首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
吕伟  彭磊  周星煜  魏敦庆 《环保科技》2021,27(6):12-14,60
以深圳市某生活垃圾填埋场渗滤液纳滤浓缩液为研究对象,采用"混凝沉淀+高级氧化+A/O"组合技术处理浓缩液.结果表明:混凝沉淀对浓缩液COD、总氮的去除效率分别为62%、48%;高级氧化对混凝沉淀出水COD、色度去除效率分别为71%、99%,对总氮无明显去除效果;A/O深度处理工艺对高级氧化出水COD、总氮平均去除效率分...  相似文献   

2.
垃圾渗滤液膜处理浓缩液的组成比较复杂,其本身含有大量的氮气和盐分以及浓度很高的有机物。探析了垃圾渗滤液膜浓缩液的处理、蒸发处理技术工艺、浓缩液处理技术工艺。  相似文献   

3.
宋延冬  左俊芳  朱正贤 《环境工程》2012,30(2):33-36,10
以宜昌、宁国、蒙城垃圾填埋场为例,介绍了碟管式反渗透(DTRO)——浓缩液回灌工艺,研究发现:浓缩液回灌方式应根据垃圾填埋场的地理特征和业主的具体要求来确定。山谷型填埋场可以采用石笼回灌法,施工简单,成本较低,另外也可采用两层生物滤化床方式,成本稍高,但效果较好;平原型填埋场宜采用两层生物滤化床方式,而采用石笼回灌法容易出现短流现象。浓缩液回灌对渗滤液电导率无明显影响,不会影响后续反渗透系统的正常运行。  相似文献   

4.
渗滤液的反渗透浓缩液回灌研究   总被引:3,自引:0,他引:3  
反渗透处理渗滤液会产生一定量浓缩液,浓缩液的污染物浓度远高于渗滤液。对浓缩液回灌于填埋垃圾体进行实验,结果表明:浓缩液回灌对有机污染物有很好的去除效果,厌氧条件下COD去除率为81.56%,BOD5去除率为82.5%,NH3-N去除率为60%~70%;浓缩液回灌的最佳水力负荷为32.38mL/(L·d),此时回灌浓缩液COD浓度<75000mg/L时,COD去除率达85%以上;回灌的浓缩液pH为9时,COD去除率最高;而pH为11时,NH3-N去除率最高。  相似文献   

5.
采用UV-Fenton工艺对垃圾渗滤液的纳滤浓缩液进行处理,考察了该工艺对难降解有机污染物的处理效果,并研究了H2O2投加量、FeSO4•7H2O投加量、pH、温度和反应时间等不同因素对纳滤浓缩液处理效果的影响。结果表明,UV-Fenton工艺能有效去除浓缩液中的有机污染物。TOC去除率随着H2O2和FeSO4•7H2O投加量的增加而升高,当H2O2投加量从1 665 mg/L增加至13 320 mg/L时,TOC去除率从53.3%上升至69.8%;当FeSO4•7H2O投加量从367 mg/L增加至5 500 mg/L时,TOC去除率从57.4%上升至71.7%;该工艺对pH具有缓冲性,在初始pH为2.0~6.0时,TOC去除率受pH的影响较小;随着初始温度从20 ℃升至60 ℃,TOC去除率小幅下降;TOC去除率在反应开始的30 min内上升较快,之后增加趋势减缓。TOC去除率在反应2 h后基本不再上升。  相似文献   

6.
为提高垃圾渗滤液膜浓缩液减量化水平,采用石灰混凝-浸没蒸发协同处理纳滤膜浓缩液,获得了处理过程中水质变化规律。结果表明:单独采用石灰混凝处理,在石灰投加量为2 g/L时,膜浓缩液混凝软化效果最佳;随着石灰投加量增加,此时,膜浓缩液pH=10.58,硬度去除率为29.1%,COD去除率为24.1%,NH3-N去除率为67.3%。。采用石灰混凝-浸没蒸发协同处理,石灰投加量为2 g/L、浓缩倍率为10时,蒸发残液软化效果进一步提升,较单独处理,硬度去除率由29.1%提升至65.9%,COD去除率由24.1%提升至41.2%,NH3-N去除率由67.3%提升至81.4%;K+浓度由样液中4300 mg/L提高到36210 mg/L、Na+浓度由5860 mg/L提高到48300 mg/L,为资源化利用提供了条件;冷凝液ρ(COD)由26.3 mg/L降低至16.3 mg/L,ρ(NH3-N)由2.0 mg/L降低至1.4 mg/L,出水可满足GB 16889—2008《生活垃圾填埋场污染控制标准》相关要求。  相似文献   

7.
8.
以碟管式反渗透(DTRO)处理垃圾渗滤液产生的浓缩液为研究对象,采用高铁酸钾联合聚合氯化铝(PAC)处理浓缩液.结果表明,在单独采用高铁酸钾的条件下,DTRO浓缩液COD、UV_(254)和色度去除率随着高铁酸钾投加量的增加而升高.高铁酸钾投加量为10 g·L~(-1),pH为5时,COD、UV_(254)和色度去除效果最佳,反应在40 min内基本完成,COD、UV_(254)、色度去除率分别为38.5%、35.7%和68.5%.通过响应曲面法分析高铁酸钾联合PAC处理DTRO浓缩液效果可得,高铁酸钾投加量在10.0~13.0 g·L~(-1)之间,pH调节至3.0~4.0,PAC投加量为13.0~15.0 g·L~(-1)时,DTRO浓缩液COD去除率可达74%.  相似文献   

