首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Agriculture's contribution to radiative forcing is principally through its historical release of carbon in soil and vegetation to the atmosphere and through its contemporary release of nitrous oxide (N2O) and methane (CHM4). The sequestration of soil carbon in soils now depleted in soil organic matter is a well-known strategy for mitigating the buildup of CO2 in the atmosphere. Less well-recognized are other mitigation potentials. A full-cost accounting of the effects of agriculture on greenhouse gas emissions is necessary to quantify the relative importance of all mitigation options. Such an analysis shows nitrogen fertilizer, agricultural liming, fuel use, N2O emissions, and CH4 fluxes to have additional significant potential for mitigation. By evaluating all sources in terms of their global warming potential it becomes possible to directly evaluate greenhouse policy options for agriculture. A comparison of temperate and tropical systems illustrates some of these options.  相似文献   

2.
Vegetation and climate   总被引:1,自引:0,他引:1  
Over the last two centuries, man's activities have caused a 30% increase in the atmospheric concentration of CO2, with continued increases seeming inevitable. This change in CO2 concentration will act on vegetation, both directly and indirectly through global climatic change. It is well established that, on a global scale, patterns of vegetation and climate are closely correlated. Such correlations indicate that climatic change will cause the distribution of vegetation to change. However, the use of correlations for predicting vegetation responses to climatic change is fundamentally unreliable because correlations have no mechanistic underpinning of causation. This paper outlines a mechanistic model for predicting the equilibrium state between current climate and vegetation. It is also used to indicate the sensitivity of global vegetation to the changed climate associated with a doubled CO2—greenhouse scenario. The interpretation of this static model is discussed in terms of rates and patterns of vegetation change.  相似文献   

3.
Global atmospheric CO2 concentration has increased since the beginning of reliable monitoring in 1958 at a mean rate of about 0.9 ppm CO2/yr. Now, atmospheric CO2 concentration is at 330 ppm. From about 1860 up to 1974, man's intervention in the global carbon cycle caused a likely increase of 76.6 × 1015 gC, corresponding to 36 ppm CO2 in the atmosphere, if a preindustrial content of 294 ppm CO2 or 625.3 × 1015 g C is adopted to be valid. A further rise of atmospheric CO2 seems to be inevitable and probably will be responsible for a climatic warming in the next several decades; therefore, a global examination of carbon reservoirs and carbon fluxes has been undertaken to determine their storage capacity for excess carbon which orginated mainly from burning fossil fuels and from land clearing. During 1860–1974 about 136 × 1015 g C have ben emitted into the atmosphere by fossil fuel combustion and cement production. At present, the emission rate is about 5 × 1015 g C/yr. The worldwide examination of carbon release, primarily by deforestation and soil cultivation since 1860, is estimated to be about 120 × 1015 g C. The net transfer of carbon to the atmosphere owing to man's interference with the biosphere is now believed to be about 2.4 × 1015 g C/yr. An oceanic uptake of roughly 179 × 1015 g C since 1860 is open to discussion. According to the chemical buffering of sea surface water only about 35.5 × 1015 g C could have been absorbed. It is argued, however, that oceanic circulations might have been more effective in removing atmospheric excess carbon of anthropogenic origin.  相似文献   

4.
The increase in the concentration of CO2 in the atmosphere is closely related to man's activities. There is much concern that this increase might be a major factor contributing to global climatic change. This review analyses the potential climatic impact of these increasing CO2 concentrations, discusses the potential consequences of the resulting climatic changes, and presents possible solutions to the CO2 problem.  相似文献   

5.
A complete assessment of the health effects of diesel emissions must take into account the possible chemical transformations (and associated biological impacts) of particulate organic matter (POM) due to reactions with the many gaseous copollutants which have now been unambiguously demonstrated to be present in atmospheres burdened by photochemical air pollution. These copollutants include the “trace” species, nitric (HNO3) and nitrous (HONO) acids, the nitrate radical (NO3), formaldehyde (H2CO) and formic acid (HCOOH), as well as the criteria pollutants, ozone (O3) and nitrogen dioxide (NO2). Techniques for establishing the atmospheric concentrations of the trace pollutants (and their spatial and temporal variations) are briefly described, and we present results of investigations into the reactions of polycyclic aromatic hydrocarbons (PAH) coated on filters and exposed to ambient concentrations of O3 and NO2. Environmental health implications of these results are discussed and include the potential for sampling “artifacts” and their possible effects on the correlation (or lack thereof) between ambient PAH levels and urban lung cancer rates, as well as the problems associated with understanding the appropriate POM “dose” to be employed in animal testing and assessments of impacts on human health.  相似文献   

