首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了同时去除地下水中的氟和砷,提出了Al/C/Fe复合电极电絮凝法和Al/C-Fe/ C依次除氟砷法,并进行效果对比。研究了Al/C/Fe复合电极电絮凝法的影响因素,并对复合电极电絮凝产生的絮体进行了SEM-EDX分析。结果表明,Al/C/Fe复合电极电絮凝法对氟、砷的去除速率分别是Al/C-Fe/C依次除氟砷法的1.43倍和4.73倍;初始氟/砷浓度为4.0/1.0、4.0/0和0/1.0 mg/L 3种条件下,通过铝极板、铁极板的电流密度均为0.10 mA/cm2时,达到最好的除氟除砷效果,与初始氟/砷浓度无关。  相似文献   

2.
为探求电絮凝处理高含氟地下水工艺技术参数及其除氟动力学,采用双铝电极电絮凝装置处理人工模拟高含氟地下水,研究了双铝电絮凝除氟过程及其除氟动力学模型,分别考察了电流密度、pH、极板间距及初始氟浓度对电絮凝除氟过程影响。结果表明,电絮凝除氟过程符合一级反应动力学模型,理论所需除氟时间取决于初始氟浓度和除氟动力学常数,而除氟动力学常数受电流密度、极板间距和初始氟浓度影响;当电流密度为300 A·m~(-3),pH为6.0~7.0,极间距为10 mm时,双铝电絮凝除氟能效最高,氟离子去除率为89.56%,能耗为0.157 8 kWh·g~(-1);但较高的初始氟浓度容易使铝氟比下降,导致除氟效果下降,不利于除氟过程。以上结果可为电絮凝处理高含氟地下水工程化应用和除氟反应器开发提供参考。  相似文献   

3.
采用单极性三维电极法去除配制水中的氟离子,探讨了填充材料、极板间距和电压对除氟效果的影响。结果表明,填充颗粒比表面积越大、极板间距越小、电压越高,越有利于氟离子的去除。当采用活性炭颗粒作为填充材料、极板间距为10 mm、电压为5 V时,氟离子浓度可由4 mg/L降至0.8 mg/L,达到我国饮用水氟含量标准。  相似文献   

4.
以含氟地下水为研究对象,采用自制电促吸附除氟反应器,开展电增强载铝活性炭纤维吸附除氟的动态实验,研究了不同电压、极板间距、地下水碱度和流速对吸附除氟效果的影响。实验结果表明,在负载炭纤维毡的电极一端加正电,可以提高除氟效果。当电压为1.6 V时除氟效果较好,单位面积炭毡处理达标水量为56.7 L/m2;极板间距设置为4mm时电吸附反应器除氟效果最佳;通过调节pH改变地下水碱度,当地下水pH调节为5.5时,电吸附反应器除氟效果较未调节前提高50%;当采用3对电极板,流速为1.88 m/h时,达到最高表面处理负荷2 073.6 L/(m2.d);探究了反应器的反洗再生方式,并连续进行了吸附再生的动态实验;穿透的反应器以Al2(SO4)3溶液为再生液并采用反向加电1.6 V的方式,可以达到较好的再生效果,实现连续动态运行。  相似文献   

5.
电絮凝-气浮-砂滤组合工艺除氟   总被引:1,自引:0,他引:1  
为了有效去除水中的氟离子,对电絮凝-气浮-砂滤组合工艺除氟(F-)离子进行了研究。详细考察了电压、电絮凝停留时间和初始F-离子浓度等参数对除F-离子效率的影响。结果表明:当初始F-离子浓度为1.50 mg/L,停留时间为10 min,电压为15 V条件下,出水F-离子浓度为0.92 mg/L;当初始F-离子浓度为2.5 mg/L,停留时间为15 min,电压15 V条件下,出水F-离子浓度为0.98 mg/L。用Al-Ferron逐时络合比色法表征了电絮凝和气浮单元出水中铝形态随时间的变化。结果显示:电絮凝出水Ala含量随时间增加迅速降低到5%以下,电絮凝和气浮单元出水Alb含量均占到50%以上,Alc含量均随时间增加而增加。  相似文献   

