首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recovery of Faunal Communities During Tropical Forest Regeneration   总被引:14,自引:0,他引:14  
Abstract:  As mature tropical forests are cleared, secondary forests may play an important role in the conservation of animal species, depending on how fast animal communities recover during forest regeneration. I reviewed published studies on the recovery of animal species richness and composition during tropical forest regeneration. In 38 of the 39 data sets I examined, conversion of forest to agriculture or pasture substantially reduced species richness. Given suitable conditions for forest recovery, the species richness of the animal taxa considered can be predicted to resemble that of mature forests roughly 20–40 years after land abandonment. At least for ants and birds, however, recovery of species composition appears to take substantially longer than recovery of species richness. Because species richness for many taxa appears to recover relatively rapidly in secondary forests, conservation of secondary forests may be an effective investment in future diversity. The slower recovery of species composition indicates, however, that some species will require stands of mature forest to persist.  相似文献   

2.
Abstract: The consequences of rapid rainforest clearance on native avifauna are poorly understood. In Southeast Asia, Singapore, a newly developing country, has had 95% of its native lowland rainforest cleared. Most of the rainforest was lost in the mid- to late-nineteenth century. We compared avifauna checklists from 1923, 1949, and 1998 to determine the extent of extinctions between 1923 and 1998 in Singapore. Of 203 diurnal bird species, 65 were extirpated in Singapore in the past 75 years. Four of these species were nonforest- dependent species, whereas 61 (94%) were forest bird species dependent on the primary or old secondary forest to survive. Twenty-six forest bird species became extinct between 1923 and 1949, whereas 35 forest species disappeared after 1949. We compared the body lengths, feeding guilds, and vertical feeding zones between extinct and extant forest bird species to determine whether extinction patterns were dependent on these characteristics. Larger forest bird species went extinct between 1923 and 1949. Body sizes, however, did not affect the loss of forest bird species between 1949 and 1998. We observed high losses of insectivorous birds; the insectivore-carnivore and insectivore-granivore guilds lost> 80% of the species present in 1923. The highest losses were among birds that fed in the canopy. None of the forest bird species are currently common (>100 individuals/species) within Singapore. Our study shows that more than half the forest avifauna became locally extinct after extensive deforestation. Based on this fact, the countries within Southeast Asia should reconsider their heavy deforestation practices.  相似文献   

3.
The effects of a variety of agricultural land uses were studied using soil nutrients, forest structure, and species assemblages as indicators. We compared soil properties and successional forests between abandoned cacao ( Theobroma cacao ) and abandoned palm ( Bactris gasipaes ) orchards, abandoned pasture, and mature forest. These sites co-occupy an alluvial terrace soil ( Andic Dystropept ) at La Selva Biological Station, Costa Rica. The agricultural sites were originally cleared of most or all forest vegetation approximately 30 years ago and went into succession approximately 7 years ago. Forest structure, species composition, soil nitrogen and phosphorus pools, and nitrogen-mineralization and nitrification rates were measured for each site. The abandoned palm orchard had lower basal area and stem density than other secondary forests of the same age. It also had significantly smaller nitrate (NaOH-extractable) and organic phosphorus pools and significantly lower net rates of nitrogen-mineralization and nitrification. It is evident that preserving tree cover does not necessarily maintain soil fertility. We found species richness and diversity in the secondary forests to be positively correlated with basal area at the time of abandonment.  相似文献   

