首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
该文基于2017-2021年泉州市6项主要污染物(PM10、PM2.5、NO2、SO2、CO和O3)监测数据及空气质量指数(AQI)数据,分析讨论了泉州大气污染的年际和季节变化特征以及常态化新冠疫情管控对泉州环境空气质量的影响,以期为泉州大气污染的进一步治理提供科学参考。结果表明,泉州2017-2021年PM10、PM2.5、NO2、SO2和CO的年均浓度整体上均呈现下降趋势,年均下降率最大的是SO2(15.8%),其次是NO2和CO(9.3%和8.1%),O3污染相对突出但浓度变化范围显著减小,泉州的整体大气污染波动趋于平稳。泉州的PM10、NO2、SO2、CO和O3污染浓度最高的季节均为春季,春季为泉州的主要污染季节。新冠疫情管控期间,...  相似文献   

2.
山东省空气质量存在明显的时空差异,并受气象和社会经济因子等的综合影响.为了解山东省空气质量指数(AQI)以及颗粒物和臭氧(O3)浓度等时空演化特征,探究颗粒物与O3浓度之间的协同关系,基于山东省16个地级市2013年12月—2021年12月的AQI和空气污染物(SO2、NO2、CO、O3、PM2.5和PM10)浓度数据与同期的气象数据、工业及生活污染物(氨氮、SO2、氮氧化物和烟尘、粉尘等)排放量和社会经济数据,运用R语言和ArcGIS对各地区AQI与PM2.5和O3浓度等的时间和空间变化特征及关键影响因素识别分析.结果表明:(1)山东省AQI和空气污染物浓度具有明显的月际、季节和年际变化特征以及地区性差异.鲁东地区各季节空气质量明显优于鲁西地区,呈现由东向西空气污染愈加严重的趋势. PM2.5浓度呈鲁西地区最高,鲁中、鲁南和鲁北地区次之,鲁东地区...  相似文献   

3.
文章系统分析攀枝花市大气污染物时间、空间、季节变化趋势,揭示大气污染物特征及气象因子关系。基于2014-2020年攀枝花市环境空气质量监测数据,采用统计学的方法分析了2014-2020年攀枝花市6种污染物(PM2.5、PM10、NO2、CO、SO2、O3-8 h)的时空变化特征;通过典型相关分析方法,研究了气象因子(气温、湿度、风速、降雨量、气压)对大气污染物浓度的影响。结果表明:从时间来看,攀枝花市PM2.5、PM10、CO、SO2近年来呈下降趋势,NO2浓度呈上升趋势,但均不显著;O3-8 h浓度呈显著上升趋势。从季节来看,PM2.5和PM10浓度表现为冬季>春季>秋季>夏季,SO2浓度四季变化不显著,NO2浓度和CO浓度大小变化顺序为冬季>秋季>春...  相似文献   

4.
探究细颗粒物(PM2.5)和臭氧(O3)污染的时间变化特征,阐明PM2.5和O3复合污染过程中不同阶段环境空气污染物及气溶胶粒径分布的详细演变过程,对南京及长三角地区的大气污染防治具有重要指导意义.本文使用2015—2021年南京市环境空气污染物小时浓度数据,分析了该地区多年大气污染演变过程,并选取2015年10月12—17日时间段作为复合污染典型个例,对其生消过程和内在机理进行了详细分析.结果表明:(1)2015—2021年南京市各种大气污染物的变化特征具有明显差异. PM2.5、PM10和SO2浓度的年下降率分别为8.9%、6.2%和15.4%,O3浓度变化较小. CO浓度在2016年达峰后以每年7.6%的速率下降.NO2浓度在2015—2019年呈增加趋势.(2)2015—2021年污染特征发生较大变化,由PM2.5为主导变为由O3为主导的大...  相似文献   