6.
采用自制的炭气凝胶平板电极进行模拟水样中氟的电吸附去除研究,通过单因子实验优化了该电吸附技术的操作参数和适用的溶液条件,并研究了反接电极法的再生效果。研究结果表明,自制的炭气凝胶平板由纳米颗粒组成三维网络结构,比表面积为670.90 m2/g,具有良好的充放电可逆性和迅速形成表面双电层的特点。静态电吸附除氟效果最佳的条件为:水样氟离子浓度6 mg/L,pH 7.0,极板间距4 cm,电压1.6 V;共存物质硝酸根、腐殖酸、碳酸根和碳酸氢根等对氟离子的电吸附具有一定的促进作用。吸附氟离子后的炭气凝胶材料的比表面、孔体积、电容值有所减小。对于吸附氟离子后的炭气凝胶平板电极,采用反接电极法取得较好再生效果的条件为:流动状态、电压1.6 V、极板间距4 cm。再生后的炭气凝胶电极与原始炭气凝胶相比,依然具有良好的充放电可逆性。  相似文献   

7.
电絮凝过程处理含铬废水的工艺及机理   总被引:2,自引:0,他引:2  
以六价铬废水为处理对象,采用电絮凝过程研究了槽电压、初始浓度、初始pH值、电极材料等工艺参数对电絮凝过程分离Cr(Ⅵ)离子效率的影响机理。结果表明,采用Fe/Fe电极,对初始浓度为105 mg/L的Cr(Ⅵ)离子废水,最优槽电压为4 V,初始pH值为6,电解60 min,去除率可达到98.84%。Cr(Ⅵ)的去除率随着槽电压的升高而增大,随着初始浓度以及初始pH值的增加而减小。研究发现,初始pH值决定电絮凝过程中Cr(Ⅵ)的主要去除方式,在偏中性范围内Cr(Ⅵ)主要通过絮体吸附作用去除。对不同电极材料的电絮凝过程电解产生的絮体进行了初步分析,结果表明,絮体成分因电极不同而异,不同絮体对重金属离子吸附能力的差异也较大。  相似文献   

8.
重点考察了-种改良型膜生物反应器(A2/O—MBR)的脱氮除磷性能。该工艺主要特点在于对膜池硝化回流液进行了固液分离,并将上清液和浓缩污泥分别回流至缺氧池和厌氧池,这种改进提高了系统对氮、磷的同步去除效率。实验结果表明,在水力停留时间(HRT)为12h,污泥龄(SRT)为30d,混合液回流比为200%的运行条件下,进水COD、NH4+-N、TN和TP平均浓度分别为(225±38)、(24.8±3.9)、(26.7±2.9)和(2.90±0.53)mg/L时,增加膜池硝化回流液固液分离装置前后,系统对COD和NH4+-N的去除都维持在较高水平,而系统对TN和TP的去除效果显著提高,出水TN和TP平均浓度分别由(14.9±3.3)mg/L和(1.95±0.72)mg/L下降到(9.4±1.9)mg/L和(0.91±0.38)mg/L,表明增加膜池硝化回流液固液分离装置显著改善了A2/O-MBR系统的脱氮除磷效果。反硝化除磷活性实验结果进一步表明,改进后系统中反硝化除磷活性占总除磷活性的比例由51.5%上升至61.7%,说明增加膜池硝化回流液固液分离装置强化了系统的反硝化除磷性能。  相似文献   

9.
采用自制的单极性复合型三维阳极作为第三维电极对含氟水进行动态电促吸附实验,通过研究不同填充床高度、阴阳极板间距、隔膜材料对电促吸附除氟效果的影响,确定反应器的最佳结构参数为:填充床高度20 cm、阴阳极板间距4 cm、隔膜为nafion117膜。工作电压、进水pH、进水流速、共存物质对氟离子去除效果的影响结果表明:在一定范围内增大工作电压,降低进水pH或进水流速均可提高除氟效果。相应的最佳操作条件为:工作电压7 V、进水流速4 mL/min、酸性pH;腐殖酸和碳酸根离子的存在会对氟离子去除产生较强抑制作用,低浓度的氯离子可促进氟离子的电促吸附。扫描电镜(SEM)-电子能谱(EDX)的表征结果显示三维颗粒电极的表面及孔隙内部均可吸附氟离子,且电吸附后并未出现电极腐蚀现象。  相似文献   