4.
Temperate deciduous forests across much of Europe and eastern North America reflect legacies of past land use, particularly in the diversity and composition of plant communities. Intense disturbances, such as clearing forests for agriculture, may cause persistent environmental changes that continue to shape vegetation patterns as landscapes recover. We assessed the long-term consequences of agriculture for environmental conditions in central New York forests, including tree community structure and composition, soil physical and chemical properties, and light availability. To isolate the effects of agriculture, we compared 20 adjacent pairs of forests that were never cleared for agriculture (primary forests) and forests that established 85-100 years ago on plowed fields (secondary forests). Tree communities in primary and secondary forests had similar stem density, though secondary forests had 14% greater basal area. Species composition differed dramatically between the two forest types, with primary forests dominated by Acer saccharum and Fagus grandifolia and secondary forests by Acer rubrum and Pinus strobus. Primary and secondary forests showed no consistent differences in soil physical properties or in the principal gradient of soil fertility associated with soil pH. Within stands, however, soil water content and pH were more variable in primary forests. Secondary forest soils had 15% less organic matter, 16% less total carbon, and 29% less extractable phosphorus in the top 10 cm than adjacent primary stands, though the ranges of the forest types mostly overlapped. Understory light availability in primary and secondary forests was similar. These results suggest that, within 100 years, post-agricultural stands have recovered conditions comparable to less disturbed forests in many attributes, including tree size and number, soil physical properties, soil chemical properties associated with pH, and understory light availability. The principal legacies of agriculture that remain in these forests are the reduced levels of soil organic matter, carbon, and phosphorus; the spatial homogenization of soil properties; and the altered species composition of the vegetation.  相似文献   

5.
Abstract: In recent decades the rate and geographic extent of land‐use and land‐cover change has increased throughout the world's humid tropical forests. The pan‐tropical geography of forest change is a challenge to assess, and improved estimates of the human footprint in the tropics are critical to understanding potential changes in biodiversity. We combined recently published and new satellite observations, along with images from Google Earth and a literature review, to estimate the contemporary global extent of deforestation, selective logging, and secondary regrowth in humid tropical forests. Roughly 1.4% of the biome was deforested between 2000 and 2005. As of 2005, about half of the humid tropical forest biome contained 50% or less tree cover. Although not directly comparable to deforestation, geographic estimates of selective logging indicate that at least 20% of the humid tropical forest biome was undergoing some level of timber harvesting between 2000 and 2005. Forest recovery estimates are even less certain, but a compilation of available reports suggests that at least 1.2% of the humid tropical forest biome was in some stage of long‐term secondary regrowth in 2000. Nearly 70% of the regrowth reports indicate forest regeneration in hilly, upland, and mountainous environments considered marginal for large‐scale agriculture and ranching. Our estimates of the human footprint are conservative because they do not resolve very small‐scale deforestation, low‐intensity logging, and unreported secondary regrowth, nor do they incorporate other impacts on tropical forest ecosystems, such as fire and hunting. Our results highlight the enormous geographic extent of forest change throughout the humid tropics and the considerable limitations of the science and technology available for such a synthesis.  相似文献   

6.
The Potential for Species Conservation in Tropical Secondary Forests   总被引:3,自引:0,他引:3  
Abstract: In the wake of widespread loss of old‐growth forests throughout the tropics, secondary forests will likely play a growing role in the conservation of forest biodiversity. We considered a complex hierarchy of factors that interact in space and time to determine the conservation potential of tropical secondary forests. Beyond the characteristics of local forest patches, spatial and temporal landscape dynamics influence the establishment, species composition, and persistence of secondary forests. Prospects for conservation of old‐growth species in secondary forests are maximized in regions where the ratio of secondary to old‐growth forest area is relatively low, older secondary forests have persisted, anthropogenic disturbance after abandonment is relatively low, seed‐dispersing fauna are present, and old‐growth forests are close to abandoned sites. The conservation value of a secondary forest is expected to increase over time, as species arriving from remaining old‐growth forest patches accumulate. Many studies are poorly replicated, which limits robust assessments of the number and abundance of old‐growth species present in secondary forests. Older secondary forests are not often studied and few long‐term studies are conducted in secondary forests. Available data indicate that both old‐growth and second‐growth forests are important to the persistence of forest species in tropical, human‐modified landscapes.  相似文献   