5.
为了解包头市大气污染特征,利用包头市2014年ρ(PM10)、ρ(PM2.5)、ρ(SO2)、ρ(NO2)、ρ(CO)和ρ(O3)环境空气自动监测数据,结合气象参数,分析了包头市大气污染特征及其影响因素.结果表明:① 包头市春季大气污染以PM10为主,夏季以O3为主,秋冬两季PM10和PM2.5均有不同程度污染. ② ρ(PM10)、ρ(PM2.5)、ρ(SO2)、ρ(NO2)的24 h平均值和ρ(O3)日最大8 h平均值分别有153、76、10、6和3 d超出GB 3095-2012《环境空气质量标准》二级标准限值,ρ(CO)24 h平均值全年达标. ρ(PM10)、ρ(PM2.5)和ρ(NO2)年均值分别为GB 3095-2012二级标准限值的2.2、1.6和1.2倍,ρ(SO2)年均值达标. ③ PM2.5/PM10(质量浓度比)四季分布为冬季(0.45)>秋季(0.39)>夏季(0.36)>春季(0.27),年均值为0.37,粗颗粒污染特征明显. ④ SO2/NO2(质量浓度比)四季分布为冬季(1.76)>春季(1.15)>秋季(0.82)>夏季(0.75),年均值为1.12,并且取暖季明显高于非取暖季,说明冬季燃煤取暖对包头市空气质量有重要影响. ⑤ 包头市的严重污染主要有沙尘型和煤烟型2种. ⑥ 系统聚类分析表明,扬尘引起的PM10对包头市环境空气质量有重要的影响,以SO2和CO为排放特征的燃煤对PM2.5有较大的贡献.   相似文献   

6.
为进一步了解武汉市大气污染时空分布特征,对2017—2020年武汉市主要大气污染物(PM2.5、PM10、SO2、CO、NO2和O3)进行了空间插值分析、时间变化分析以及与气象要素的相关性分析。结果表明:武汉市近4年环境空气质量达标率为72.98%。PM2.5、PM10、SO2、CO和NO2具有“冬高夏低”的“V”形特征,O3呈“夏高冬低”的变化趋势。武汉市年均质量浓度超标的大气污染物主要有PM2.5和PM10,但其年均质量浓度均呈下降趋势,而O3是年均质量浓度唯一处于上升状态的大气污染物,今后应重点关注颗粒物与臭氧污染。PM2.5、PM10、SO2、CO和NO2主要集中在武昌区、蔡甸区、青山区、江汉区、江岸区,而O<...  相似文献   

7.
国内生产总值(Gross domestic product, GDP)可反映地区的经济实力和市场规模,环境空气质量指数AQI及污染物浓度(SO2、NO2、PM10、PM2.5、CO、O3)可反映环境空气质量,二者具有相关性。本研究以高原山地省会城市—昆明市为代表,研究近10年(2013—2022年)环境空气质量与区域GDP的环境库兹涅茨EKC曲线,并分析空气中代表性污染物浓度的变化趋势及相互关系,再对环境空气AQI指数变化做出ARIMA模型的预测。近10年来,昆明市环境空气AQI指数与GDP的发展呈现良性促进,随着GDP增长总体呈现下降向好趋势。环境空气中O3与PM10、PM2.5和CO具有中度相关性。未来两年环境空气AQI指数可能受到O3的影响而分别升高2.5%和3.7%。  相似文献   

8.
评估国家重点生态功能区及毗邻区空气质量时空异质性,对差异性开展空气污染防治具有重要意义。该研究基于2015-2019年东北地区13个生态功能区城市和23个毗邻非生态功能区城市的AQI及6种空气污染物(PM2.5、PM10、SO2、NO2、CO、O3)浓度数据,采用空间自相关、随机森林模型等方法分析空气污染物时空差异及其驱动因素。结果表明:(1)从时间尺度来看,与2015年相比,2019年除O3在5年中波动上升且年均浓度值相对较高外,其他的污染物浓度值均呈下降趋势,生态功能区空气质量整体优于非生态功能区。其中SO2浓度下降幅度(50%)大于NO2和CO(20%),PM2.5大于PM10。PM2.5、PM10、NO2、SO2、CO季节变化特征最高值均出现在冬季,O3...  相似文献   

9.
京津冀及周边地区等重点区域已经建立具有高时空分辨率特点的空气质量监测网,但监测数据主要用于环境空气质量评价,在大气污染来源识别中应用较少.采用特征雷达图中的双重归一化算法对区域上2018~2019年秋冬季空气质量监测数据中的SO2、 NO2、 CO、 PM2.5和粗颗粒物(PM10与PM2.5的浓度差值)这5种因子进行分析,识别出偏SO2、偏NO2、偏CO、偏PM2.5、偏粗颗粒物、偏SO2-CO、偏NO2-CO和偏PM2.5-CO这8种典型污染特征.以偏SO2-CO特征为例,结合污染特征时空分布、主要污染源排放特征和PM2.5源解析,判断该特征下对空气质量影响最突出的污染源,并将该方法用于一次典型污染过程的分析.结果表明,研究时段内偏SO2-CO特征的平均占比为7.6%.(1)偏S...  相似文献   

