首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most animals can modulate nutrient storage pathways according to changing environmental conditions, but in honey bees nutrient storage is also modulated according to changing behavioral tasks within a colony. Specifically, bees involved in brood care (nurses) have higher lipid stores in their abdominal fat bodies than forager bees. Pheromone communication plays an important role in regulating honey bee behavior and physiology. In particular, queen mandibular pheromone (QMP) slows the transition from nursing to foraging. We tested the effects of QMP exposure on starvation resistance, lipid storage, and gene expression in the fat bodies of worker bees. We found that indeed QMP-treated bees survived much longer compared to control bees when starved and also had higher lipid levels. Expression of vitellogenin RNA, which encodes a yolk protein that is found at higher levels in nurses than foragers, was also higher in the fat bodies of QMP-treated bees. No differences were observed in expression of genes involved in insulin signaling pathways, which are associated with nutrient storage and metabolism in a variety of species; thus, other mechanisms may be involved in increasing the lipid stores. These studies demonstrate that pheromone exposure can modify nutrient storage pathways and fat body gene expression in honey bees and suggest that chemical communication and social interactions play an important role in altering metabolic pathways.  相似文献   

2.
The evolution of sociality has configured communication chemicals, called primer pheromones, which play key roles in regulating the organization of social life. Primer pheromones exert relatively slow effects that fundamentally alter developmental, physiological, and neural systems. Here, I demonstrate how substances extracted from the surface of foraging and young pre-foraging worker bees regulated age at onset of foraging, a developmental process. Hexane-extractable compounds washed from foraging workers increased foraging age compared with controls, whereas extracts of young pre-foraging workers decreased foraging age. This represents the first known direct demonstration of primer pheromone activity derived from adult worker bees.  相似文献   

3.
Foraging specialization plays an important role in the ability of social insects to efficiently allocate labor. However, relatively little is known about the degree to which individual bumble bees specialize on collecting nectar or pollen, when such preferences manifest, and if individuals can alter their foraging preferences in response to changes in the colony workforce. Using Bombus impatiens, we monitored all foraging visits made by every bee in multiple colonies and showed that individual foragers exhibit consistent lifetime foraging preferences. Based upon the distribution of foraging preferences, we defined three forager types (pollen specialists, nectar specialists, and generalists). In unmanipulated colonies, 16–36?% of individuals specialized (≥90?% of visits) on nectar or pollen only. On its first day of foraging, an individual’s foraging choices (nectar only, pollen only, or nectar and pollen) significantly predicted its lifetime foraging preferences. Foragers that only collected pollen on their first day of foraging made 1.61- to 1.67-fold more lifetime pollen foraging visits (as a proportion of total trips) than foragers that only collected nectar on their first foraging day. Foragers were significantly larger than bees that stayed only in the nest. We also determined the effect of removing pollen specialists at early (brood present) or later (brood absent) stages in colony life. These results suggest that generalists can alter their foraging preferences in response to the loss of a small subset of foragers. Thus, bumble bees exhibit individual lifetime foraging preferences that are established early in life, but generalists may be able to adapt to colony needs.  相似文献   

4.
The capacity to distinguish colony members from strangers is a key component in social life. In social insects, this extends to the brood and involves discrimination of queen eggs. Chemical substances communicate colony affiliation for both adults and brood; thus, in theory, all colony members should be able to recognize fellow nestmates. In this study, we investigate the ability of Dinoponera quadriceps workers to discriminate nestmate and non-nestmate eggs based on cuticular hydrocarbon composition. We analyzed whether cuticular hydrocarbons present on the eggs provide cues of discrimination. The results show that egg recognition in D. quadriceps is related to both age and the functional role of workers. Brood care workers were able to distinguish nestmate from non-nestmate eggs, while callow and forager workers were unable to do so. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
Although most bees feed on nectar and pollen, several exceptions have been reported. The strangest of all is the habit found in some neotropical stingless bees, which have completely replaced pollen-eating by eating animal protein from corpses. For more than 20 years, it was believed that carrion was the only protein source for these bees. We report that these bees feed not only off dead animals, but on the living brood of social wasps and possibly other similar sources. Using well developed prey location and foraging behaviors, necrophagous bees discover recently abandoned wasps nests and, within a few hours, prey upon all immatures found there.  相似文献   