10.
铜(Cu(Ⅱ))和铬(Cr(Ⅵ))是水和废水中一类重要的重金属复合污染物。电絮凝(electrocoagulation,EC)是目前很有效的重金属深度处理技术,因此,采用电絮凝静态反应器对水中Cu(Ⅱ)和Cr(Ⅵ)的复合污染物的同步去除进行研究。在单极式连接条件下,考察电极材料、电流密度、初始pH、极板间距和电导率等因素对电絮凝效果的影响。结果表明,与铁电极相比,铝电极显示出更好的Cu(Ⅱ)和Cr(Ⅵ)同步去除效果。因此,采用铝电极进行因素筛选实验,筛选出的实验条件为:Cu(Ⅱ)的进水浓度为18.73~20.08 mg·L~(-1),Cr(Ⅵ)的进水浓度为12.98~14.35 mg·L~(-1),在初始pH为3~6,电流密度为11.57 A·m~(-2),极板间距为1 cm,电导率在899~2 000μS·cm~(-1)的范围内。去除结果表明,总铬(TCr)、Cr(Ⅵ)和Cu(Ⅱ)的去除率均在94%以上,出水Cu(Ⅱ)、TCr和Cr(Ⅵ)的浓度分别为0.081.24、0.491.21和0.120.49 mg·L~(-1),出水pH在6~9之间,可以满足《污水综合排放标准》(GB 8978-7996)要求。  相似文献   

11.
电絮凝-超滤(electrocoagulation-ultrafiltration process,EC-UF)工艺在饮用水除氟方面具有良好的应用前景,但是存在着能耗较高和出水余铝不达标的问题。实验通过优化电絮凝参数和pH,解决了EC-UF工艺能耗高和出水余铝不达标问题。主要考察了电絮凝pH、电流密度、水力停留时间、初始氟浓度对氟离子的去除效果以及膜污染的控制情况,并分析了铝络合物对氟的去除机理。结果表明,在电流密度10 A·m~(-2)、水力停留时间30min、pH在6.0~7.0的最佳工艺条件下,EC-UF工艺的出水氟、余铝含量均可达到生活饮用水水质标准。与传统工艺相比,调控pH的EC-UF工艺能耗为0.467 kWh·g~(-1),降低了33.9%,并且具有较好的出水水质,表明p H的调控是EC-UF除氟控铝工艺优化的关键因素。  相似文献   

12.
以表面活性剂TritonX-100(TX-100)为洗脱剂,某有机氯农药(organochlorinepesticides,OCPs)污染场地土壤为对象,七氯、氯丹和灭蚁灵为目标污染物,研究微米Cu/Fe双金属对污染土壤洗脱液中OCPs的降解效果。考察了洗脱液中OCPs初始浓度、洗脱液pH值、微米零价铁加入量和cu负载量对Cu/Fe去除OCPs效果的影响。结果表明,微米Cu/Fe可以有效的去除土壤洗脱液中目标污染物。当微米零价铁加入量为1.0g(25g/L),cu负载量为1.0%,洗脱液pH值为6.89时,Cu/Fe对2号土壤洗脱液中七氯、γ-氯丹、α-氯丹和灭蚁灵的去除效果最好,去除率分别为100.0%、99.3%、80.8%和71.1%。洗脱液中OCPs初始浓度越低,微米零价铁加入量越大,Cu/Fe对OCPs去除率越高;偏酸性条件有利于Cu/Fe对γ-氯丹和灭蚁灵的去除,而α-氯丹在中性条件下去除效果最好;1号土壤和2号土壤洗脱液的最佳铜负载量分别为2.O%和1.0%。  相似文献   

13.
天然黄铁矿的除磷性能   总被引:1,自引:0,他引:1  
除磷是控制水体富营养化的重要手段。为了考察黄铁矿的除磷特征,采用序批实验,分别研究了反应时间、初始磷浓度和干扰离子(NH4+、NO3- 和SO24-)对黄铁矿除磷的影响。动力学表明,黄铁矿的除磷过程符合伪二级动力学模型。pH=6.5时,磷的平衡去除量为6.82mg/kg。Langmuir方程能较好描述黄铁矿除磷的吸附等温过程,其磷的饱和吸附量为11.01mg/kg。NH4+、NO3-和SO24- 对黄铁矿除磷基本没有影响。磷的去除主要是通过铁磷沉淀和铁氧化物及氢氧化物的吸附,去除的磷主要以可被生物利用的Fe、Al-P形态存在。黄铁矿的这些除磷性能和机制对选取黄铁矿作为人工湿地填料实现同步脱氮除磷具有重要指导作用。  相似文献   

