首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 171 毫秒
1.
不同生物反应器中基因工程菌生物强化处理阿特拉津研究   总被引:4,自引:3,他引:1  
在膜-生物反应器(MBR)和复合生物反应器中,考察基因工程菌生物强化处理阿特拉津去除效果,并对基因工程菌浓度和降解基因atzA基因丰度变化进行检测.结果表明,阿特拉津对COD和氨氮的生物去除活性具有一定的抑制作用;基因工程菌生物强化后,COD及氨氮的去除效率得到恢复.MBR对COD和氨氮的去除效果优于复合生物反应器.基...  相似文献   

2.
基因工程菌生物强化MBR工艺处理阿特拉津试验研究   总被引:11,自引:6,他引:5  
刘春  黄霞  孙炜  王慧 《环境科学》2007,28(2):417-421
以生活污水为共基质,考察了基因工程菌在MBR和活性污泥反应器中对阿特拉津的生物强化处理效果,以及生物强化处理对污泥性状的影响.结果表明,基因工程菌在MBR中对阿特拉津具有很好的生物强化处理效果,阿特拉津平均出水浓度为0.84 mg/L,平均去除率为95%,最大去除负荷可以达到70 mg/(L·d).生物强化的MBR对生活污水中COD的平均去除率为71%,COD平均出水浓度65 mg/L,COD容积负荷增加对COD去除效果有一定影响;对生活污水中的氨氮具有很好的去除效果,氨氮平均出水浓度为1.1 mg/L,平均去除率为97%,最大氨氮去除负荷为143 mg/(L·d).与普通MBR污泥相比,生物强化MBR污泥的硝化活性和亚硝化活性略高,碳氧化活性略低,因此表现出氨氮处理效果很好,COD处理效果略差.阿特拉津的存在会对污泥性状产生影响,可能是造成污泥碳氧化活性低的原因.  相似文献   

3.
刘春  于长富  张静  陈晓轩  张磊  杨景亮 《环境科学》2016,37(8):3101-3107
在疏水SPG(shirasu porous glass)膜表面形成基因工程菌生物膜,构建SPG膜曝气-生物膜反应器(MABR)生物强化处理阿特拉津废水,考察MABR反应器稳定运行过程中污染物去除性能及其影响因素.结果表明,增大SPG膜孔径和曝气压力,能够提高曝气供氧能力,改善COD和阿特拉津生物强化去除效能.1.5μm疏水SPG膜在70 k Pa曝气压力下的最大供氧能力约为22.4 g·(m~2·d)~(-1).曝气压力为70 k Pa、水力停留时间(HRT)为1.5 h时,1.5μm膜MABR反应器COD平均去除率为80.1%,平均去除负荷为1.86 kg·(m~3·d)~(-1);阿特拉津平均去除率为62.5%,平均去除负荷为0.18 kg·(m~3·d)~(-1).进一步缩短HRT、增加进水负荷后,MABR反应器DO浓度显著下降,COD和阿特拉津去除效率大幅降低.DO浓度对阿特拉津去除的影响更为显著.随着MABR反应器的稳定运行,SPG膜表面单一基因工程菌生物膜逐渐演化为复杂微生物群落,但基因工程菌可以较好地存在于生物膜内,从而保持阿特拉津生物强化去除能力.  相似文献   

4.
废水生物强化中基因工程菌的流失和环境生存状况研究   总被引:5,自引:2,他引:3  
刘春  黄霞  杨景亮 《环境科学》2008,29(9):2571-2575
在废水生物强化处理中,基因工程菌从生物反应器向环境的流失会造成潜在生态风险.在传统活性污泥法反应器(CAS)和膜一生物反应器(MBR)中,考察了1株降解阿特拉津基因工程菌的流失和流失后在模拟自然环境中的生存状况.结果表明,基因工程菌在接种初期从反应器中流失的密度最大.在接种密度为1010CFU/mL时,CAS的最大流失密度接近接种密度,MBR的最大流失密度仅有102CFU/mL.在模拟自然环境中,流失密度是决定基因工程菌生存状况的主要因素.在CAS出水1010CFU/mL流失密度下,高种群密度基因工程菌在水体和土壤中生存时间较长(30 d以上),潜在生态风险较高;在MBR出水102CFU/mL流失密度下.基因工程菌在水体和土壤中很快衰亡,潜在生态风险较小.环境条件对基因工程菌生存状况具有影响,提高土壤的含水率、有机质含量以及环境选择压力的存在有利于基因工程菌生存.  相似文献   