6.
The pollen of asclepiads (Asclepiadoideae, Apocynaceae) and most orchids (Orchidaceae) are packaged as large aggregations known as pollinaria that are removed as entire units by pollinators. In some instances, individual pollinators may accumulate large loads of these pollinaria. We found that the primary pollinator of Cynanchum ellipticum (Apocynaceae—Asclepiadoideae), the honey bee Apis mellifera, accumulate very large agglomerations of pollinaria on their mouthparts when foraging on this species. We tested whether large pollinarium loads negatively affected the foraging behaviour and foraging efficiency of honey bees by slowing foraging speeds or causing honey bees to visit fewer flowers, and found no evidence to suggest that large pollinarium loads altered foraging behaviour. C. ellipticum displayed consistently high levels of pollination success and pollen transfer efficiency (PTE). This may be a consequence of efficiently loading large numbers of pollinaria onto pollinators even when primary points of attachment on pollinators are already occupied and doing so in a manner that does not impact the foraging behaviour of pollinating insects.  相似文献   

7.
Global pollinator declines have been attributed to habitat destruction, pesticide use, and climate change or some combination of these factors, and managed honey bees, Apis mellifera, are part of worldwide pollinator declines. Here we exposed honey bee colonies during three brood generations to sub-lethal doses of a widely used pesticide, imidacloprid, and then subsequently challenged newly emerged bees with the gut parasite, Nosema spp. The pesticide dosages used were below levels demonstrated to cause effects on longevity or foraging in adult honey bees. Nosema infections increased significantly in the bees from pesticide-treated hives when compared to bees from control hives demonstrating an indirect effect of pesticides on pathogen growth in honey bees. We clearly demonstrate an increase in pathogen growth within individual bees reared in colonies exposed to one of the most widely used pesticides worldwide, imidacloprid, at below levels considered harmful to bees. The finding that individual bees with undetectable levels of the target pesticide, after being reared in a sub-lethal pesticide environment within the colony, had higher Nosema is significant. Interactions between pesticides and pathogens could be a major contributor to increased mortality of honey bee colonies, including colony collapse disorder, and other pollinator declines worldwide.  相似文献   

8.
Brood sex ratio is often affected by parental or environmental quality, presumably in an adaptive manner that is the sex that confers higher fitness benefits to the mother is overproduced. So far, studies on the role of parental quality have focused on parental morphology and attractiveness. However, another aspect, the partner’s behavioral characteristics, may also be expected to play a role in brood sex ratio adjustment. To test this hypothesis, we investigated whether the proportion of sons in the brood is predicted by the level of territorial aggression displayed by the father, in the collared flycatcher (Ficedula albicollis). The proportion of sons in the brood was higher in early broods and increased with paternal tarsus length. When controlling for breeding date and body size, we found a higher proportion of sons in the brood of less aggressive fathers. Male nestlings are more sensitive to the rearing environment, and the behavior of courting males may often be used by females to assess their future parental activity. Therefore, adjusting brood sex ratio to the level of male aggression could be adaptive. Our results indicate that the behavior of the partner could indeed be a significant determinant in brood sex ratio adjustment, which should not be overlooked in future studies.  相似文献   

9.
Reproduction is a demanding activity, since organisms must produce and, in some cases, protect and provision their progeny. Hence, a central tenet of life-history theory predicts that parents have to trade parental care against body maintenance. One physiological cost thought to be particularly important as a modulator of such trade-offs is oxidative stress. However, evidence in favour of the hypothesis of an oxidative cost of reproduction is contradictory. In this study, we manipulated the brood size of wild barn swallows Hirundo rustica soon after hatching of their nestlings to test whether an increase in nestling rearing effort translates into an increased oxidative damage and a decreased antioxidant protection at the end of the nestling rearing period. We found that, while plasma oxidative damage was unaffected by brood size enlargement, females rearing enlarged broods showed a decrease in plasma non-enzymatic antioxidants during the nestling rearing period. This was not the case among females rearing reduced broods and among males assigned to either treatment. Moreover, individuals with higher plasma oxidative damage soon after the brood size manipulation had lower plasma non-enzymatic antioxidants at the end of the nestling rearing period, suggesting that non-enzymatic antioxidants were depleted to buffer the negative effects of high oxidative damage. Our findings point to antioxidant depletion as a potential mechanism mediating the cost of reproduction among female birds.  相似文献   