14.
采用溶胶-凝胶法制备TiO2凝胶,将TiO2凝胶涂覆在活性炭纤维表面并进行热处理制备改性电极(TiO2/ACF),利用扫描电子显微镜(SEM)、X射线衍射光谱仪(XRD)、比表面和孔隙度分析仪对负载前后电极的表面特性进行表征,并探讨了其对NaF溶液的电吸附效果。结果表明,电极负载TiO2后表面变得粗糙,比表面积和总孔体积减小,而介孔体积和平均孔径增大。此外,表面的TiO2同时以金红石和锐钛矿的晶型存在。电吸附实验结果显示,加电可以提高吸附容量,而且电压、pH和初始氟离子浓度均对电吸附容量产生影响:电压增大,吸附容量增加,当施加电压为2 V时,电吸附容量为1.03 mg/g,比开路电位时提高40%;pH可以通过影响氟离子在溶液中的存在形态和TiO2/ACF电极表面的羟基基团对电吸附容量产生影响;初始氟离子浓度升高,电极吸附容量增大,但是去除率降低。在处理初始氟离子浓度为4 mg/L的NaF溶液时,在2 V电压、中性pH和12 h的吸附时间下,改性ACF为电极的吸附量为1.32 mg/g。  相似文献   

15.
负载TiO2的活性炭纤维改性电极电吸附除氟   总被引:2,自引:1,他引:1  
采用溶胶-凝胶法制备TiO2凝胶,将TiO2凝胶涂覆在活性炭纤维表面并进行热处理制备改性电极(TiO2/ACF),利用扫描电子显微镜(SEM)、X射线衍射光谱仪(XRD)、比表面和孔隙度分析仪对负载前后电极的表面特性进行表征,并探讨了其对NaF溶液的电吸附效果。结果表明,电极负载TiO2后表面变得粗糙,比表面积和总孔体积减小,而介孔体积和平均孔径增大。此外,表面的TiO2同时以金红石和锐钛矿的晶型存在。电吸附实验结果显示,加电可以提高吸附容量,而且电压、pH和初始氟离子浓度均对电吸附容量产生影响:电压增大,吸附容量增加,当施加电压为2 V时,电吸附容量为1.03 mg/g,比开路电位时提高40%;pH可以通过影响氟离子在溶液中的存在形态和TiO2/ACF电极表面的羟基基团对电吸附容量产生影响;初始氟离子浓度升高,电极吸附容量增大,但是去除率降低。在处理初始氟离子浓度为4 mg/L的NaF溶液时,在2 V电压、中性pH和12 h的吸附时间下,改性ACF为电极的吸附量为1.32 mg/g。  相似文献   

16.
为了探讨电絮凝法去除水中四环素的效能及机理,分别研究了电极材料、电流强度、电导率和四环素初始浓度等参数对电絮凝去除四环素的影响;并通过氧化性能评估实验、UV-vis光谱分析、X射线衍射(XRD)等方法探究电絮凝去除四环素的性能。结果表明:使用铁电极(面积300 mm×80 mm,厚2 mm),对初始浓度0.05 mmol·L-1的四环素模拟废水进行处理,在电流强度为0.3 A、电导率为1 000μS·cm-1、电解15 min时,四环素和总有机碳(TOC)的去除率分别可达99.6%和79.8%,并且约41.9%的四环素通过氧化降解作用从水中被去除。使用铁电极电絮凝技术能够快速高效地去除四环素,具有高氧化率、低成本的特点。  相似文献   

