共查询到20条相似文献,搜索用时 62 毫秒
1.
实验室条件下,研究了不同土壤性质、水分含量、通气条件、外加营养元素比例与外源微生物等条件下,苯并[a]芘(BaP)和二苯并[a,h]蒽(DBA)在土壤中的降解特性.结果表明,当土壤中BaP和DBA的添加水平分别为2.5 mg·kg-1时,至125 d时,BaP在pH较低的江西红壤中降解最快,降解率达87.3%;而DBA在有机质含量较高的中性太湖水稻土中降解较快,降解率为52.0%.土著微生物对BaP和DBA在土壤中的降解起重要作用;合适的土壤C/N比值能明显加快降解速率;好气条件有利于BaP和DBA的降解. 相似文献
2.
采用生物堆模拟方法,研究苯并[a]芘(BaP)和二苯并[a,h]蒽(DBA)污染土壤的生物修复条件.结果表明,在生物堆中投加绿肥或秸秆可明显促进BaP和DBA的降解;通气速率分别为0.05和0.10m3·h-1时BaP和DBA的降解率无明显差异;添加EM菌对BaP和DBA的降解有抑制作用.在投加20g·kg-1绿肥、通气速率为0.10m3·h-1时,BaP和DBA的去除效果最佳,处理160d时降解率分别达64.8%和74.9%. 相似文献
3.
在温室条件下,利用盆栽实验研究了三种土壤改良剂(骨炭、活性炭、泥炭)对荧蒽和苯并[k]荧蒽的提取和黑麦草吸收的影响.结果表明,添加骨炭、活性炭和泥炭后,土壤中可提取态荧蒽和苯并[k]荧蒽的量比对照处理分别降低了43.1%-63.8%和35.2%-57.6%,在高剂量骨炭、活性炭和泥炭处理的土壤中,可提取态荧蒽和苯并[k]荧蒽的量降低幅度均比相应低剂量处理的降低幅度大,并且各处理的效果与对照相比均达到了显著差异(p<0.05);骨炭、活性炭和泥炭减少了荧蒽和苯并[k]荧蒽在黑麦草地下部分和地上部分的累积量,并且荧蒽和苯并[k]荧蒽在黑麦草地下部分和地上部分的累积量随着骨炭、活性炭和泥炭添加量的增加呈下降趋势. 相似文献
4.
主要研究了在模拟太阳光照射下,含盐水溶液中苯并[a]芘(BaP)的光降解,讨论了氯离子浓度、pH值、苯并[a]芘浓度、腐殖酸、助溶剂、电子供体、固体颗粒物等对苯并[a]芘光降解的影响.这些影响因素从不同的路径促进或抑制苯并[a]芘的光降解,得出了光照条件下BaP可能的转化路径.同时通过进行GC-MS检测确定了苯并[a]芘光降解后有6-氯代苯并[a]芘和苯并[a]芘二酮物质生成. 相似文献
5.
为研究苯并[a]芘和菲对缢蛏的毒性效应,将缢蛏(Sinonovacula constricta)分别暴露于浓度为0.45 mg·L-1、0.15 mg·L-1、0.05 mg·L-1苯并[a]芘溶液和0.45 mg·L-1、0.15 mg·L-1、0.05 mg·L-1菲的溶液中,采用单细胞凝胶电泳实验(彗星实验)技术检测不同暴露时间缢蛏血淋巴细胞的DNA损伤程度,对照组为清洁海水。结果显示,高浓度(0.45 mg·L-1)苯并[a]芘溶液和(0.45 mg·L-1)菲溶液在短期(7 d)内即可导致缢蛏血细胞显著的DNA损伤,并且随苯并芘[a]和菲浓度的增大和暴露时间的延长,DNA损伤程度增加。21 d恢复实验后,各浓度组DNA损伤又均有不同程度的恢复,但中高浓度组(0.45 mg·L-1和0.15 mg·L-1)与对照组仍显著性差异。两种多环芳烃物质对缢蛏血细胞的DNA损伤作用均存在较显著时间-剂量-效应关系。其中,苯并芘[a]对缢蛏血细胞的DNA损伤作用要高于菲。 相似文献
6.