7.
Effects of Coffee Management on Deforestation Rates and Forest Integrity   总被引:1,自引:0,他引:1  
Knowledge about how forest margins are utilized can be crucial for a general understanding of changes in forest cover, forest structure, and biodiversity across landscapes. We studied forest‐agriculture transitions in southwestern Ethiopia and hypothesized that the presence of coffee (Coffea arabica)decreases deforestation rates because of coffee's importance to local economies and its widespread occurrence in forests and forest margins. Using satellite images and elevation data, we compared changes in forest cover over 37 years (1973–2010) across elevations in 2 forest‐agriculture mosaic landscapes (1100 km2 around Bonga and 3000 km2 in Goma‐Gera). In the field in the Bonga area, we determined coffee cover and forest structure in 40 forest margins that differed in time since deforestation. Both the absolute and relative deforestation rates were lower at coffee‐growing elevations compared with at higher elevations (?10/20% vs. ?40/50% comparing relative rates at 1800 m asl and 2300–2500 m asl, respectively). Within the coffee‐growing elevation, the proportion of sites with high coffee cover (>20%) was significantly higher in stable margins (42% of sites that had been in the same location for the entire period) than in recently changed margins (0% of sites where expansion of annual crops had changed the margin). Disturbance level and forest structure did not differ between sites with 30% or 3% coffee. However, a growing body of literature on gradients of coffee management in Ethiopia reports coffee's negative effects on abundances of forest‐specialist species. Even if the presence of coffee slows down the conversion of forest to annual‐crop agriculture, there is a risk that an intensification of coffee management will still threaten forest biodiversity, including the genetic diversity of wild coffee. Conservation policy for Ethiopian forests thus needs to develop strategies that acknowledge that forests without coffee production may have higher deforestation risks than forests with coffee production and that forests with coffee production often have lower biodiversity value. Efectos de la Administración Cafetalera sobre las Tasas de Deforestación y la Integridad de los Bosques  相似文献   

8.
Abstract:  In the Neotropics ongoing deforestation is producing open and heavily fragmented landscapes dominated by agriculture, mostly plantations and cattle pastures. After some time agriculture often becomes uneconomical and land is abandoned. Subsequent habitat regeneration may be slow because seed inputs are restricted by a lack of incentives—such as suitable roost sites—for seed dispersers to enter deforested areas. Increasing environmental awareness has fostered growing efforts to promote reforestation. Practical and cost-efficient methods for kick-starting forest regeneration are, however, lacking. We investigated whether artificial bat roosts for frugivorous bat species can attract these key seed dispersers to deforested areas, thereby increasing seed rain. We installed artificial bat roosts in a forest-pasture mosaic in the Costa Rican Atlantic lowlands and monitored bat colonization and seed dispersal. Colonization occurred within a few weeks of installation, and 10 species of bats occupied the artificial roosts. Five species of frugivorous or nectarivorous bats colonized artificial roosts permanently in both primary habitat and in deforested areas, in numbers similar to those found in natural roosts. Seed input around artificial roosts increased significantly. Sixty-nine different seed types, mostly of early-successional plant species, were transported by bats to artificial roosts in disturbed habitats. The installation of artificial bat roosts thus successfully attracted frugivorous bats and increased seed inputs into degraded sites. This method is likely to speed up early-vegetation succession, which in turn will attract additional seed dispersers, such as birds, and provide a microhabitat for seeds of mid- and late-successional plants. As well as supporting natural forest regeneration and bat conservation, this cost-efficient method can also increase environmental awareness among landowners.  相似文献   

9.
Trade‐offs in ecosystem services (ES) have received increasing attention because provisioning services often come at the expense of biodiversity loss. When land‐use patterns are not maximally efficient relative to productivity, provisioning services, such as crop production, can often be increased without losing biodiversity. The Atlantic Forest (AF) encompasses dense, mixed, and seasonal forests and has high levels of endemism and anthropogenic threat. We examined trade‐offs between biodiversity and crop production in the AF to provide insights into land‐use management decisions. We developed a biodiversity metric that combines information on tree species richness, evolutionary distinctiveness, and rarity at the local level. We examined the extent to which the nature of ES trade‐offs differ among the 3 forest types. We assessed how annual deforestation rates and land management practices affect biodiversity and agricultural revenues. Finally, we tested whether it is possible to achieve the same total regional revenue without reducing biodiversity by improving local management practices. The 3 forest types had similar patterns in ES trade‐offs, although within mixed forest patterns differed. Biodiversity appeared to be more sensitive to land‐use change than crop revenues. Certain crops yielded up to 10 times higher values in some sites. Enhanced crop productivity may increase revenues without reducing biodiversity. Our results showed that to enhance human well‐being without further conversion of AF, maximizing crop productivity is needed . Increasing efficiency of management outcomes by maintaining higher biodiversity and increasing provisioning services depends on knowledge of forest type, the comparative advantage of planting crops in the best places, and preserving species in a balanced manner across forests.  相似文献   