10.
The diunsaturated C12 alcohol (Z,Z)-dodeca-3,6-dien-1-ol (dodecadienol) has been characterized by GC-MS and FTIR as a novel releaser pheromone in termites. This alcohol identified in Ancistrotermes pakistanicus (Termitidae, Macrotermitinae) possesses a double pheromonal function which again illustrates the chemical parsimony of termites compared with other social insects. In workers, dodecadienol elicits trail-following at a very low concentration (activity threshold at 0.1 pg/cm of trail); in male alates it induces trail-following at a low concentration (1–10 pg/cm) and sexual attraction at a higher concentration (about 1 ng). Traces of the monounsaturated C12 alcohol (Z)-dodec-3-en-1-ol (dodecenol), known as a trail pheromone of several Macrotermitinae, were also found in the sternal gland extracts of A. pakistanicus, although only dodecadienol was present at the surface of the sternal gland. Workers of A. pakistanicus are not sensitive to dodecenol, but they are as sensitive to dodecatrienol as to dodecadienol. However, in the study area (Vietnam), A. pakistanicus is living in sympatry only with those Macrotermitinae using dodecenol as a trail pheromone, the foraging populations therefore being well isolated through their respective trail pheromones. The presence of three types of unsaturated C12 alcohols as releaser pheromones in the only Macrotermitinae subfamily is discussed, and a possible biosynthetic pathway from linoleic acid is proposed for dodecadienol.  相似文献   

11.
In Mediterranean habitats, temperature affects both ant foraging behaviour and community structure. Many studies have shown that dominant species often forage at lower temperature than subordinates. Yet, the factors that constrain dominant species foraging activity in hot environments are still elusive. We used the dominant ant Tapinoma nigerrimum as a model species to test the hypothesis that high temperatures hinder trail following behaviour by accelerating pheromone degradation. First, field observations showed that high temperatures (> 30°C) reduce the foraging activity of T. nigerrimum independently of the daily and seasonal rhythms of this species. Second, we isolated the effect of high temperatures on pheromone trail efficacy from its effect on worker physiology. A marked substrate was heated during 10 min (five temperature treatments from 25°C to 60°C), cooled down to 25°C, and offered in a test choice to workers. At hot temperature treatments (>40°C), workers did not discriminate the previously marked substrate. High temperatures appeared therefore to accelerate pheromone degradation. Third, we assessed the pheromone decay dynamics by a mechanistic model fitted with Bayesian inference. The model predicted ant choice through the evolution of pheromone concentration on trails as a function of both temperature and time since pheromone deposition. Overall, our results highlighted that the effect of high temperatures on recruitment intensity was partly due to pheromone evaporation. In the Mediterranean ant communities, this might affect dominant species relying on chemical recruitment, more than subordinate ant species, less dependent on chemical communication and less sensitive to high temperatures.  相似文献   

12.
In theory, larger colonies of social insects should have greater colony organisation. While inter-specific comparative studies provide support for this idea, there is little direct intra-specific evidence. We investigated differences in task specialisation between large (>450 workers) and small (<80 workers) colonies of the ponerine ant Rhytidoponera metallica. Observations of individually marked young or old workers revealed greater task specialisation in large colonies. Age polyethism was detected in large but not small colonies. In large colonies, old workers spent significantly more time foraging than young workers did, while young workers spent more time caring for brood. In small colonies, young and old workers spent a similar amount of time foraging and caring for brood. This difference in task allocation patterns in large and small colonies was associated with a difference in contact rates between workers. Workers in small colonies have a lower contact rate between nestmates and a greater variability in time between contacts than workers from large colonies.  相似文献   