17.
电絮凝-超滤(electrocoagulation-ultrafiltration,EC-UF)工艺在饮用水除氟方面具有良好的应用前景。研究了EC-UF除氟效果和膜污染过程,考察了电流密度、水力停留时间、初始pH、初始氟浓度对除氟效果和膜污染的影响。结果表明,在连续流下EC-UF工艺除氟效果良好,在电流密度30 A/m2、水力停留时间20 min、初始pH在6.0~7.0的最佳工艺条件下,氟的去除率达到80%以上。膜污染主要是由电解过程产生的铝絮凝剂与氟离子形成的颗粒物质导致。上述结果为EC-UF除氟工艺改进提供了参考和依据。  相似文献   

18.
以活性铝氧化物AlOxHy处理某高氟地下水的中试实验获得的吸附剂废料AlOxHy-Fn为对象,考察其对三价砷(As(Ⅲ))和五价砷(As(Ⅴ))吸附去除性能,并对吸附机理进行了探讨。研究显示,AlOxHy-Fn为多孔无定型且具有不规则表面的絮状结构,比表面积为218.88m2/g,零电荷点pHZPC在pH为8左右;AlOxHy-Fn可快速吸附As(Ⅲ)和As(Ⅴ),且反应24h后的平衡吸附量分别为0.60和3.41mg/g,朗格缪尔模型可以很好地描述As(Ⅲ)和As(Ⅴ)在AlOxHy-Fn表面的吸附,且As(Ⅲ)和As(Ⅴ)的最大吸附容量分别为13.63和63.27mg/g;AlOxHy-Fn在pH=4~10范围内对As(Ⅴ)去除率在90%以上,As(Ⅲ)在中性和弱碱性pH范围内吸附效果较好,但去除率仍在32%以下。AlOxHy-Fn表面性质、砷形态分布特征等对As(Ⅲ)与As(Ⅴ)的吸附有重要影响,电负性As(Ⅴ)较电中性As(Ⅲ)更容易吸附在AlOxHy-Fn表面。AlOxHy-Fn吸附除砷过程中,在pH为6时氟溶出量最低(0.40mg/g),过高或过低pH均会导致氟溶出量增大;氟溶出量与As(Ⅴ)吸附量之间有明显正相关关系(R2=0.97),但与As(Ⅲ)吸附量无相关关系;铝溶出量在pH为4~10范围内均很低。将AlOxHy-Fn回用作为除砷吸附剂去除工业含砷废水的砷具有良好的技术经济可行性,且将As(Ⅲ)氧化为As(Ⅴ)是提高去除效果的重要手段。  相似文献   

19.
通过静态吸附实验,研究了Al2(SO4)3、Al Cl3、Al(NO3)33种铝盐对凹凸棒石的复合改性及其除氟效果。复合改性的最优条件为Al2(SO4)3浓度0.05 mol·L-1、浸泡时间2 h、固液比1∶3,Al Cl3浓度0.4 mol·L-1、浸泡时间5 h、固液比1∶2,Al(NO3)3浓度0.2 mol·L-1、浸泡时间6 h、固液比1∶2。复合改性的凹凸棒石吸附容量达到1.317 mg·g-1,是改性前的13.9倍,吸附容量显著提高。复合改性的凹凸棒石对水中氟的吸附动力学符合拟二级动力学模型,吸附等温线更符合Langmuir等温吸附规律。吸附最佳p H为7,改性后的凹凸棒石表面更疏松粗糙,孔穴和孔道增多增大,但晶体结构未变。  相似文献   

20.
反冲洗周期是生物除铁除锰滤池的一个重要运行参数,实验中分别设定反冲洗周期为24、48和72h,考察反冲洗周期对成熟稳定运行的滤柱出水铁、锰、氨氮和浊度的影响。结果表明,不同反冲洗周期,滤柱对铁、锰和氨氮均有很好的去除效果,出水中的总Fe、Mn“和NH?-N的平均浓度分别为0.018、0.003和0.016mg/L,0.010、0.001和0.014mg/L,0.013、0.001和0.014mg/L,均远低于国家标准,说明反冲洗周期变化对三者的去除效果没有影响。反冲洗周期为24、48和72h时,出水平均浊度分别为0.27、0.38和0.57NTU,反冲洗周期越长,出水浊度越高。滤柱沿程浊度分析发现,浊度主要在0~O.4m去除,出水浊度与滤层厚度无关。反冲洗后5rain出水浊度为3.16NTU,15min降到了1NTU以下,25min降到了0.5NTU,60min大约降到了反冲洗前的水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号