10.
To meet the growing demand for chocolate, cocoa (Theobroma cacao) agriculture is expanding and intensifying. Although this threatens tropical forests, cocoa sustainability initiatives largely overlook biodiversity conservation. To inform these initiatives, we analyzed how cocoa agriculture affects bird diversity at farm and landscape scales with a meta-analysis of 23 studies. We extracted 214 Hedges' g* comparisons of bird diversity and 14 comparisons of community similarity between a forest baseline and 4 farming systems that cover an intensification gradient in landscapes with high and low forest cover, and we summarized 119 correlations between cocoa farm features and bird diversity. Bird diversity declined sharply in low shade cocoa. Cocoa with >30% canopy cover from diverse trees retained bird diversity similar to nearby primary or mature secondary forest but held a different community of birds. Diversity of endemic species, frugivores, and insectivores (agriculture avoiders) declined, whereas diversity of habitat generalists, migrants, nectarivores, and granivores (agriculture associates) increased. As forest decreased on the landscape, the difference in bird community composition between forest and cocoa also decreased, indicating agriculture associates replaced agriculture avoiders in forest patches. Our results emphasize the need to conserve forested landscapes (land sparing) and invest in mixed-shade agroforestry (land sharing) because each strategy benefits a diverse and distinct biological community.  相似文献   

11.
We have analyzed an influence of the traditional agricultural system techniques on the soil organic matter dynamics using the model of carbon and nitrogen cycling in forest ecosystems EFIMOD linked with the model of SOM dynamics ROMUL. Forest stands on the loamy soddy-podzolic soils (Alfisoils) located in the Central European Russia have been taken for the case study. The following land-use management scenarios were simulated: (a) slash-and-burn system with 3 years for crops and 120, 60 and 25 years for forest; (b) three-field crop rotation system with organic fertilization (dung) every 3 and 9 years and the same rotation without fertilization; and (c) short-term field-forest shifting system with 10 years for crops and 10 and 25 years for forest. Analysis of the results showed that the frequency of agricultural use in mixed field-forest land-use systems was crucial for soil organic matter dynamics. Under the short interval between agriculture, the stocks of all soil organic matter pools decreased. Under all scenarios except the three-field crop rotation with fertilization and the slash-and-burn system with 120 years for forest, a strong reduction of soil organic matter occurred after 30-130 years of the agricultural impacts. The highest reduction rates were modelled under the short-term field-forest shifting system and three-field rotation without fertilization. Fertilization led to stabilization of soil organic matter pools and gave a possibility for a long time stable agricultural use.  相似文献   

12.
The paper is about the accurate (i.e. unbiased and precise) and efficient estimation of structural indices in forest stands. We present SIAFOR, a computer programme for the calculation of four nearest-neighbour indices, which describe the spatial arrangement of tree positions, the distribution pattern of species, and the size differentiation between trees. The study uses SIAFOR as a sampling simulator in eight completely stem-mapped forest stands of varying area and structural complexity. We statistically evaluate two sample types (distance and plot sampling), comparing sampling error, bias and minimum sample size for index estimation. We introduce the concepts of measurement expansion factor (MEF) and design expansion factor (DEF) for the technical evaluation of sample type efficiency (optimal sample type). Results indicate that sampling error can reach high levels and that minimum sample sizes for index estimation often amply exceed the limit of 20% of tree density or 20 trees per species per hectare, that we set as the highest feasible sample size in normal situations. We found clear feasibility limits (in terms of minimal tree densities and reachable accuracy levels) for the estimation of all investigated indices. Generally, equal or higher sample sizes are needed for plot sampling than for distance sampling to reach equal accuracy levels. Nevertheless, plot sampling resulted more efficient for the estimation of tree size differentiation at low to medium accuracy levels. For all other investigated indices distance sampling resulted more efficient than plot sampling. Minimum sample size increases with accuracy and is negatively correlated with tree density. At a given accuracy level minimum sample size is highest for the estimation of relative mingling and lowest for tree size differentiation; furthermore it is generally lower in large stands than in small ones. Because of the consistency of our conclusions in all of the investigated stands, we think they apply in most stands of similar area (between 1 and 10 ha) and species diversity (not more than four species).  相似文献   