13.
The diel periodicity of sex pheromone release was monitored in two mealybug species, Planococcus citri and Planococcus ficus (Hemiptera; Pseudococcidae), using sequential SPME/GCMS analysis. A maximal release of 2 ng/h pheromone by 9–12-day-old P. citri females occurred 1–2 h before the beginning of photophase. The highest release of pheromone by P. ficus females was 1–2 ng/2 h of 10–20-day-old females, approximately 2 h after the beginning of photophase. Mating resulted in termination of the pheromone release in both mealybug species. The temporal flight activity of the males was monitored in rearing chambers using pheromone baited delta traps. Males of both P. citri and P. ficus displayed the same flight pattern and began flying at 06:00 hours when the light was turned on, reaching a peak during the first and second hour of the photophase. Our results suggest that other biparental mealybug species display also diel periodicities of maximal pheromone release and response. Direct evaluation of the diel periodicity of the pheromone release by the automatic sequential analysis is convenient and will be very helpful in optimizing the airborne collection and identification of other unknown mealybug pheromones and to study the calling behavior of females. Considering this behavior pattern may help to develop more effective pheromone-based management strategies against mealybugs.  相似文献   

14.
Bees produce vibrations in many contexts, including for defense and while foraging. Buzz pollination is a unique foraging behavior in which bees vibrate the anthers of flowers to eject pollen which is then collected and used as food. The relationships between buzzing properties and pollen release are well understood, but it is less clear to what extent buzzing vibrations vary among species, even though such information is crucial to understanding the functional relationships between bees and buzz-pollinated plants. Our goals in this study were (1) to examine whether pollination buzzes differ from those produced during defense, (2) to evaluate the similarity of buzzes between different species of bumblebees (Bombus spp.), and (3) to determine if body size affects the expression of buzzing properties. We found that relative peak amplitude, peak frequency, and duration were significantly different between species, but only relative peak amplitude differed between pollination and defensive buzzes. There were significant interactions between species and buzz type for peak frequency and duration, revealing that species differed in their patterns of expression in these buzz properties depending on the context. The only parameter affected by body size was duration, with larger bees producing shorter buzzes. Our findings suggest that although pollination and defensive buzzes differ in some properties, variability in buzz structure also exhibits a marked species-specific component. Species differences in pollination buzzes may have important implications for foraging preferences in bumblebees, especially if bees select flowers best matched to release pollen for their specific buzzing characteristics.  相似文献   

15.
Social work force distribution in honeybee colonies critically depends on subtle adjustments of an age-related polyethism. Pheromones play a crucial role in adjusting physiological and behavioral maturation of nurse bees to foragers. In addition to primer effects of brood pheromone and queen mandibular pheromone—both were shown to influence onset of foraging—direct worker–worker interactions influence adult behavioral maturation. These interactions were narrowed down to the primer pheromone ethyl oleate, which is present at high concentrations in foragers, almost absent in young bees and was shown to delay the onset of foraging. Based on chemical analyses, physiological recordings from the antenna (electroantennograms) and the antennal lobe (calcium imaging), and behavioral assays (associative conditioning of the proboscis extension response), we present evidence that ethyl oleate is most abundant on the cuticle, received by olfactory receptors on the antenna, processed in glomeruli of the antennal lobe, and learned in olfactory centers of the brain. The results are highly suggestive that the primer pheromone ethyl oleate is transmitted and perceived between individuals via olfaction at close range.  相似文献   

16.
In honeybees, workers under queenless condition compete for reproduction and establish reproductive dominance hierarchy. Ovary activation is generally accompanied by the expression of queen-like pheromones. Biogenic amines (BAs), in particular dopamine, are believed to be involved in this process by regulating ovarian development. However, the role of BAs in establishing reproductive dominance or their effect on queen-like pheromone production was not investigated. Here, we explored the effect of octopamine (OA) and tyramine (TA) oral treatments on the propensity of treated bees to become reproductively dominant and produce queen-like pheromones in Dufour’s and mandibular glands. One bee in a pair was treated with either OA or TA while the other was fed sugar solution. TA was found to enhance ovary development and the production of esters in the Dufour’s gland and 9HDA (queen component) in the mandibular glands, thus facilitating worker reproductive dominance. OA, on the other hand, did not enhance ovarian development or ester production, but increased the production of 10HDA (worker major component) in the mandibular glands of their sugar-paired mates. OA is known to induce foraging behavior by workers, while increased production of 10HDA characterizes nursing workers. Therefore, we suggest that TA induces reproductive division of labor, while OA treatment results in caste differentiation of workers to foragers and nurses.  相似文献   

