首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: Vegetation management aimed at increasing the amount of usable water yield from precipitation falling on upstream watersheds may be one alternative for supplementing water supplies. Indications are that water yields can be increased within a multiple-use framework, which can benefit or at least be compatible with other natural resource objectives. Through changes in vegetation on a watershed, it is possible to reduce evaporation losses only slightly but significantly increase streamflow runoff. In an assessment of potentials for water yield improvement in Arizona, experimental studies on various vegetation zones are reviewed. Because of either limited acreage or limited rainfall, the alpine, grassland, aspen, and desert shrub vegetation zones are not realistic management areas for Arizona. Furthermore, manipulation of pinyon-juniper woodlands does not appear promising at this time. Conversion of chaparral to grasses and forbs does appear to be a possible treatment for water yield improvement, as well as various silvicultural treatments of mixed conifer and ponderosa pine forests. Streamflow increases are given for experiments in chaparral, mixed conifer, and ponderosa pine vegetation zones. However, complete information on possible constraints for these zones is not currently available. Specific assessment of water yield management options for riparian vegetation is difficult to make, due to incomplete knowledge of water yield changes and other constraints for this vegetation zone. Prior to the final adoption of management practices, results of experimental work must be coupled with economic and social considerations.  相似文献   

2.
ABSTRACT: Evaluation of hydrologic methodology used in a number of water balance studies of lakes in the United States shows that most of these studies calculate one or more terms of the budget as the residual. A literature review was made of studies in which the primary purpose was error analysis of hydrologic measurement and interpretation. Estimates of precipitation can have a wide range of error, depending on the gage placement, gage spacing, and areal averaging technique. Errors in measurement of individual storms can be as high as 75 percent. Errors in short term averages are commonly in the 15-30 percent range, but decrease to about 5 percent or less for annual estimates. Errors in estimates of evaporation can also vary widely depending on instrumentation and methodology. The energy budget is the most accurate method of calculating evaporation; errors are in the 10–15 percent range. If pans are used that are located a distance from the lake of interest, errors can be considerable. Annual pan-to-lake coefficients should not be used for monthly estimates of evaporation because they differ from the commonly used coefficient of 0.7 by more than 100 percent. Errors in estimates of stream discharge are often considered to be within 5 percent. If the measuring section, type of flow profile, and other considerations, such as stage discharge relationship, are less than ideal errors in estimates of stream discharge can be considerably greater than 5 percent. Errors in estimating overland (nonchannelized) flow have not been evaluated, and in most lake studies this component is not mentioned. Comparison of several lake water balances in which the risdual consists solely of errors in measurement, shows that such a residual, if interpreted as ground water, can differ from an independent estimate of ground water by more than 100 percent.  相似文献   

3.
Flood and water shortage are two of the leading environmental problems around the world, and among the causes of the problems is sedimentation. The Yellow River brought disastrous floods in its lower reaches in Chinese history. Today, although floods caused by the river are still a formidable hazard hanging over China, it cannot provide the lower reaches with enough usable water. The ineradicable flood hazard and newly emerged water shortage problems of the river are proved to be closely associated with its immense sediment load. The over loaded flow of the river can quickly fill the reservoirs and unceasingly raise the riverbed, attenuating the capacity of reservoirs to suppress floods and provide more water for dry seasons and of river channels to convey floods. Also, the high sediment content pollutes the water and reduces the volume of usable water. In virtue of the intimate linkage between these problems and the formidable sediment load in the river, the solution to these problems should be based on sedimentation management. After reviewing the defects and merits of management measures implemented and proposed, a management scenario composed of multiple measures are recommended. Beside of persistent soil conservation to reduce the huge sediment load, more reservoirs to check sediment and regulate river flows, approaches to alleviating riverbed accretion, interbasin water transfer to mitigate water deficiency, and so on, an emphasis should be laid on use of muddy flows in order to scatter the sediment in a vast area, which was a natural process but has been interrupted by construction of embankments.  相似文献   