6.
The historic development of the scientific interest in monitoring CO2 in the atmosphere is the subject of this article. Particular emphasis is placed upon activities initiated by the USA in the 1950s which led to the establishment of the Mauna Loa Observatory and further developed into the existing world-wide monitoring system for air constituents and air pollution operated under the auspices of the World Meteorological Organization, a major contributer to the Global Environmental Monitoring System of the UN Environment Programme. Recent studies on the feasibility of monitoring the background level of CO2 at stations throughout the world have indicated considerable difficulties resulting from the influences of the biosphere. These problems have led WMO to adopt new criteria for CO2 monitoring station locations which are presented in a discussion of future needs and plans for global monitoring of CO2 in the atmosphere.  相似文献   

7.
Carbon (C) sequestration in soils is gaining increasing acceptance as a means of reducing net carbon dioxide (CO2) emissions to the atmosphere. Numerous studies on the global carbon budget suggest that terrestrial ecosystems in the mid-latitudes of the Northern Hemisphere act as a large carbon sink of atmospheric CO2. However, most of the soils of North America, Australia, New Zealand, South Africa and Eastern Europe lost a great part of their organic carbon pool on conversion from natural to agricultural ecosystems during the explosion of pioneer agriculture, and in Western Europe the adoption of modern agriculture after the Second World War led to a drastic reduction in soil organic carbon content. The depletion of organic matter is often indicated as one of the main effects on soil, and the storage of organic carbon in the soil is a means of improve the quality of soils and mitigating the effects of greenhouse gas emission. The soil organic carbon in an area of Northern Italy over the last 70 years has been assessed In this study. The variation of top soil organic carbon (SOC) ranged from −60.3 to +6.7%; the average reduction of SOC, caused by agriculture intensification, was 39.3%. This process was not uniform, but related to trends in land use and agriculture change. For the area studied (1,394 km2) there was an estimated release of 5 Tg CO2-C to the atmosphere from the upper 30 cm of soil in the period 1935–1990.  相似文献   

8.
Tropical forest conversion contributes as much as 25% of the net annual CO2 emissions and up to 10% of the N2O emissions to the atmosphere. The net effect on global warming potential (GWP) also depends on the net fluxes of greenhouse gases from land-use systems following deforestation. Efforts to mitigate these effects must take into account not only the greenhouse gas fluxes of alternative land-use systems but also the social and economic consequences that influence their widespread adoption. The global alternatives to slash-and-burn program (ASB) investigated the net greenhouse gas emissions and profitability of a range of land-use alternatives in the humid tropics. The analysis showed that many tree-based systems reduced net GWP compared to annual cropping and pasture systems. Some of these systems are also profitable in terms of returns to land and labor. The widespread adoption of these systems, however, can be limited by start-up costs, credit limitations, and number of years to positive cash flow, in addition to the higher labor requirements. Projects that offset carbon emissions through carbon sinks in land use in the tropics might be a means of overcoming these limitations. A synthesis of the findings from this program can provide guidelines for the selection and promotion of land-use practices that minimize net global warming effects of slash-and-burn.  相似文献   

9.
The IPCC Working Groups I–III 2007 publications does not consider the question of the influence of the entropy increase in the atmosphere on current climate development. An investigation into this question, both in general terms as well as by two quantitative approaches, reveals we must consider the entropy produced by man in connection with climate development, especially with regard to the temperature increase of the atmosphere. The IPCC report also fails to mention the production of CO2 by humans and livestock, but calculations show we must also consider such greenhouse gas CO2 production. For solving the mitigating processes, we therefore have to take into account both the human induced entropy production and the direct human and livestock CO2 output. In consideration of these findings, it seems necessary to introduce an “entropy identity” to people who wish to be able to continue to live on the planet. The introduction of an entropy tax might also help in solving the most urgent fundamental problem humanity has ever had to face. Readers should send their comments on this paper to: BhaskarNath@aol.com within 3 months of publication of this issue.  相似文献   