10.
为探究云浮市颗粒物和臭氧(O3)污染特征,利用多元统计分析方法分析了云浮市2018—2020年6项环境空气污染物浓度、气象因子等监测数据,并对2020年12月25—29日冬季PM2.5和O3污染过程进行了研究. 结果表明:①PM2.5、PM10、NO2、CO月均浓度呈夏季低、冬季高的变化特征;O3-8 h第90百分位数呈夏秋季高、冬春季低的变化特征. ②PM10、PM2.5和CO小时浓度日变化呈波浪型变化特征,PM2.5、CO小时浓度最大值均出现在09:00,PM10小时浓度最大值出现在02:00. O3、SO2小时浓度日变化呈单峰型变化特征,O3、SO2小时浓度最大值分别出现在16:00、10:00. NO2小时浓度日变化呈单谷型变化特征,最小值出现在14:00. ③PM2.5-10、SO2、NO2、O3小时浓度与PM2.5小时浓度均呈正相关,说明PM2.5-10、SO2、NO2、O3与PM2.5具有一定程度的同源性. O3小时浓度与NO2、CO小时浓度呈负相关,且O3小时浓度与NO2小时浓度相关性更强. 夏秋季NO2、CO、O3、PM2.5小时浓度与气温的相关性比冬春季的更强. SO2、PM10、PM2.5、O3小时浓度均与湿度呈负相关,其中O3小时浓度与湿度的相关性最强,相关系数为?0.586. ④2020年12月25—29日云浮市城区PM2.5污染受到静稳天气影响,O3污染与28日午后太阳高温辐射以及来自珠三角地区O3污染气团的输入影响有关. 利用ART-2a对该时段采集的颗粒物进行成分分析,得到K、EC、OC、ECOC、HM、LEV、Na、SiO3这8种单颗粒物. 整个时段EC、OC、ECOC谱图中都存在明显的硫酸盐峰和硝酸盐峰. PM2.5小时浓度与硫酸盐离子、硝酸盐离子、硅酸盐离子、铵离子、氯离子的数量均呈显著正相关,二次反应和老化过程对PM2.5污染有显著影响. 研究显示,云浮市PM2.5和O3复合污染防控需要关注本地污染物变化特征和排放源影响,也需关注外来污染气团特别是来自珠三角地区污染气团输入的影响.   相似文献   

11.
京津冀及周边地区“2+26”城市为京津冀大气污染传输通道城市,也是我国空气污染最严重的区域之一.针对京津冀及周边地区“2+26”城市,利用中国环境监测总站公布的PM2.5、PM10、SO2、NO2、O3和CO数据,对2013—2019年京津冀及周边地区“2+26”城市大气污染特征进行分析,并探讨影响其空气质量变化的因素.研究表明:①2013—2019年京津冀及周边地区“2+26”城市空气质量总体向好,2019年ρ(PM2.5)、ρ(PM10)、ρ(SO2)、ρ(CO)和ρ(NO2)比2013年分别下降了50%、41%、79%、49%和20%,ρ(O3-8 h-90per)(臭氧日最大8 h平均值第90百分位数)比2013年升高了21%.②2013—2019年京津冀及周边地区“2+26”城市重污染天数持续减少,2019年比2013年下降67%,严重污染天数下降尤为明显,降幅达90%.优良天数比例虽然增加,但2016年以后基本稳定在50%左右,没有持续增加的趋势.③ρ(PM10)、ρ(SO2)、ρ(NO2)和ρ(CO)的最大值均出现在1月,ρ(O3-8 h)(臭氧日最大8 h平均值)的最大值出现在6月.ρ(PM2.5)越高,PM2.5/PM10和SO2/NO2越大,表明二次污染源和燃煤源的贡献越大.④就空间分布而言,ρ(PM2.5)和ρ(PM10)高值区主要集中在区域中南部太行山脉山前的平原地区,低值区主要集中在区域北部.⑤地理位置、气象条件、产业结构、能耗消耗以及减排政策是影响2013—2019年京津冀及周边地区“2+26”城市空气质量变化的重要因素.研究显示,随着大气污染防治减排措施实施的力度逐渐加大,政策影响已成为京津冀及周边地区“2+26”城市空气质量持续改善的最重要手段.   相似文献   