4.
Summary The environmental education needs of a currently wealthy developing country, Libya, are outlined. Because of specific local requirements, the data presented clearly shows how such educational requirements differ in many respects from the various Western-style environmental sciences curricula. The aim is to produce graduates capable of comprehending environmental problems as they arise in the different regions of Libya. This involves not only dealing with the effects of new developments but also with peoples who must adapt to new life-styles.Since most of what has to be learned is communicated originally in English to Arabic-speaking students via lectures, visits and books, special emphasis is laid upon the added importance oflocally produced bilingual audio-visual teaching aids supported by spoken commentaries, printed texts and glossaries of technical terms used in both languages. A technique for producing such aids has been evolved at the Higher Institute of Technology, Brack, Libya.  相似文献   

5.
Abstract: Concerns for water resources have inspired research developments to determine the ecological effects of water withdrawals from rivers and flow regulation below dams, and to advance tools for determining the flows required to sustain healthy riverine ecosystems. This paper reviews the advances of this environmental flows science over the past 30 years since the introduction of the Instream Flow Incremental Methodology. Its central component, Physical HABitat SIMulation, has had a global impact, internationalizing the e‐flows agenda and promoting new science. A global imperative to set e‐flows, including an emerging trend to set standards at the regional scale, has led to developments of hydrological and hydraulic approaches but expert judgment remains a critical element of the complex decision‐making process around water allocations. It is widely accepted that river ecosystems are dependent upon the natural variability of flow (the flow regime) that is typical of each hydro‐climatic region and upon the range of habitats found within each channel type within each region. But as the sophistication of physical (hydrological and hydraulic) models has advanced emerging biological evidence to support those assumptions has been limited. Empirical studies have been important to validate instream flow recommendations but they have not generated transferable relationships because of the complex nature of biological responses to hydrological change that must be evaluated over decadal time‐scales. New models are needed to incorporate our evolving knowledge of climate cycles and morphological sequences of channel development but most importantly we need long‐term research involving both physical scientists and biologists to develop new models of population dynamics that will advance the biological basis for 21st Century e‐flow science.  相似文献   

6.
ABSTRACT: The measurement of discharge in natural streams requires hydrographers to use accurate meters that have consistent performance among meters of the same model. This paper presents the results of an investigation into the accuracy and consistency of four models of current meters‐Price Type‐AA, Price Pygmy, Marsh McBirney 2000, and Swoffer 2100. Test results for six meters of each model are presented. Variation of meter performance within a model is used as an indicator of consistency, and percent velocity error that is computed from a measured reference velocity is used as an indicator of meter accuracy. Velocities measured by each meter are also compared to the manufacturer's published or advertised accuracy limits. The investigation found the Price models to be more accurate and consistent than the other models. The Price models met their respective accuracy limits over the range of test velocities better than the other models. The Marsh McBirney model usually measured within its accuracy specification. The Swoffer meters did not meet the stringent Swoffer accuracy limits for all the velocities tested. The Swoffer model had accuracies similar to the Price Type‐AA model when individual meter rating equations were computed and used. Every model tested had meters that did not meet manufacturer accuracy limits. Because current meters are not consistently accurate within a model, hydrographers should periodically check meters against a velocity standard.  相似文献   

7.
Where natural drainage is inadequate for keeping the water table below the root zone of the crops being grown, drains are often employed to control water table levels. Such drains are commonly installed in parallel lines at depths and spacings adapted to the needs of the area. Formulas used for determining drain spacings are generally based upon Dupuit-Forchheimer concepts. These developments postulate a saturated, permeable aquifer underlying the irrigated area and an impermeable barrier underlying the aquifer. The basic differential equation expresses the requirement that the flow out through the sides of a vertical column of infinitesmal cross sectional area must be supplied by a corresponding drop of the water table at the top of the column. If variations of transmissivity due to variations of water table level are taken into account the second order differential equation obtained is nonlinear. To avoid the mathematical difficulties posed by this nonlinearity it is customary to neglect the effects of changes of transmissivity due to changes of water table levels. This imposes a restriction that the formulas derived from these linearized differential equations suffer a loss of accuracy if the change of water table levels becomes a considerable portion of the initial saturated depth. Offsetting these difficulties is the tactical advantage that the linearized differential equations are of types long studied in older developments concerned with conduction of heat in solids. The advantages conferred by the possibilities for exploiting the results of investigations in the older discipline are many. An alternative approach is based upon a requirement that there can be no accumulation of water in any elementary cubical volume located in the zone of complete saturation below the water table. The differential equation obtained on this basis, if the aquifer is homogeneous and isotropic, is the one which bears the name of Laplace. It will be the purpose of this paper to explore the possibilities afforded by this approach for evaluating the flow to parallel drains and to compare the results with those obtainable by the Dupuit-Forchheimer method.  相似文献   