5.
膜曝气-生物膜反应器(MABR)是一种新型的膜-生物废水处理工艺,在MABR中采用基因工程菌生物膜可以强化难降解污染物的生物去除.本研究在SPG膜表面形成基因工程菌生物膜,运行SPG膜曝气-生物膜反应器(SPG-MABR)处理阿特拉津废水,考察了气压、挂膜生物量和液体流速对SPG-MABR运行性能的影响,以及基因工程菌生物膜的变化.结果表明,提高气压可以增大透氧系数,从而提高阿特拉津和COD的去除速率以及复氧速率.提高挂膜生物量能够加快阿特拉津和COD的生物去除,但生物膜厚度增加使得氧传质阻力增大,复氧速率降低.层流状态下减小SPG-MABR中的液体流速,有利于污染物向生物膜扩散传质,从而提高污染物去除速率.气压为300 kPa、生物量为25 g·m-2、液体流速为0.05 m·s-1时,SPGMABR反应器对阿特拉津5 d的去除率可以达到98.6%.在SPG-MABR运行过程中,基因工程菌生物膜呈现微生物多态化趋势.生物膜表面逐渐被其他微生物细胞覆盖,基因工程菌分布减少,生物膜内部仍以基因工程菌细胞为主.  相似文献   

6.
刘春  黄霞  王慧 《环境科学》2007,28(5):1102-1106
基因工程菌生物强化膜-生物反应器工艺经过启动期之后,可以实现对阿特拉津的高效稳定去除,去除率在90%以上.不同条件下,启动期最短2 d,最长可达12 d.阿特拉津初始进水负荷、运行温度和工程菌接种密度,对启动期具有显著影响.增加阿特拉津初始进水负荷、提高运行温度和增加基因工程菌接种密度,可以实现快速启动.进水水质对启动期影响不大,在人工配水和实际污水2种进水条件下,启动期基本相同,而且稳定期2种进水的阿特拉津去除情况也没有差异,说明进水水质对启动期和稳定期阿特拉津的去除影响都不大.  相似文献   

7.
魏敏捷  王慧  刘春  宁大亮 《环境科学》2008,29(6):1555-1560
考察了固定化基因工程菌强化处理(GEM)/传统活性污泥处理(CAS)串联工艺对阿特拉津废水的处理效果,水力停留时间(HRT)对处理效果的影响,基因工程菌的生长和流失情况.结果表明,当HRT为4~24h,阿特拉津初始浓度为20mg/L,以实际生活污水为碳源时,串联工艺均可以实现对高浓度高负荷的阿特拉津生物强化处理.水力停留时间为24h时,固定化细胞反应器(串联工艺A段)的处理效果最好,阿特拉津平均去除率为96.64%,出水浓度为0.56ms/L.水力停留时间为12、8和4h时,平均去除率分别为88.59%、89.79%、88.61%.反应器在以上4个HRT时, COD平均去除率分别为72.76%、64.59%、66.16%和65.84%. 在整个反应过程中,没有出现大量工程菌流失的现象,同时在固定化颗粒的表面以及浅层均观察到了大量工程菌菌体,固定化颗粒的表面还出现了生物膜和菌胶团,反应结束时,颗粒形态完好,强度满足本工艺条件下长期使用的需求.  相似文献   

8.
膜生物反应器与传统活性污泥反应器内生物群落特征   总被引:12,自引:4,他引:8  
欧阳科  刘俊新 《环境科学》2009,30(2):499-503
采用膜生物反应器(MBR)和传统活性污泥法(CAS)2种反应器处理相同的生活污水,考察了MBR和CAS的运行和生物群落结构及其动态变化.结果表明,MBR对COD和氨氮的去除效率均比CAS高, MBR和CAS出水COD的平均值分别为39.6 mg/L和62.9 mg/L,出水氨氮的平均值分别为6.8 mg/L和14.5 mg/L,可以看出无论是对于有机物还是NH+4-N,MBR的去除效果都比CAS要好.由于MBR的污泥处于大的曝气剪切力、过低的污泥负荷、以及长SRT导致的各种惰性物质积累等环境中,使MBR中污泥的群落及其变化与CAS相比有明显的不同.随着反应器运行时间的增加,DGGE的结果表明MBR的种群数量始终高于CAS, MBR群落相似性系数的变化也比CAS要大很多,在第15、 124、 186和230 d时,MBR的条带数分别是22、 25、 24和20条,而CAS在相应的运行时间时条带数分别为19、 14、 17和20条.MBR污泥与种泥的相似性系数分别是54.1%、 63.7%、 63.9%和66.8%,而CAS污泥与种泥的相似性系数分别是71.8%、 61.4%、 9.1%和65.9%.说明CAS的排泥导致非选择性的微生物流失,同时,也说明MBR的群落具有更好的适应环境因素变化的能力,这是MBR抗冲击负荷能力较强的原因之一.从戴丝系数来看,尽管群落相似性越来越高,但群落始终处于变化状态,说明环境的微小变化(进水水质、环境温度等)都会引起生物群落的变化.  相似文献   