17.
To investigate how bumblebees (Bombus terrestris) learn the complex motor skills involved in pollen foraging, we observed naïve workers foraging on arrays of nectarless poppy flowers (Papaver rhoeas) in a greenhouse. Foraging skills were quantified by measuring the pollen load collected during each foraging bout and relating this to the number of flowers visited and bout duration on two consecutive days. The pollen standing crop (PSC) in each flower decreased drastically from 0530 to 0900 hours. Therefore, we related foraging performance to the changing levels of pollen available (per flower) and found that collection rate increased over the course of four consecutive foraging bouts (comprising between 277 and 354 individual flower visits), suggesting that learning to forage for pollen represents a substantial time investment for individual foragers. The pollen collection rate and size of pollen loads collected at the start of day 2 were markedly lower than at the end of day 1, suggesting that components of pollen foraging behaviour could be subject to imperfect overnight retention. Our results suggest that learning the necessary motor skills to collect pollen effectively from morphologically simple flowers takes three times as many visits as learning how to handle the most morphologically complex flowers to extract nectar, potentially explaining why bees are more specialised in their choice of pollen flowers.  相似文献   

18.
Mating behaviors of ants fall into two categories: female calling, in which a female alate releases pheromones that attract males, and male swarming, in which large male aggregations attract females. Female calling is common in species with queens that return to their natal nest to found colonies dependently after mating, while male swarming is common in species with queens that disperse to found independently. In some species that display both founding strategies, a queen-size polymorphism has evolved in which dependent-founding queens are smaller than independent-founding queens. Dependent founding is likely difficult if gynes (virgin queens) are mating in distant swarms. Therefore, a queen may adopt one or the other mating strategy based on its size and founding behavior. We investigated mating behaviors in the queen-polymorphic ant, Temnothorax longispinosus. Observations in laboratory mating arenas indicated that small gynes exhibited significantly lower flight activity than large gynes. Both forms mated in male swarms, and neither form exhibited female calling. The reduced flight activity of the small morph may facilitate returning to the natal nest after mating, provided the mating swarm is located nearby. Therefore, alternative colony-founding behaviors may be possible without the evolution of female-calling behavior; however, the reduced flight activity of small morphs may require that mating swarms are not distant from the natal nest.  相似文献   

19.
Mealybugs, which include several agricultural pests, are small sap feeders covered with a powdery wax. They exhibit clear sexual dimorphism; males are winged but fragile and short lived, whereas females are windless and less mobile. Thus, sex pheromones emitted by females facilitate copulation and reproduction by serving as a key navigation tool for males. Although the structures of the hitherto known mealybug pheromones vary among species, they have a common structural motif; they are carboxylic esters of monoterpene alcohols with irregular non-head-to-tail linkages. However, in the present study, we isolated from the Matsumoto mealybug, Crisicoccus matsumotoi (Siraiwa), a pheromone with a completely different structure. Using gas chromatography–mass spectrometry and nuclear magnetic resonance spectroscopy, we identified the pheromone as 3-methyl-3-butenyl 5-methylhexanoate. Its attractiveness to males was confirmed in a series of field trapping experiments involving comparison between the isolated natural product and a synthetic sample. This is the first report of a hemiterpene mealybug pheromone. In addition, the acid moiety (5-methylhexanoate) appears to be rare in insect pheromones.  相似文献   

20.
The formicine ant Polyrhachis lama is a social parasite, exploiting its ponerine host ant species Diacamma sp. In most social parasitic associations, the parasitic species are closely related to their host species group, evolving directly from independent ancestors of the host species. However, in the Polyrhachis lamaDiacamma sp. association, the associated species belong to different ant subfamilies. Based on preliminary field surveys, we had presumed that P. lama might have given up its reproductive division of labour, i.e. workers would be able to produce males as well as workers and females parthenogenetically. In this study, this hypothesis was disproved: Polyrhachis lama workers cannot be fertilized and are only able to produce males. In the host–parasite association originating from nests possessing a P. lama queen, workers penetrate surrounding Diacamma sp. nests, carrying brood for rearing within these satellite nests. In this peculiar way, a single P. lama colony is able to exploit several Diacamma sp. colonies simultaneously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号