通过1996-2000年对沈阳市大气中苯并[a]芘的连续监测,结果表明:沈阳市大气中苯并[a]芘的污染程度不容乐观。大气中苯并[a]芘有明显的季节变化,夏季<秋(春季)<冬季;采暖期>非采暖期。大气中BaP在工业区的含量最高,其次是居民区,商业区、文化区和清洁区。生活燃煤污染、工业污染和扬尘污染是沈阳市大气中BaP的主要来源,同时受到交通废气排放的影响较大,区域环境背景中BaP对大气中BaP的作用也十分明显。 相似文献
7.
运用概率风险评价方法表征和比较了天津污灌区3种多环芳烃对生物影响的风险性。根据各物质的环境暴露浓度和相应急性毒性值的累计概率分布曲线估计了各物质相对风险性的大小。采用联合概率曲线方式比较了不同暴露概率水平条件下3种多环芳烃的相对风险。结果表明,该地区目前菲的总体风险性高于另两种化合物,苯并(a)芘的总体风险性最低。而低暴露风险条件下(受威胁生物不超过20%),苯并(a)芘的风险较大,菲次之,荧蒽风险相对较低。 相似文献
9.
研究了黑麦草(Lolium multiflorumL.)对多环芳烃苯并[a]芘污染土壤的修复作用。研究结果表明,土壤中苯并[a]芘的可提取态wB[a]P随着时间延长而逐渐减少,黑麦草加快了土壤中可提取态苯并[a]芘的减少,提高了苯并[a]P在土壤中的降解率,在1、10、50mg·kg-1苯并[a]芘处理下,黑麦草生长土壤中苯并[a]芘的降解率分别达90.3%、87.5%、78.6%;而没有黑麦草生长土壤中苯并[a]芘的降解率则为79.3%、66.4%、55.6%。黑麦草根际增加土壤中微生物碳的含量,从而提高植物对苯并[a]芘的降解率。植物的地上部也可积累少量苯并[a]芘,但植物对苯并[a]芘的吸收不是黑麦草对其修复的主要机制。土壤自身具有修复苯并[a]芘的潜能,种植黑麦草具有强化土壤修复苯并[a]芘污染的作用。 相似文献
10.
在北京市郊区一家中等规模养鸡场采集了不同品种和不同生长阶段的饲养鸡的肌肉和内脏样品,并同步采集了鸡蛋、饲料、粪便和大气样品,测定了其中苯并[a]芘的浓度,据此分析了苯并[a]芘在饲养鸡体内的积累、排泄和代谢的动态过程.结果显示,饲养鸡体内各组织苯并[a]芘的湿重浓度在0.024~0.15ng·g-1之间,肌肉中的浓度显著低于其它组织;饲料和粪便中的浓度显著高于体内各组织浓度.饲养鸡体内摄入的苯并[a]芘约60%在体内代谢,约三分之一直接排泄进入粪便,仅有少量残留在体内如表皮、肌肉和其他器官中.肌肉、肝脏和胃中苯并[a]芘浓度和总累积量的动态变化规律不尽相同.北京居民摄食类似鸡肉导致的对苯并[a]芘的暴露量较春、秋、冬季呼吸暴露量低两个量级,与夏季呼吸暴露量相当. 相似文献
11.
Mycorrhizal and non-mycorrhizal alfalfa (Medicago sativa) was grown in pots containing soil artificially contaminated with various levels of benzo[a]pyrene (B[a]P) (0, 1, 10 and 100 mg kg(-1)). Soil and plants were sampled after 30, 40, 50, 60 and 90 days and compared with unlanted pots. The percentage of mycorrhizal root length colonized by Glomus caledoniun was not significantly affected by the addition of B[a]P up to 10 mg kg(-1) but was significantly lower at 100 mg kg(-1)B[a]P compared with low concentrations (p < 0.05). There was no difference in soil polyphenol oxidase and dehydrogenase activity among the controls and applications of 1 and 10 mg kg(-1) of B[a]P. However, enzyme activities were significantly higher at 100 mg kg(-1) B[a]P compared with the other three treatments, and there was no mycorrhizal effect. Over a period of 90 days the concentration of B[a]P in soil in which alfalfa was grown was significantly lower than in unplanted soil (p < 0.05). Degradation rates of B[a]P added at 1, 10 and 100 mg kg(-1) without G. caledonium were 76, 78 and 53%, and with mycorrhizal inoculation were 86, 87 and 57%. The degradation rate in unplanted soil was significantly lower than in planted soil, and was significantly higher in medium- and low-B[a]P treatments than in the high B[a]P concentration tested. There is a possibility of enhancement phytoremediation of PAHs in rhizosphere soil with arbuscular mycorrhizal fungi. 相似文献
12.
