到最高。通过产物热值分析,过高的热解温度和含水率降低了餐厨垃圾热解产物的总能量。当三相热解产物全部燃烧回用时,为实现系统自供能餐厨垃圾含水率不得低于40%,热解温度不得高于500 ℃。当将油、气两相产物燃烧回用时,为实现系统自供能,热解温度须不超过600 ℃,含水率不超过10%。只燃烧热解气在所有条件下均无法实现系统自供能。  相似文献   

15.
针对传统堆肥周期长、脱水效率低、保温效果差等问题,以餐厨垃圾和锯末作为原料,基于外加热源的堆肥反应器,研究不同通风方式(自然通风和外加热源的高温通风)和通风速率对餐厨垃圾高温堆肥过程中温度、含水率、氧气含量、腐熟指标(pH、电导率、发芽指数)以及氮素形态转化的影响。结果表明:1)高温通风有助于堆体维持较高温度,显著延长高温期,提升水分去除率和堆体腐熟度。与自然通风相比,高温通风处理下的高温期(≥50 ℃)延长了6 d,累计温度增加51.77%,水分去除率相对提高了62.37%,种子发芽率相对提高了14.75%;2)高温通风方式会延长高温期进而促进氨排放并抑制硝化作用,造成更多的氮素损失,与自然通风相比,高温通风处理下的氨挥发量相对提高了131.46%,氮素损失相对提高了74.87%;3)通气速率增加可提高堆体的水分去除率,在通气速率达到0.75 L/(kg DM·min)时,水分去除率达到80.31%,除水效果最好;4)高温通风方式下,氨挥发量和氮素损失随着通风速率的增加而增加,其中氨挥发占氮损失的比例为55.48%~70.73%,是氮素损失的主要途径。  相似文献   

16.
为探索复合菌剂对餐厨垃圾好氧生物处理过程和腐熟效果的影响,利用4组自制的堆肥反应器进行小规模试验。以木屑为辅料,分别投加适用于常温条件下有机质分解的菌剂碧沃丰®除污(WD)、前期筛选制备的复合耐高温菌剂(TB)和WD+TB复合微生物菌剂,以不投菌为空白组(CK),通过测定堆体总重、温度、含水率、干基有机质含量、pH值、水溶性氨氮及硝态氮、腐殖化系数(E465/E665)、电导率(EC)、种子发芽率指数(germination index GI),研究处理过程。结果表明,初始含水率为(63.5±0.5)%,初始干基有机质含量为(96.6±0.9)%,初始碳氮比为34.9±2.7,辅料20%(质量分数),接种量25 mL/kg下,(WD+TB)组堆料高温期持续时间最长、温度峰值最高,可持续7d 50 ℃以上高温,最高温度达到72 ℃;总重减量率和有机质减量率最高,分别为80.7%和64.3%,日均有机质减量率是CK组的2.13倍;水溶性氨氮和E4/E6最低,种子发芽率指数 (96.3±26.7)%最高。说明WD+TB复合微生物菌剂可以有效提升餐厨垃圾好氧生物处理效果,并显著提高堆肥效率。  相似文献   

17.
针对北京市生活垃圾分类后厨余垃圾含水率高,在堆肥过程中存在酸化严重、升温慢、渗滤液产率高、产品品质差和臭气排放严重等问题,研究了玉米秸秆、园林剪枝和西瓜秧作为外加碳源对厨余垃圾堆肥腐熟度和臭气排放的影响,其中3种辅料添加比例均为15%,采用机械强制连续通风,通风速率为0.5 L/(kg DM·min)。堆肥周期为16 d,每4 d翻堆1次。结果表明:纯厨余垃圾单独堆肥酸化严重,未升温,添加辅料高温期(>55℃)持续时间超过10 d。碳源辅料影响有机质降解难易程度,西瓜秧添加在堆肥前期升温迅速,园林剪枝在堆肥中期温度较高,玉米秸秆在堆肥中后期温度较高。添加玉米秸秆、园林剪枝和西瓜秧可分别减少95%、39%和17%的渗滤液生成。秸秆和西瓜秧处理的种子发芽率指数(GI)第12天达到100%,比园林剪枝缩短4 d。与西瓜秧相比,添加秸秆减少了66.6%硫化氢(H2S)和86.3%甲硫醚(Me2S)排放,园林剪枝减少了82.3% Me2S排放。影响厨余垃圾堆肥腐熟度和臭气排放的主要理化因素为pH和温度。  相似文献   

18.
Bioreactor landfills allow a more active landfill management that recognizes the biological, chemical and physical processes involved in a landfill environment. The laboratory-scale simulators of landfill reactors treating municipal solid wastes were studied, the effect of solid waste size, leachate recirculation, nutrient balance, pH value, moisture content and temperature on the rate of municipal solid waste (MSW) biodegradation were determined, and it indicated the optimum pH value, moisture content and temperature decomposing MSW. The results of waste biodegradation were compared with that of the leachate-recirculated landfill simulator and conservative sanitary landfill simulator. In the control experiment the antitheses of a decreasing trend of the organic load, measured as biological oxygen demand and chemical oxygen demand, was shown. An obvious enhancement of effective disposal from conservative sanitary landfill (CSL) simulator, to the leachate-recirculated landfill (LRL) simulator and to the conditioned bioreactor landfill(CBL) simulator would be noted, through displaying the compared results of solid waste settlement, heavy, metal concentration in leachate, methane production rate, biogas composition, BOD and COD as well as their ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号