13.
The cascading effects of biodiversity loss on ecosystem functioning of forests have become more apparent. However, how edge effects shape these processes has yet to be established. We assessed how edge effects alter arthropod populations and the strength of any resultant trophic cascades on herbivory rate in tropical forests of Brazil. We established 7 paired forest edge and interior sites. Each site had a vertebrate-exclosure, procedural (exclosure framework with open walls), and control plot (total 42 plots). Forest patches were surrounded by pasture. Understory arthropods and leaf damage were sampled every 4 weeks for 11 months. We used path analysis to determine the strength of trophic cascades in the interior and edge sites. In forest interior exclosures, abundance of predaceous and herbivorous arthropods increased by 326% and 180%, respectively, compared with control plots, and there were significant cascading effects on herbivory. Edge-dwelling invertebrates responded weakly to exclusion and there was no evidence of trophic cascade. Our results suggest that the vertebrate community at forest edges controls invertebrate densities to a lesser extent than it does in the interior. Edge areas can support vertebrate communities with a smaller contingent of insectivores. This allows arthropods to flourish and indirectly accounts for higher levels of plant damage at these sites. Increased herbivory rates may have important consequences for floristic community composition and primary productivity, as well as cascading effects on nutrient cycling. By interspersing natural forest patches with agroforests, instead of pasture, abiotic edge effects can be softened and prevented from penetrating deep into the forest. This would ensure a greater proportion of forest remains habitable for sensitive species and could help retain ecosystem functions in edge zones.  相似文献   

14.
To measure amounts of tissue lost in natural populations of the burrowing amphiurid ophiuroid Microphiopholis gracillima (Stimpson), individuals were collected from subtidal mud flats in North Inlet, South Carolina, USA, at monthly intervals between February 1985–February 1987 and December 1989–November 1990. Between 20 and 70% of all individuals were regenerating the disc, and 85% of the 2045 arms examined had regeneration scars; >50% had one scar and some arms had up to 4 scars. Fewer individuals were regenerating discs in warmer months, but there was no seasonality in arm-loss frequency. To quantify rates of arm regeneration in the field, individuals which had 1, 2, or 3 arms removed were placed in mud-filled cores in the field in late July and November 1988 and in March and May 1989, and recovered after periods of about one month. Another set of cores was held in a running seawater laboratory during the May 1989 experiment. No regeneration occurred during the cooler times of year (November and March), and rates of regeneration were slower in May (total: 0.13 mg/d; tissue: 0.03 mg/d) than July (total: 0.17 mg/d; tissue: 0.05 mg/d). These rates indicate complete replacement of lost tissue in 100 to 120 d during the growth season. Within experiments, per arm regeneration rates were similar regardless of the number of arms removed. This finding is complicated by small sample size, high variability and low statistical power, but in general individuals which lost 2 or 3 arms regenerated proportionally more tissue than individuals which lost 1 arm. Individuals held in the laboratory regenerated the same amount of tissue but 30% less skeleton than individuals in the field. Sublethal tissue loss is common in this population, and M. gracillima is capable of regenerating at least 50% (each arm=17% of total body weight x 3) of its standing crop in a single growing season. Burrowing brittlestars probably constitute a significant renewable energy source for higher trophic levels in areas where they occur in dense populations.  相似文献   