10.
Upon arrival on Earth, the reduced carbon pool split into a series of compartments: core, mantle, crust, hydrosphere, atmosphere, biosphere.This distribution pattern is caused by the ability of carbon to adjust structurally to a wide range of pressure and temperature, and to form simple and complex molecules with oxygen, hydrogen and nitrogen. Transformation also involved oxidation of carbon to CO2 which is mediated at depth by minerals, such as magnetite, and by water vapor above critical temperature. Guided by mineral-organic interactions, simple carbon compounds evolved in near surface environments towards physiologically interesting biochemicals. Life, as an autocatalytic system, is considered an outgrowth of such a development.This article discusses environmental parameters that control the CO2 system, past and present. Mantle and crustal evolution is the dynamo recharging the CO2 in sea and air; the present rate of CO2 release from the magma is 0.05 × 1015 g C per year. Due to the enormous buffer capacity of the chemical system ocean, such rates are too small to seriously effect the level of CO2 in our atmosphere. In the light of geological field data and stable isotope work, it is concluded that the CO2 content in the atmosphere has remained fairly uniform since early Precambrian time; CO2 should thus have had little impact on paleoclimate. In contrast, the massive discharge of man-made CO2 into our atmosphere may have serious consequences for climate, environment and society in the years to come.  相似文献   

11.
The global animal food chain has a large contribution to the global anthropogenic greenhouse gas (GHG) emissions, but its share and sources vary highly across the world. However, the assessment of GHG emissions from livestock production is subject to various uncertainties, which have not yet been well quantified at large spatial scale. We assessed the uncertainties in the relations between animal production (milk, meat, egg) and the CO2, CH4, and N2O emissions in Africa, Latin America and the European Union, using the MITERRA-Global model. The uncertainties in model inputs were derived from time series of statistical data, literature review or expert knowledge. These model inputs and parameters were further divided into nine groups based on type of data and affected greenhouse gas. The final model output uncertainty and the uncertainty contribution of each group of model inputs to the uncertainty were quantified using a Monte Carlo approach, taking into account their spatial and cross-correlation. GHG emissions and their uncertainties were determined per livestock sector, per product and per emission source category. Results show large variation in the GHG emissions and their uncertainties for different continents, livestock sectors products or source categories. The uncertainty of total GHG emissions from livestock sectors is higher in Africa and Latin America than in the European Union. The uncertainty of CH4 emission is lower than that for N2O and CO2. Livestock parameters, CH4 emission factors and N emission factors contribute most to the uncertainty in the total model output. The reliability of GHG emissions from livestock sectors is relatively high (low uncertainty) at continental level, but could be lower at country level.  相似文献   

12.
Abandoned peat extraction areas are continuous emitters of GHGs; hence, abandonment of peat extraction areas should immediately be followed by conversion to an appropriate after-use. Our primary aim was to clarify the atmospheric impact of reed canary grass (RCG, Phalaris arundinacea L.) cultivation on an abandoned peat extraction area and to compare it to other after-treatment alternatives. We performed a life-cycle assessment for five different after-use options for a drained organic soil withdrawn from peat extraction: (I) bare peat soil (no management), (II) non-fertilised Phalaris cultivation, (III) fertilised Phalaris cultivation, (IV) afforestation, and (V) rewetting. Our results showed that on average the non-fertilised and fertilised Phalaris alternatives had a cooling effect on the atmosphere (?10,837 and ?477 kg CO2-eq ha?1 year?1, respectively), whereas afforestation, rewetting, and no-management alternatives contributed to global warming (9,511, 8,195, and 2,529 kg CO2-eq ha?1 year?1, respectively). The main components influencing the global warming potential of different after-use alternatives were site GHG emissions, carbon assimilation by plants, and emissions from combustion, while management-related emissions played a relatively minor role. The results of this study indicate that, from the perspective of atmospheric impact, the most suitable after-use option for an abandoned peat extraction area is cultivation of RCG.  相似文献   