A pot experiment was conducted to study the effect of growing vetiver grass on the biodegradation of benzo[a]pyrene (B[a]P) under glasshouse conditions. Plant biomass, microbial biomass C and degradation of B[a]P were determined. B[a]P disappeared faster in the plant treatments than in unplanted controls. Disappearance of B[a]P was accompanied by an increase in soil microbial biomass C. Vetiver grass may promote the biodegradation of B[a]P under flooded conditions by plant roots by stimulating the microbial biomass. Microbial biomass was the main factor affecting dissipation of B[a]P under flooded conditions. 相似文献
13.
3-Hydroxy-benzo[ a]pyrene (3-OH-BaP), a toxic compound with the ability to covalently bind with the macromolecules (proteins and DNA), is one of the major phenolic metabolites of benzo[ a]pyrene (BaP). The purpose of this study was to evaluate the presence of 3-OH-BaP in the bile and plasma of Nile tilapia by HPLC with fluorescence detection, after waterborne exposure to BaP (10 and 100?µg?L ?1). Metabolites were detected in bile and plasma, and conjugates of 3-OH-BaP (glucuronide and/or sulphate conjugates) were the majority forms in both biological fluids, glucuronide 3-OH-BaP being the main metabolite in bile. Our data suggest that extrahepatic tissues as intestine or gill are important in BaP metabolism and need to be the considered sources of metabolites released into the blood. Although, low levels of 3-OH-BaP in toxic form (free form) were detected in plasma, one cannot exclude the possibility of circulating the levels leading to adverse effects. 相似文献
14.
A comprehensive field study was conducted to determine the background concentrations of benzo [a] pyrene (B[a]P) in soil samples collected at different points on a grid covering most of the northern and middle parts of the Kingdom of Bahrain. The average B[a]P concentration was 108.4?ng?g ?1 in winter and 73.0?ng?g ?1 in summer. The capital city, Manama, and the industrial areas of the country showed the highest levels of B[a]P. 相似文献
15.
Benz[a]anthracene is a ubiquitous environmental contaminant formed during the incomplete combustion of organic material. Some of the metabolites of benz[a]anthracene are known to be toxic and carcinogenic. In this investigation, benz[a]anthracene-induced oxidative damage to lymphocyte DNA was evaluated with the Comet assay (single cell gel electrophoresis). The level of oxidative DNA damage caused by benz[a]anthracene increased in a dose-dependent manner (24, 49) and oxidative DNA damage was significantly inhibited by 5 and 10 microg ml(-1) ascorbate, 5 microg ml(-1) polyphenols, as well as 5 and 10 microg ml(-1) curcumin. Moreover, traditional Korean medicinal herbs such as Acanthopanax and ginseng significantly reduced DNA damage. The results demonstrate that antioxidant supplementation to lymphocytes inhibits oxidative DNA damage in vitro, supporting an inhibitory effect against oxidative DNA damage, probably due to reduction of reactive oxygen species production induced by benz[a]anthracene. 相似文献
16.
Mutagenic and genotoxic effects of polycyclic aromatic hydrocarbons, anthracene and benzo [a] pyrene (BaP), in milkfish Chanos chanos were determined using micronucleus (MN) test and comet assay (CA). Distinct mean frequencies of nuclear abnormalities such as MNs; binucleated micronuclei, nuclear bud, and fragmented apoptotic cells were measured. Significant increase in DNA damage with five classes of damage level was observed and expressed in terms of arbitrary unit (AU). Mean frequencies of total nuclear abnormalities were 0.5?±?0.25 cells in control; 0.67?±?0.33 cells in solvent control; 70?±?9.60 cells in 0.176?mg?L ?1 anthracene, and 91.83?±?6.25 cells in 0.031?mg?L ?1 BaP. The greatest DNA damage of 170AU was observed in 0.176?mg?L ?1 anthracene-exposed group and 182AU was observed in 0.031?mg?L ?1 BaP-treated fish. This study confirmed that the CA and MN assays are useful tools in determining potential genotoxicity of water pollutants and might be appropriate as a part of monitoring program. 相似文献
17.