8.
The Oldman River Dam is a major water control structure built by the Government of Alberta to regulate the flow of the Oldman River. Completed in 1992, the dam was the subject of intensive media coverage in Alberta, Canada. Newspaper coverage of the dam story in two Alberta papers, the CalgaryHeraldand the EdmontonJournal, was analysed for the years between 1975 and 1992. This study links coverage with events that occurred in the case, and analyses the role of the media in the case. While the media played an important role in shaping public awareness of the dam project, their influence on Government policy was mixed. In the early years of the case (1975–1980), there is evidence that the provincial Government changed its plans in response to public protests documented in media such as theHeraldand theJournal. However, after 1987, the Government came to see the media as biased, and not representative of public opinion. Consequently, their influence on policy makers was negligible. Patterns in coverage of both papers, which included wild swings from year-to-year in the number, emphasis and tone of items, can be explained with reference to inherent characteristics of the media. These include: an inability on the part of the papers to consider positive and negative aspects of issues simultaneously for any length of time, and a consequent tendency to provideeithera positiveora negative stance; simplification of very complex issues in an attempt to create accessible, newsworthy stories; rapid shifts in the tone of coverage, as attention focused on different dimensions of the issue, rather than because of new information; a focus on conflict and other sensational aspects of stories; and a tendency towards a rapid loss of interest in a story once journalistic attention shifts elsewhere.  相似文献   

9.
ABSTRACT: The objective of the study was to evaluate alternative land developments around New Hampshire lakes. Alternative development patterns, evaluated by their impacts on the lake area environment and area economy, included residential patterns, commercial patterns, and combinations of these two types. Phosphorus loading of the lake water was used as a proxy variable for changes in the lake water quality. Commercial developments yielded the highest revenues to the town and the local area. It also attracted the most lake users to the area as well as contributing the largest phosphorus loading in the lake waters. Residential developments, although contributing high revenues to the businessmen in the area, yielded less net income to the town. Phosphorus loading levels from residential developments were much lower than lake phosphorus loading by commercial developments.  相似文献   

10.
ABSTRACT: water resources supply and demand time series consist of several or all of the four basic characteristics: tendency, intermittency, periodicity and stochasticity. Their importance changes from one type of variables to another. Historic developments of analysis of time series in hydrology have varied significantly over the past, from the stress on search for periodicities and persistence in annual series to the emphasis on the series stochastic properties. Supply and demand series are often highly interrelated, which fact is most often neglected in planning water resources systems in general, and water storage capacities in particular. The future of series analysis in water resources will likely be by a joint use of physically-based structural analysis and the use of advanced methods of treating data by stochastic processes, statistical estimation and inference techniques. The most intriguing challenge of the future of this analysis may be the treatment of nonnormal, nonlinear and in general nonstationary hydrologic and water use time series. The proper treatment of complex multivariate processes will also challenge the specialists, especially for the purposes of transfer of information between data on variables at given points, or between data at several points of a given variable, or both.  相似文献   

11.
张晔  冯春杨  黄骏 《四川环境》2006,25(2):14-17,25
随着水质污染日益严重和可利用水资源减少,人们越来越重视污水回用技术的应用。传统的氯气处理工艺难以满足污水处理回用的要求,臭氧技术被认为是更适合用于未来水处理领域的新兴技术。本文主要研究臭氧对生活污水的处理。实验表明,臭氧对降低COD、去除亚铁离子等有显著的效果。  相似文献   