12.
赵文成  王访 《环境工程》2020,38(2):91-98
为了研究城市的空气质量指数(air quality index,AQI)与各污染物浓度序列之间的一致性,以及相邻城市间污染物的相似程度,提出一种新的多尺度交叉趋势样本熵(multiscale cross trend sample entropy,MCTSE),用于刻画2个具有趋势的序列在不同尺度上的一致性。利用该方法对长沙、株洲和湘潭3个城市春、夏、秋、冬的AQI与PM2.5、PM10、SO2、NO2、CO和O3 6种污染物浓度序列展开研究,为寻找影响这些城市空气质量的污染源以及共同治理提供参考。最后为这些城市制定空气污染防治目标提出了可行的治理对策。  相似文献   

13.
采用统计学方法、Pearson相关系数法和线性回归法研究分析了2018年吉林市大气污染物SO2、NO2、PM10、PM2.5、CO和O3浓度的变化特征、污染物浓度之间的相关性以及污染物与气象因素的相关性。结果表明:1)吉林市大气环境中O3、PM10和PM2.5日均值超标率分别为1.06%、3.27%和7.14%,颗粒物、O3及其前体物质为治理重点;CO、SO2、NO2、PM10和PM2.5春、冬季污染较重,夏季污染最轻;大气环境中的污染物浓度随季节、时刻及人类活动发生周期性变化;2)PM10和PM2.5、PM2.5和CO、NO2和CO浓度之间高度相关(相关系数r均>0.8),并建立了其预测线性模型;3)污染物(O3除外)浓度与温度、风速和混合层高度呈负相关,与气压呈正相关;降水对SO2、PM10和PM2.5浓度具有一定的削减作用,降水后其浓度减少的次数占总降水次数的68.75%、84.38%和78.13%;吉林市污染最严重的颗粒物受气象因素中混合层高度、风速和降水影响较大。该研究成果可为日后吉林市开展大气污染治理、区域大气环境容量测算、空气污染潜势预报等研究提供参考。  相似文献   

14.
为识别我国沿海地区的大气污染分布特征,基于2015—2016年我国沿海12个省(自治区、直辖市)的115个地级以上城市ρ(PM2.5)、ρ(PM10)、ρ(NO2)、ρ(O3)、ρ(CO)和ρ(SO2)监测数据,在分析其时空分布特征的基础上,结合主成分分析和AIC(改进赤池信息准则)开展我国沿海地区大气污染聚类分析研究.结果表明:我国沿海地区颗粒物污染严重,其中70%和54%的城市未达到GB 3095—2012《环境空气质量标准》中ρ(PM2.5)和ρ(PM10)二级标准,ρ(PM2.5)在空间上以浙江省金华市为界呈“北高南低”、金华市以北地区“西高东低”的分布特征;环渤海带及长三角地区ρ(O3)处于相对较高水平,山东省中部ρ(SO2)突出,最高值达71.3 μg/m3.根据6种大气污染物监测值,可将115个地级以上城市聚为3类:类Ⅰ包括河北省南部和山东省西部在内的21个城市,空间分布连续且相对集中,受本地源和扩散条件的影响,各项大气污染物质量浓度均处于较高水平;类Ⅱ包括辽宁省、山东省东部和长三角等地区的42个城市,各项大气污染物质量浓度较类Ⅰ有所降低,ρ(PM2.5)降低(比类Ⅰ低34.2%)明显,更多表现为受工业和散煤燃烧影响的SO2污染,和受海运船舶和陆路交通源影响的NO2污染;类Ⅲ包括福建省、广东省和广西壮族自治区沿海一带的52个城市,大气污染物质量浓度相对较低,空气质量较优,受季风和外来源影响的秋季O3污染特征明显.3类城市ρ(O3)平均值相近但季节性变化有所差异,类Ⅰ和类Ⅱ ρ(O3)峰值均出现在6月,类Ⅰ ρ(O3)季节性差异更为显著,类Ⅲ峰值出现在10月,全年变幅相对较小.研究显示,我国沿海地区山东省西部、江苏省北部与京津冀地区南部呈较为相似的污染特征,广西壮族自治区柳州市与周边城市呈不同聚类特征,ρ(PM)和ρ(SO2)相对较高,为大气污染热点.   相似文献   