Effects of benzo[a]pyrene (B[a]P) on ryegrass ( Lolium perenne L.) growth, plant accumulation and dissipiation of B[a]P in a red sandy soil (Hapli-Udic Argosol) were studied in a pot experiment. The plants were grown for 61 days in soil spiked with B[a]P at 0, 12.5, 25 and 50 mg kg −1. Control pots without plants were also set up. Soil extractable B[a]P, plant shoot and root biomass, and concentrations of B[a]P in plant shoots and roots were determined. Ryegrass biomass was increased by addition of B[a]P and root B[a]P concentrations were significantly correlated with B[a]P application rate, but no such correlation was found for shoot B[a]P concentrations. This indicates that B[a]P enhanced the growth of the ryegrass. The extractable B[a]P concentration in the planted soil was significantly lower than that in the unplanted control soil at the rate of 50 mg B[a]P kg −1. This indicates that ryegrass may help to dissipate B[a]P in soil at concentrations over 50 mg kg −1 soil although the mechanism for this is not understood. 相似文献
18.
Benzo[a]pyrene (BaP) is one of the most ubiquitous environmental contaminants and exerts potent carcinogenicity and mutagenicity. In the presence of rat liver S9 mix, four trace elements, germanium (Ge), iron (Fe), zinc (Zn), and molybdenium (Mo), were included in the Ames Salmonella microsome/mutagenic assay to test their inhibitory effects on BaP-induced mutations. All trace elements were found to exert an inhibitory effect in tester TA98 and TA100 strains; Fe was the most potent among the elements tested, whereas Zn was weakly inhibitory to prevent mutations. The present findings demonstrate that the antimutagenic potential of trace elements, notably Fe, may be attributed to its modulatory effect on the bioactivation and detoxification processes of BaP. 相似文献
19.
利用Level Ⅲ逸度模型模拟计算了稳态假设下苯并(a)芘在兰州地区大气、水体、土壤和沉积物中的相间迁移通量、浓度分布.结果表明:大气的平流输入和化石燃料燃烧是该区域苯并(a)芘的主要来源,土壤是其最大的储库,占总残留量的99.6%;在大气、水体、土壤和沉积物中的浓度分别为1.61×10-10 mol·m-3、9.39×10-7 mol·m-3、7.13×10-4 mol·m-3和9.17×10-5mol·m-3,模型计算浓度与同期实测浓度吻合较好,验证了模型的可靠性,并通过灵敏度分析,确定了模型的关键参数. 相似文献
20.
Many studies have been devoted to investigation of toxic benzo(a)pyrene (BaP) compound, but studies involving changes at the cellular level are insufficient to understand the mechanisms of polycyclic aromatic hydrocarbons (PAHs) effect on plants. To study the toxicity of BaP, a model vegetation experiment was conducted on cultivation of spring barley (Hordeum sativum distichum) on artificially polluted BaP soil at different concentrations. The article discusses the intake of BaP from the soil into the plant and its effect on the organismic and cellular levels of plant organization. The BaP content in the organs of spring barley was determined by the method of saponification. With an increase in the concentration of BaP in the soil, its content in plants also rises, which leads to inhibition of growth processes. The BaP content in the green part of Hordeum sativum increased from 0.3 µg kg?1 in control soil up to 2.6 µg kg?1 and 16.8 µg kg?1 under 20 and 400 ng/g BaP applying in soil, as well as in roots: 0.9 µg kg?1, 7.7 µg kg?1, 42.8 µg kg?1, respectively. Using light and electron microscopy, changes in the tissues and cells of plants were found and it was established that accumulation of BaP in plant tissues caused varying degrees of ultrastructural damage depending on the concentration of pollutant. BaP had the greatest effect on the root, significant changes were found in it both at histological and cytological levels, while changes in the leaves were observed only at the cytological level. The results provide significant information about the mechanism of action of BaP on agricultural plants. 相似文献
|