12.
Abstract: The effects of water level fluctuations on fish and other aquatic biota, with an emphasis on winter water withdrawal in northern regions is reviewed. Water demands for population growth and development are adding pressure on water reserves, particularly when coupled with changing climatic conditions. Water level fluctuations can have adverse effects on the environment, most notably to hydrologic and biotic processes ranging in magnitude from the micro‐scale to landscape level. Water level management of lakes and reservoirs can affect all forms of aquatic biota. The severity of effect is dependant on the magnitude, duration and timing of the fluctuation, and the species exposed. In northwestern Canada and northern Alaska, water is withdrawn from water bodies to construct ice‐roads and other winter based developments. Biota in small, isolated water bodies are particularly sensitive to reductions in winter water levels. Water withdrawals can reduce the oxygen available to overwintering fish, while reduced water levels can reduce habitat for fish and furbearers, and freeze littoral areas killing plants, invertebrates, and fish eggs. Regulatory winter water withdrawal thresholds have been developed in the Northwest Territories and Alaska and continue to be refined as new data becomes available. The use of thresholds can help minimize or avoid negative impacts to the environment, particularly fish, from winter water withdrawal activities. Many different factors may influence the effect that winter water withdrawal has on a water body, such as basin shape, substrate and location. More research is warranted to better understand the linkages between anthropogenic and natural water level fluctuations and their combined effect on aquatic ecosystems. A general decision support system is proposed for minimizing risk to aquatic life from winter water withdrawal activities.  相似文献   

13.
ABSTRACT: Sound water resource management requires comparison of benefits and costs. Many of the perceived benefits of water relate to providing instream flow for recreation and endangered fish. These uses have value but no prices to guide resource allocation. Techniques to estimate the dollar values of environmental benefits are presented and illustrated with several case studies. The results of the case studies show that emphasis on minimum instream flow allocates far less than the economically optimum amount of water to instream uses. Studies in Idaho demonstrated that optimum flows that balance benefits and costs can be ten times greater than minimum flows. The economic benefits of preserving public trust resources outweighed the replacement cost of water and power by a factor of fifty in California. While it is important to incorporate public preferences in water resource management, these economic survey techniques provide water managers with information not just on preference but how much the public is willing to pay for as well. This facilitates comparison of the public costs and benefits of instream flows.  相似文献   

14.
ABSTRACT: The U.S. Geological Survey (USGS) is assessing the ground-water resources of the carbonate bedrock aquifers in Indiana and Ohio as part of their Regional Aquifer Systems Analysis program. Part of this assessment includes the determination of unknown aspects of the hydraulic characteristics, boundaries, and flow paths of the carbonate aquifer. To accomplish this, the USGS drilled three wells through the carbonate aquifer near the Kankakee River in northwestern Indiana. Geophysical logs were used to help determine depths and thicknesses for testing and to help describe geology at the three wells. Packer tests were used to determine direction of ground-water flow and to provide data for an analysis of the distribution of transmissivity in the carbonate aquifer. Transmissivity of the carbonates is associated with two physical characteristics of the rocks: fractures and interconnected porosity. Almost all of the transmissivity is derived from horizontal fracturing; however, only a few of the fractures present in the carbonate are transmissive. Some transmissivity is associated with a zone of fossiliferous, vuggy dolomite, which yields water from the rock matrix. Most of the transmissivity is associated with large fractures and solution crevices in the upper 30 feet of the bedrock; less transmissivity is associated with the deeper vuggy reef material, even where extensively fractured. Transmissivity of individual fractures and fossiliferous zones ranges from 300 to 27,000 feet squared per day. The aquifer bottom is defined by a lack of transmissive fractures and an increased shale content near the contact of the Silurian and Ordovician sections. Water-level data from the three wells indicate that flow is horizontal at well site 1 north of the Kankakee River, upward at well site 2 near the river, and downward at well site 3 south of the river. Most of the flow occurs in the upper part of the carbonate bedrock where fracturing and solution-enlarged crevices are most developed. Water levels indicate the the Kankakee River is a hydrologic boundary for the regional carbonate bedrock aquifer.  相似文献   