15.
山东省PM2.5-O3复合污染特征突出,空间差异性明显,本文基于2016—2020年国控和省控环境空气自动监测站监测数据以及同期各气象代表站气象监测数据,分析PM2.5和O3时空分布的变化特征,初步探究其与气象因子及前体物的关系. 结果表明:①2016—2020年山东省空气质量逐步改善,优良天数比例上升了7.1%,重污染天数比例下降了3.5%. 除O3年评价值上升9.6%以外,SO2、PM10、PM2.5、CO和NO2的浓度均下降,降幅依次为61.3%、29.8%、28.6%、26.3%和11.4%. 各市PM2.5年评价值均下降(范围为18.4%~34.9%);除德州市外,其他15市O3年评价值均上升,滨州市的升幅(30.8%)最大. 1月PM2.5平均浓度最高,呈现先下降后上升的年变化趋势,6月O3平均浓度最高,且逐年上升. ②山东省PM2.5和O3均呈现内陆地区高于沿海地区的分布特征,PM2.5浓度在西部内陆地区较高,O3浓度在中北部内陆地区较高,PM2.5-O3复合污染特征在中西部地区较明显. 统计期间共计出现PM2.5-O3复合污染日224 d,分布在2—11月,出现天数逐年减少. ③为探究PM2.5-O3复合污染的影响因素及气象特征,进行相关性分析及气象因子阈值筛查,结果表明,PM2.5日均浓度和O3_8 h (臭氧日最大8小时滑动平均值)与其主要前体物和气象因子均呈现相反的相关关系,且对不同因子的响应有一定区域性差异. 当气温为14.9~24.1 ℃、相对湿度为55.5%~75.1%、风速为0.6~2.9 m/s、气压为992.8~1 018.8 hPa时PM2.5-O3复合污染易于发生,该条件下大部分城市的气温、相对湿度和气压平均值介于PM2.5和O3污染单独发生时的对应因子平均值,但平均风速小于PM2.5和O3污染单独发生的平均风速. 研究显示,“十三五”期间山东省PM2.5浓度波动下降,O3浓度波动上升,二者的协同关系日趋明显,气象因素对PM2.5和O3的生成和累积有一定影响.   相似文献   

16.
大气污染防治综合决策支持技术平台典型城市应用研究   总被引:1,自引:0,他引:1  
以典型城市济南市为研究对象,利用大气污染防治综合决策支持技术平台(简称“技术平台”)综合评估了济南市《2018年大气污染治理“十大措施”实施方案》(简称“‘十大措施’”)的实施效果,并进一步基于特定空气质量目标〔济南市2018年ρ(PM2.5)、ρ(O3)同比2017年分别下降20%、8%〕开展大气污染防治策略寻优及费效评估.结果表明:①“十大措施”实施后,SO2、NOx、VOCs、一次PM2.5减排率分别为39%、24%、42%、41%,该情景在2017基准年气象条件下可使济南市2018年ρ(PM2.5)同比下降19%,新增治污成本约4.70×108元,效益-成本比约1.40;单位减排成本最低的本地扬尘源减排对ρ(PM2.5)下降的贡献率最大,建议济南市下一阶段应进一步强化扬尘源减排.②经过策略寻优,反算得到了SO2、NOx、VOCs、一次PM2.5的减排率分别为46%、20%、42%、60%的优化策略,该策略下的新增治污成本约4.69×108元;对比“十大措施”,优化策略提高了SO2和一次PM2.5的减排率,降低对O3具有负贡献的NOx减排率,满足空气质量目标的同时又尽可能地降低了治污成本,将效益-成本比提升至1.88.技术平台在济南市的初步成功应用,为济南市下一阶段的大气污染防治提供基于实证的科学依据;同时对其在我国城市逐步推广具有重要示范意义,可有效支撑大气污染防治综合科学决策制定.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号