13.
As a guide to the possible effects of a CO2-induced warming on the cryosphere, we review the effects of three warm periods in the past, and out theoretical understanding of fluctuations in mountain glaciers, the Greenland and Antarctic ice sheets, ground ice, sea ice and seasonal snow cover. Between 1890 and 1940 A.D. the glaciated area in Switzerland was reduced by over 25%. In the Hypsithermal, at about 6000 BP, ground ice in Eurasia retreated northward by several hundred kilometres. In the interglacial Stage 5e, at about 120 000 BP, global sea-level rose by over 6 m. Fluctuations of mountain glaciers depend on mesoscale “weather” and on their mechanical response to it. Any melting of the Greenland ice sheet is likely to be slow in human terms. The West Antarctic ice sheet (its base below sea-level) is susceptible to an ungrounding, and such an event may have been the cause of the sea-level rise above. The East Antarctic ice sheet is susceptible to mechanical “surges”, which might be triggered by a warming at its margin. Both an ungrounding and a surge might occupy less than 100 yr, and are potetially the most important ice changes in human terms. Modelling studies suggest that a 5°C warming would remove the Arctic pack ice in summer, and this may be the most significant effect for further climatic change.  相似文献   

14.
The building sector has been regarded as a potential sector where there is large capacity to reduce the climate change effect. This study has proposed solutions to mitigate environmental impacts and achieve low CO2 emission from residential sector. Therefore, full life cycle assessment (LCA) has been run to assess the CO2 emission and its effect on the atmosphere and climate change. Based on the result, timber scheme is the best choice due to releasing less CO2 emissions to the atmosphere. However, house builders in Malaysia have almost completely neglected timber as a building material, with timber use as building components reduced to 5%. In this study, LCA Software was used to assess CO2 emissions from different wall construction. The alternative building scheme has been made by reinforce steel stud, wooden beam and timber wall (S8) to improve the scheme deficiency while releasing less CO2 emissions compared to other schemes. Therefore, S8 has a decreased CO2 effect by 85% less than precast concrete frame and 90% less than brick over their lifetime. (S8) increased the load bearing compared to conventional timber beam. Thus, new scheme S8 could be replaced by current scheme and promote more adjustable scheme for Malaysian housing.  相似文献   

15.
Globally, more than 30 % of all food that is produced is ultimately lost and/or wasted through inefficiencies in the food supply chain. In the developed world this wastage is centred on the last stage in the supply chain; the end-consumer throwing away food that is purchased but not eaten. In contrast, in the developing world the bulk of lost food occurs in the early stages of the supply chain (production, harvesting and distribution). Excess food consumption is a similarly inefficient use of global agricultural production; with almost 1 billion people now classed as obese, 842 million people are suffering from chronic hunger. Given the magnitude of greenhouse gas emissions from the agricultural sector, strategies that reduce food loss and wastage, or address excess caloric consumption, have great potential as effective tools in global climate change mitigation. Here, we examine the challenges of robust quantification of food wastage and consumption inefficiencies, and their associated greenhouse gas emissions, along the supply chain. We find that the quality and quantity of data are highly variable within and between geographical regions, with the greatest range tending to be associated with developing nations. Estimation of production-phase GHG emissions for food wastage and excess consumption is found to be similarly challenging on a global scale, with use of IPCC default (Tier 1) emission factors for food production being required in many regions. Where robust food waste data and production-phase emission factors do exist—such as for the UK—we find that avoiding consumer-phase food waste can deliver significant up-stream reductions in GHG emissions from the agricultural sector. Eliminating consumer milk waste in the UK alone could mitigate up to 200 Gg CO2e year?1; scaled up globally, we estimate mitigation potential of over 25,000 Gg CO2e year?1.  相似文献   

16.
The broad climatological features associated with the Asian monsoon circulation, including its mean state and intraseasonal and interannual variability over the Indian subcontinent as simulated in the National Center for Atmospheric Research (NCAR) global coupled climate system model (CSM) in its control reference experiment, are presented in this paper. The CSM reproduces the seasonal cycle as well as basic observed patterns of key climatic parameters reasonably well in spite of some limitations in simulation of the monsoon rainfall. However, while the seasonality in rainfall over the region is simulated well, the simulated area-averaged monsoon rainfall is underestimated to only about 60% of the observed rainfall. The centers of maxima in simulated monsoon rainfall are slightly displaced southward as compared to the climatological patterns. The cross-equatorial flow in simulated surface wind patterns during summer is also stronger than observed with an easterly bias. The transient experiment with a 1% per year compound increase in CO2 with CSM suggests an annual mean area-averaged surface warming of about 1.73 °C over the region at the time of CO2 doubling. This warming is more pronounced in winter than during the monsoon season. A net increase in area-averaged monsoon rainfall of about 1.4 mm day–1, largely due to increased moisture convergence and associated convective activity over the land, is obtained. The enhanced intraseasonal variability in the monsoon rainfall in a warmer atmosphere is confined to the early part of the monsoon season which suggests the possibility of the date of onset of summer monsoon over India becoming more variable in future. The enhanced interannual and intraseasonal variability in the summer monsoon activity over India could also contribute to more intense rainfall spells over the land regions of the Indian subcontinent, thus increasing the probability of extreme rainfall events in a warmer atmosphere. Electronic Publication  相似文献   