15.
This paper reviews progress on urban storm water management and pollution control, with emphasis on non- and low-structurally intensive techniques along with the total system approach encompassing control-treatment. Many of the U.S. Environmental Protection Agency's demonstration-evaluation projects are presented to exemplify: Land Management Techniques, i.e., land use planning, best use of natural drainage, dual use of retention and drainage facilities required for flood control designed concurrently or retrofitted for pollution control, porous pavement, surface sanitation, and chemical use control; Collection Systems Control, i.e., catchbasin cleaning, flow regulators (including swirl and helical devices), and the new concepts of elimination or reduction of unauthorized cross-connections, in-channel/conduit storage and/or other forms of storage for bleed-back to existing treatment plants; Storage including in-receiving water storage; Treatment, i.e., physical/chemical, disinfection, and a treatment-control planning and design guidebook; Sludge and Solids Residue from Treatment; and Integrated Systems, i.e., storage/treatment, dual-use wet-weather flow/dry-weather flow facilities, and reuse of stormwater for nonpotable purposes. Recommendations for the future in the areas of: control based on receiving water impacts, toxics characterization and their control, sewer system cross-connections, integrated stormwater management, and institutional/sociological/economic conflicts are also presented.  相似文献   

16.
This paper analyses patterns in beliefs about the implementation of wind power as part of a geographical comparison of onshore wind power developments in the Netherlands, North-Rhine Westphalia and England. Q methodology is applied, in order to systematically compare the patterns in stakeholder views on the institutional conditions and changes in the domains of energy policy, spatial planning and environmental policy. Three factors represent support for wind power implementation from fundamentally different perspectives. The fourth perspective is critical opposed to wind power developments as well as critical to the manner in which wind projects are proposed, planned and implemented. These four perspectives exist across the geographical cases; however, some perspectives are prominent in one case and marginal in another. This relates to different legacies and varying implementation achievements in the three cases. The analysis shows that an approach that focuses on implementing as much wind power as possible, relying on technocratic reasoning and hierarchical policies is in practice the least successful, whereas collaborative perspectives with more emphasis on local issues and less on the interests of the conventional energy sector were particularly dominant in the most successful case, North-Rhine Westphalia.  相似文献   

17.
Abstract: A mathematical model on flow regime and water harvesting in inundation plains is presented. The flow profile is a free over‐fall at the end of the desired inundation. The flow front in the plain is on‐line for the entire coverage, in a sense that there is initiation of flow mass after each small reach of the flow traverse, and it is continuing to the extreme point of coverage. The water‐harvesting phenomenon depends upon the occurrences of the hydrologic events, the nature of surface flows in the valley, the expected favorable time of flood incidence, and the soil characteristics of the plains. The model has been tested for three micro‐watersheds of different soil characteristics. It is best suited to platykurtic nature of flood phenomenon in the study area, with the correlation co‐efficient in‐between computed and observed amount of water harvesting above 0.90.  相似文献   

18.
ABSTRACT: Snow, one of Nature's greatest reservoirs, supplies most of the usable water in the Western United States. Reliable predictions of the quantity and timing of the release of this water are used in making management decisions involving irrigation, stock water and municipal water supplies, hydro-power generation, recreation, navigation, and pollution control Practically oriented research is vital for the proper development and management of this resource. In southwestern Idaho, the Northwest Watershed Research Center, ARS, USDA, is conducting intensive investigations for assessing snow Volumes, snow water content, and snow-melt over a watershed. Application of these research findings will result in better development and management of the water stored as snow in Nature's reservoir.  相似文献   

19.
20.
ABSTRACT: It is important to extract and assess low flow recession characteristics for water resources planning in the upper reaches of streams. However, it is very difficult to express synthetically the low flow recession characteristics for a stream flow. In this paper, first a new method of constructing the master recession curve based on the exponential expression is proposed and applied with the restriction that there are no regulation or diversion structures in the upper reaches above the measurement station. Daily precipitation and stream flow were used for the analysis. Second, analysis for a recession constant was conducted and the relationship between the recession constant and low flow and/or geology was qualitatively examined. In conclusion, the application of the proposed method indicated that it is objective and useful for constructing the master recession curve. It became apparent that the recession constant of a master recession curve may be defined as the total index of low flow characteristics. In addition, it was found that baseflow value increases in the order of Paleozoic, Mesozoic, Tertiary, and Quaternary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号