15.
Long-Term Avifaunal Impoverishment in an Isolated Tropical Woodlot   总被引:3,自引:0,他引:3  
Abstract:  Long-term (>50 years) extinction patterns and processes in isolated tropical forest patches are poorly understood. Considering that forest fragments are rapidly becoming the common feature of most tropical landscapes, data on the long-term conservation value of such fragments are urgently needed. We report on avifaunal turnover in a tropical woodlot (Bogor Botanical Gardens; 86 ha; 54% native and 46% introduced plants; mean 83,649 visitors/month) that has been surveyed several times before and after its isolation in 1936. By 2004 the original avifaunal richness of this woodlot declined by 59% (97 to 40 species) and its forest-dependent avifauna declined by 60% (30 to 12 species). Large-bodied birds were particularly prone to extinction before 1987, but following this time none of the species traits we studied could be considered predictive of extinction proneness. All seven forest-dependent bird species that attempted to colonize this woodlot by 1987 perished thereafter. Our results show that area reduction, isolation, intense human use, and perverse management (e.g., understory removal) of this patch have probably negatively affected the long-term sustainability of its forest avifauna.  相似文献   

16.
An historical generalization about forest cover change in which rapid deforestation gives way over time to forest restoration is called "the forest transition." Prior research on the forest transition leaves three important questions unanswered: (1) How does forest loss influence an individual landowner's incentives to reforest? (2) How does the forest recovery rate affect the likelihood of forest transition? (3) What happens after the forest transition occurs? The purpose of this paper is to develop a minimum model of the forest transition to answer these questions. We assume that deforestation caused by landowners' decisions and forest regeneration initiated by agricultural abandonment have aggregated effects that characterize entire landscapes. These effects include feedback mechanisms called the "forest scarcity" and "ecosystem service" hypotheses. In the forest scarcity hypothesis, forest losses make forest products scarcer, which increases the economic value of forests. In the ecosystem service hypothesis, the environmental degradation that accompanies the loss of forests causes the value of ecosystem services provided by forests to decline. We examined the impact of each mechanism on the likelihood of forest transition through an investigation of the equilibrium and stability of landscape dynamics. We found that the forest transition occurs only when landowners employ a low rate of future discounting. After the forest transition, regenerated forests are protected in a sustainable way if forests regenerate slowly. When forests regenerate rapidly, the forest scarcity hypothesis expects instability in which cycles of large-scale deforestation followed by forest regeneration repeatedly characterize the landscape. In contrast, the ecosystem service hypothesis predicts a catastrophic shift from a forested to an abandoned landscape when the amount of deforestation exceeds the critical level, which can lead to a resource degrading poverty trap. These findings imply that incentives for forest conservation seem stronger in settings where forests regenerate slowly as well as when decision makers value the future.  相似文献   

17.
Abstract:  Research on local use values of forests across an ecological succession informs land-use decisions and conservation planning. I evaluated use values of three age classes of secondary forest: fallow fields (<5 years old, $8.20/ha/year), young secondary forest (5–20 years old, $20.60/ha/year), and old secondary forest (>20 years old, $6.80/ha/year). I quantified daily forest product use and calculated use values in dollars per hectare per year for three communities in the northern Peruvian Amazon. I made three comparisons between forest types: number of useful species, value based on different use categories, and overall use values. Old secondary forest had the greatest number of total species present and species collected. Wood, food, and medicine were the three most valuable use categories. The value different families extracted from local forests varied enormously, but median forest values were lower for all forest types than potential gains from agricultural land use (e.g., coffee $167/ha/year). Values of different-aged stands on privately owned lands in two communities did not differ significantly, whereas in the third community, young secondary forest had a significantly greater value than other forest types. Old secondary forests were the most valuable source of wood products, and wood was the only use category in which there was any difference in the value of products extracted from different-aged forest stands. The value of all three forest types on open-access (nonprivate) lands was minimal (mean in each forest type, $0/ha/year). Local people can utilize the valuation results to develop land-use strategies that balance forest product use, agricultural productivity, and biodiversity conservation.  相似文献   