9.
阿特拉津是一种三嗪类除草剂,具有内分泌干扰效应,其在厌氧环境中的半衰期较好氧环境更长,会对生态环境和人体健康构成威胁.为此,本研究筛选出厌氧条件下普遍存在的硫酸盐还原菌菌株希瓦氏菌(Shewanella sp. JN01),在明确该菌株的最适生长条件和阿特拉津浓度的基础上,开展了不同温度(250、400和600℃)所制备的生物炭对Shewanella sp. JN01厌氧降解水体系中阿特拉津影响的研究.结果显示,生物炭、Shewanella sp. JN01及两者联合对阿特拉津的最大去除率分别为41.64%、70.52%和88.25%.当菌株/生物炭为2∶1(体积比)时,由玉米芯为原材料在250℃下制备的生物炭因具有较多的脂肪碳而更有效地促进了菌株的生长.通过qPCR检测Shewanella sp. JN01中的阿特拉津降解基因发现其含有atz A基因,但生物炭对atz A基因的表达水平无显著影响.因此,生物炭主要通过促进Shewanella sp. JN01的生长而实现对阿特拉津的有效降解.本研究结果可为利用微生物强化去除厌氧体系中的阿特拉津提供理论依据和数据支撑.  相似文献   

10.
膜-生物反应器和传统活性污泥工艺的比较   总被引:52,自引:4,他引:48  
刘锐  黄霞  刘若鹏  钱易 《环境科学》2001,22(3):20-24
在运行条件一致的情况下把膜-生物反应器(MBR)和传统活性污泥工艺(CAS)进行了比较研究.试验结果表明,MBR具有比CAS更为稳定良好的出水水质,其平均出水COD浓度为55.5mg/L,低于CAS工艺(79.7mg/L).MBR系统中由于膜对大分子物质的截留作用,运行前120d出现溶解性微生物产物的积累,但随着微生物的驯化,这些积累的微生物产物最后得到降解.CAS中未发生微生物产物的积累.CAS出水、MBR上清液以及MBR出水中的物质组成差别很大.CAS出水和MBR上清液中分子量大于60000的高分子物质与小于3000的小分子物质都占有相当大的比例,其中高分子物质在MBR上清液中的含量高于CAS系统;MBR出水中则主要是分子量小于3000的小分子物质.MBR污泥粒径较小,使得氧扩散速率得到提高.  相似文献   

11.
Bioaugmentation with genetically engineered microorganisms (GEMs) in a membrane bioreactor (MBR) for enhanced removal of recalcitrant pollutants was explored. An atrazine-degrading genetically engineered microorganism (GEM) with green fluorescent protein was inoculated into an MBR and the effects of such a bioaugmentation strategy on atrazine removal were investigated. The results show that atrazine removal was improved greatly in the bioaugmented MBR compared with a control system. After a start-up period of 6 days, average 94.7% of atrazine was removed in bioaugmented MBR when atrazine concentration of influent was 14.5 mg/L. The volumetric removal rates increased linearly followed by atrazine loading increase and the maximum was 65.5 mg/(L·d). No negative effects were found on COD removal although carbon oxidation activity of bioaugmented sludge was lower than that of common sludge. After inoculation, adsorption to sludge flocs was favorable for GEM survival. The GEM population size initially decreased shortly and then was kept constant at about 104–105 CFU/mL. Predation of micro-organisms played an important role in the decay of the GEM population. GEM leakage from MBR was less than 102 CFU/mL initially and was then undetectable. In contrast, in a conventionally activated sludge bioreactor (CAS), sludge bulking occurred possibly due to atrazine exposure, resulting in bioaugmentation failure and serious GEM leakage. So MBR was superior to CAS in atrazine bioaugmentation treatment using GEM.  相似文献   

12.
本试验将短程硝化功能菌和反硝化功能菌分别接种至膜生物反应器(MBR)和上流式厌氧生物滤池(AF)中,构建了生物强化的MBR-AF短程硝化反硝化工艺,并以活性污泥作空白对照,考察该工艺对高氨氮废水的短程脱氮性能.结果表明,强化体系MBR的启动期短,仅需30d,而活性污泥体系MBR的启动期长达100d;强化体系MBR亚硝酸氮积累率始终维持在95%以上;在30℃下,随着运行时间的延长,强化体系MBR-AF工艺总氮去除率不断升高,最高达90%以上,比活性污泥体系高20%;强化体系MBR膜污染程度轻,膜的使用寿命长.说明功能菌强化在高效亚硝酸氮积累和氨氮转化方面起关键作用,可作为实现短程硝化反硝化的有效手段.  相似文献   

13.
膜生物反应器与传统活性污泥工艺除污特性比较   总被引:1,自引:0,他引:1  
比较了膜生物反应器(MBR)和传统活性污泥工艺(CAS)在相同运行条件下对生活污水的除污特性.结果表明,MBR系统对COD、NH3-N和TN的平均去除率比CAS分别高14.4%、51.2%和37.3%.但MBR中膜的截留使系统相对比较封闭,制约了通过排放高磷污泥的生物法除磷,除磷效率仅为32.9%,低于CAS工艺(43.0%);将MBR与化学除磷工艺相结合,MBR系统除磷效率可达93.3%.  相似文献   

14.
针对污泥混合液的过滤性能,在运行条件相同的情况下对膜生物反应器(MBR)与传统活性污泥法(CAS)进行比较.实验结果表明:MBR工艺污泥混合液的过滤阻力是CAS工艺过滤阻力的2~3倍;2种工艺悬浮液过滤阻力占总阻力的90%左右.过滤阻力分布实验表明,沉积层阻力占CAS工艺总阻力的87.30%,占MBR工艺总阻力的94.18%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号