9.
垃圾渗滤液是一种高浓度的有机废水,如何对其进行有效处理是垃圾填埋场面临的一个难题。介绍了UASB厌氧处理工艺、氨吹脱工艺、光催化技术等垃圾渗滤液的处理工艺,并对比了不同工艺的处理效果。  相似文献   

10.
城市垃圾填埋场渗滤液的处理技术综述   总被引:33,自引:1,他引:33  
张懿 《重庆环境科学》2000,22(5):63-65,78
城市垃圾填埋场渗滤液是城市垃圾在进行卫生填埋处理时 ,垃圾腐化产生的内源水和一些外来水分形成的液体。本文综述了国内外对这类废水的处理研究。  相似文献   

11.
简要介绍了目前垃圾填埋场渗滤液的处理工艺,讨论了几种典型膜分离技术的分离机理和优缺点,评价了膜组合技术在垃圾渗滤液处理的可行性,并结合国内外的工程实例对其进行分析。最后,阐述了膜组合技术处理垃圾填埋场渗滤液的研究进展和应用前景。  相似文献   

12.
垃圾渗滤液处理工程实例   总被引:1,自引:0,他引:1  
利用厌氧UASB+膜生物反应器MBR+纳滤工艺处理垃圾填埋场产生的垃圾渗滤液,介绍了各处理阶段的设计、运行参数和经济技术指标,设计处理规模为100 m3/d。在进水ρ(COD)为10 000 mg/L,ρ(BOD5)为5 000 mg/L,经处理后,出水ρ(COD)达到60 mg/L,ρ(BOD5)约为20 mg/L,去除率分别达到99.4%、99.6%,且出水稳定,达到地方标准DB 11/307-2005《北京市水污染排放标准》中二级排放标准。  相似文献   

13.
浙江某生活垃圾填埋场采用两级Fenton-厌氧滤池-曝气生物滤池工艺对其渗滤液进行深度处理。工艺最终出水ρ(COD)<70 mg/L,去除率达96.1%;ρ(TN)<40 mg/L,去除率达95.9%;ρ(NH3-N)<10 mg/L,工艺出水达GB 16889—2008《生活垃圾填埋场污染控制标准》中一般地区表2排放标准。  相似文献   

14.
矿化垃圾生物反应床处理渗滤液技术   总被引:2,自引:0,他引:2  
针对矿化垃圾筛分后<15mm组分性质进行研究,并以该组分为填料设计制造矿化垃圾生物反应床处理渗滤液,研究表明,矿化垃圾具有较大的吸附比表面积,较强的离子交换容量,较高的有机质含量,含有种类和数量可观的微生物种群可供生物降解作用,是很好的污水处理生物介质。工程应用表明:渗滤液经过三级矿化垃圾生物反应床串联处理后,CODCr和NH4+-N的总去除率达到90%和95%以上,可稳定达到国家二、三级渗滤液排放标准。  相似文献   

15.
介绍了高级氧化技术(AOPs)处理垃圾渗滤液的研究现状与进展,包括Fenton法、光化学催化氧化法、臭氧氧化法、超声氧化法、电化学氧化法等在垃圾渗滤液处理中的应用;分析了AOPs处理垃圾渗滤液的原理,重点阐述了国内外高级氧化技术在垃圾渗滤液处理中的研究成果,并探讨了它们的优缺点。最后,对AOPs在垃圾渗滤液处理领域应用的发展前景进行了展望。  相似文献   

16.
本文从工程的角度出发对垃圾填埋场渗滤液处理系统工程设计中的几个重点、难点计算参数,以及目前国内外几个典型垃圾填埋场的渗滤液处理工艺流程、处理效果做了介绍,并在此基础上提出了几点建议  相似文献   

17.
城市垃圾卫生填埋场浸出液的处理   总被引:15,自引:1,他引:15  
介绍了国内外垃圾填埋浸出液的处理方法,并结合广州市李坑垃圾填埋场的具体情况,分析了浸出液处理的特点,提出了可行的处理工艺,可供浸出液处理科研人员参考。  相似文献   

18.
鞍山市垃圾填埋场渗滤液处理站,设计规模为300 m~3/d,经过升级改造后,采用A/O+外置MBR+NF+RO组合工艺。升级后其COD和色度去除率分别达到95%和99.6%,出水ρ(COD)<100 mg/L,出水无色透明,SS完全被去除,最终COD、NH_3-N、SS、TN、色度均达到GB 16889—2008《生活垃圾填埋场污染物排放标准》的要求。改造后夏、春、秋3季渗滤液处理费用约为25.77元/t,冬季的费用约为34.57元/t。  相似文献   

19.
采用阴阳离子交换纤维对垃圾渗滤液进行深度处理,研究了阴阳离子纤维的最佳组合方式、水样流速和纤维装填密度对渗滤液中主要污染物NH_3-N和COD去除效果的影响,以及纤维的再生方式和再生性能。结果表明:离子交换纤维采用"先阴后阳"的组合工艺对垃圾渗滤液的深度处理效果最佳;在水样流速为2. 0 mL/min、装填密度为0. 25 g/cm~3的条件下,动态处理渗滤液后,出水的ρ(NH_3-N)和ρ(COD)分别为18. 9,61. 1 mg/L,均达到GB 16889—2008《生活垃圾填埋场污染控制标准》要求;纤维静态再生后性能优良,可反复使用多次;经10次静态再生、循环使用后,阴离子纤维对COD的吸附能力可恢复至初始值的94%以上,平衡交换量>17. 6 mg/g,阳离子纤维对NH_3-N的吸附能力达到初始能力的93%以上,平衡交换量>13. 6 mg/g。该技术对垃圾渗滤液有较好的处理效果,为垃圾渗滤液的深度处理工程应用提供了参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号