17.
This study evaluates and compares the trends in CO2 emissions for the manufacturing industries of three countries: two developed countries (Germany and Sweden) that have applied several measures to promote a shift towards a low-carbon economy and one developing country (Colombia) that has shown substantial improvements in the reduction of CO2 emissions. This analysis is conducted using panel data cointegration techniques to infer causality between CO2 emissions, production factors and energy sources. The results indicate a trend of producing more output with less pollution. The trends for these countries’ CO2 emissions depend on investment levels, energy sources and economic factors. Furthermore, the trends in CO2 emissions indicate that there are emission level differences between the two developed countries and the developing country. Moreover, the study confirms that it is possible to achieve economic growth and sustainable development while reducing greenhouse gas emissions, as Germany and Sweden demonstrate. In the case of Colombia, it is important to encourage a reduction in CO2 emissions through policies that combine technical and economic instruments and incentivise the application of new technologies that promote clean and environmentally friendly processes.  相似文献   

18.
It has been clearly recognized that future global climate change will limit the possibilities for sustainable development in China. To minimize these negative effects, as a practical strategy, we suggest that the Chinese government engage in international cooperation as a key contributor in the prevention of global warming. This suggestion results from numerical estimations of China’s greenhouse gas (GHG) emission trends accompanied with economic growth up to 2100. The results show that China’s gross domestic product (GDP), measured in terms of purchasing power parity (PPP), may overtake the sum of the GDPs of the United States and Canada in 2020. It is predicted that GDP per capita may reach US$20,000 and $80,000 in 2050 and 2100, respectively; meanwhile, CO2 emissions in China will increase from 6.6 billion tons (in carbon equivalent units) in 1990 to 54.6 billion tons in 2100. This means that the global peak concentration of GHG cannot be practically reduced without significant contributions from China. For international cooperation in mitigating global climate change, we introduce a new option, “per-capita emission restricted by assigned amount,” as an accounting rule for GHG reduction. This baseline classifies global CO2 reduction actions into three categories: compulsory reduction, self-imposed reduction, and voluntary reduction. We suggest that China contribute to world CO2 reduction according to the following timetable: voluntary reduction until 2012, self-imposed reduction until 2020, and compulsory reduction from 2020. The simulation results also indicate that China can benefit from this strategy in terms of improvements in its domestic economy and environment, for instance, by reducing fossil fuel consumption and the emission of pollutants.
Weisheng ZhouEmail: Phone: +81-75-4663418Fax: +81-75-4663418
  相似文献   

19.
We are living in a period of exponential growth of world population and energy consumption. Forecasts suggest that the atmospheric CO2 concentration could reach 750 p.p.m. by 2100. At this level, the coral reefs and the West Antarctic Ice Sheet would be lost and thermohaline circulation in the N. Atlantic could possibly shut down. Crippling the ocean conveyor system would have a major impact on world climate and jeopardize our chances of feeding an enlarged world population. Consumption of the total global hydrocarbon reserves would increase the atmospheric CO2 concentration to about 2200 p.p.m. We can therefore utilize less than 20% of the global hydrocarbon reserves without an accompanying massive programme for the sequestration of CO2 if we do not wish to cross the threshold atmospheric CO2 concentration of 750 p.p.m. and risk a major environmental catastrophe. Attention to the global CO2 problem will be the major task of the 21st Century.  相似文献   

20.
Carbon dioxide exchange in the intact and reclaimed sites of a woodless mesooligotrophic dwarf shrub–cotton grass–sphagnum bog was studied in field experiments. The average values of gross respiration in the ecosystem over the warm period (including respiration of plant cover, CO2emission from peat, and CO2flow from the litter) were 3.17 and 6.11 g CO2/m2per day in the natural and drained sites, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号