18.
Abstract:  Within the last 30 years, five endemic bird species of the Alaka'i Swamp, Kaua'i, Hawai'i, have likely gone extinct. We documented population trends of the remaining avifauna in this time period to identify a common pattern in the Hawaiian Islands: decline of native species and expansion of introduced species. We conducted bird surveys over 100 km2 of the Alaka'i and Kōke'e regions of Kaua'i in March–April 2000 to estimate population size, distribution, and range limits of seven native and six introduced forest birds. We compared the results with four previous surveys conducted over the last 30 years. Five of the seven native species we studied have fared well, maintaining sizeable populations (>20,000 individuals) and unchanged or increasing numbers. The endemic 'Akikiki ( Oreomystis bairdi ), however, declined from 6296 (SE ± 1374) to 1472 (SE ± 680) individuals and exhibited range contraction from 88 to 36 km2. The 'I'iwi ( Vestiaria coccinea ) also experienced a decline and contraction, though not as severe. Populations of several introduced forest birds are increasing, but all species, excluding the Japanese White-eye ( Zosterops japonicus ), were at low numbers (<5,500 individuals in survey area). One introduced species, the Japanese Bush-Warbler ( Cettia diphone ) recently invaded, whereas another, the Red-billed Leiothrix ( Leiothrix lutea ), has been extirpated. Two hurricanes in the past 20 years appear to have most strongly affected nectarivores and may have contributed to the decline or extinction of several other species. Overall, native bird populations on Kaua'i have exhibited species-specific responses to limiting factors. Although most native populations appear stable, the extant native avifauna is vulnerable as a result of limited distributions and the potential for widespread habitat degradation.  相似文献   

19.
《Ecological modelling》2003,159(2-3):223-238
The effectiveness of exergy and specific exergy indices as ecological indicators of the trophic state of lake ecosystems is here tested on a small homogeneous set of shallow lakes which, in spite of their similar nutrient concentrations, morphology and hydrology, show a different trophic state and structure, species composition and abundance. The findings reveal that exergy and specific exergy indices have good negative correlation with phytoplankton biomass and Carlson's trophic state index (TSI) and strong positive correlation to water transparency (the relationship between exergy and eutrophication is clearer if the exergy refers to surface units, rather than volume units) and, hence, that they may be used as ecological indicators of the trophic state of lake ecosystems. The relationship between the responses of the thermodynamic approach and other conventional trophic classification methods (Vollenweider's eutrophication model based on phosphorus loading, the Hillbrich-Ilkowska method and the Vollenweider–OECD classification criterion) previously applied to Lake Trasimeno, was also investigated. The decreasing trend of exergy and specific exergy indices with eutrophication increase appears to be essentially due to the change in species composition and trophic structure, rather than to a different trophic potentiality of the ecosystems investigated. Concerning the identification of the environmental factors responsible for exergy and specific exergy trends, the coherence of the correlation structure between water depth, TSI, exergy and specific exergy indices, suggests that the lake's mean water depth plays a significant role in determining the changes in trophic structure and state (and consequently in exergetic indices) within the set of lakes examined and emphasises the importance of lake morphology in the development and ageing of lake ecosystems.  相似文献   

20.
Abstract:  Plantation forests and second-growth forests are becoming dominant components of many tropical forest landscapes. Yet there is little information available concerning the consequences of different forestry options for biodiversity conservation in the tropics. We sampled the leaf-litter herpetofauna of primary, secondary, and Eucalyptus plantation forests in the Jari River area of northeastern Brazilian Amazonia. We used four complementary sampling techniques, combined samples from 2 consecutive years, and collected 1739 leaf-litter amphibians (23 species) and 1937 lizards (30 species). We analyzed the data for differences among forest types regarding patterns of alpha and beta diversity, species-abundance distributions, and community structure. Primary rainforest harbored significantly more species, but supported a similar abundance of amphibians and lizards compared with adjacent areas of second-growth forest or plantations. Plantation forests were dominated by wide-ranging habitat generalists. Secondary forest faunas contained a number of species characteristic of primary forest habitat. Amphibian communities in secondary forests and Eucalyptus plantations formed a nested subset of primary forest species, whereas the species composition of the lizard community in plantations was distinct, and was dominated by open-area species. Although plantation forests are relatively impoverished, naturally regenerating forests can help mitigate some negative effects of deforestation for herpetofauna. Nevertheless, secondary forest does not provide a substitute for primary forest, and in the absence of further evidence from older successional stands, we caution against the optimistic claim that natural forest regeneration in abandoned lands will provide refuge for the many species that are currently threatened by deforestation .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号