首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The non-point characteristic of agrarian contamination hinders its quantification and assignation to a specific territory. The objectives of this work were to unify methodological criteria for agro-environmental evaluation and to propose indices to quantify irrigation-induced contamination. The computer program Irrigation Land Environmental Evaluation Tool (in Spanish, EMR; http://www.jcausape.es/investigacion/EMR.htm ) was developed to evaluate the quality of irrigation and the agro-environmental impacts, based on the water, salt, and nitrate balances in the hydrological irrigation basins. The behavior of the proposed indices was analyzed using data registered in various irrigation districts in the Ebro valley (Spain). The Salt and Nitrate Contamination Indices (SCI and NCI, respectively) were based on the unitary mass of exported pollutants, corrected by the "natural and socioeconomic" conditions of the irrigation districts evaluated. SCI and NCI were related to water and nitrogen use, key factors in minimizing contamination. SCI and NCI admit a greater mass of exported pollutants in disadvantaged irrigation districts, which does not allow the exclusion of adequate management in any evaluated irrigation lands. EMR is a user-friendly tool at the service of the agro-environmental surveillance of irrigation lands.  相似文献   

2.
土壤盐渍化已成为影响图木舒克地区农业生产与生态环境的重要因素。本文以0~150 cm深度范围内土壤和地下水为研究对象,利用实际野外调查与数据统计分析的方法,研究得出:①强盐渍化主要分布于距离河流与渠道较远的地下水浅埋深区域,在纵向上表层聚盐现象明显,盐渍土类型随着土壤层深度加大从亚氯-亚硫酸盐渍土变为亚硫酸盐渍土。②土壤易溶盐含量与地下水化学类型在平面分布上吻合程度较高、与潜水矿化度呈正的高度相关性、与潜水埋藏深度呈负的中度相关性、沿潜水径流方向各层土壤盐渍化减弱。③当地下水埋深较浅时,潜水通过毛细管将易溶盐带入土壤表层,形成表层土壤盐渍化;地下水埋藏较深时,易溶盐分会随着降水淋滤和灌溉冲洗不断降低,地表盐渍化减弱。中、轻度盐渍化区域应控制灌溉用水矿化度,重度盐渍化及盐土区域可在建立排水系统的基础上采用泡田洗盐法。  相似文献   

3.
Soil salinization is an important worldwide environmental problem, especially in arid and semi-arid regions. Knowledge of its temporal and spatial variability is crucial for the management of oasis agriculture. The study area has experienced dramatic change in the shallow groundwater table and soil salinization during the 20th century, especially in the past two decades. Classical statistics, geostatistics and geographic information system (GIS) were applied to estimate the spatial variability of the soil salt content in relation to the shallow groundwater table and land use from 1983 to 2005. Consumption of reservoir water for agricultural irrigation was the main cause of a rise in the shallow groundwater table under intense evapotranspiration conditions, and this led indirectly to soil salinization. The area of soil salt accumulation was greater in irrigated than in non-irrigated landscape types with an increasing of 40.04% from 1983 to 2005 in cropland at ∼0.43 t ha−1 year−1, and an increase at ∼0.68 t ha−1 year−1 in saline alkaline land. Maps of the shallow groundwater table in 1985 and 2000 were used to deduce maps for 1983 and 1999, respectively, and the registration accuracy was 99%.  相似文献   

4.
The review analysis of twenty two irrigation efficiency (IE) studies carried out in the Ebro River Basin shows that IE is low (average IE)avg(= 53%) in surface-irrigated areas with high-permeable and shallow soils inadequate for this irrigation system, high (IE)avg(= 79%) in surface-irrigated areas with appropriate soils for this system, and very high (IE)avg(= 94%) in modern, automated and well managed sprinkler-irrigated areas. The unitary salt (total dissolved solids) and nitrate loads exported in the irrigation return flows (IRF) of seven districts vary, depending on soil salinity and on irrigation and N fertilization management, between 3–16 Mg salt/ha⋅ year and 23–195 kg NO)3 -N/ha⋅ year, respectively. The lower nitrate loads exported from high IE districts show that a proper irrigation design and management is a key factor to reduce off-site nitrogen pollution. Although high IE’s also reduce off-site salt pollution, the presence of salts in the soil or subsoil may induce relatively high salt loads (≥14 Mg/ha⋅ year) even in high IE districts. Two important constrains identified in our revision were the short duration of most surveys and the lack of standards for conducting irrigation efficiency and mass balance studies at the irrigation district level. These limitations {emphasize the need for the establishment of a permanent and standardized network of drainage monitoring stations for the appropriate off-site pollution diagnosis and control of irrigated agriculture.  相似文献   

5.
The objective of this study was to identify seasonal and spatial trends and soil salinization patterns in a part of Rhodope District irrigated land, northeastern Greece, located east of Vistonis Lagoon. The study area is irrigated from a coastal aquifer, where salt water intrusion occurs because of extensive groundwater withdrawals. Fourteen monitoring sites were established in harvest fields in the study area, where soil samples were collected. Electrical conductivity (ECe), pH, and ion concentrations were determined in the saturated paste extract of the soil samples in the laboratory using standard methods. A clear tendency was observed for ECe to increase from April to September, i.e., within the irrigation period, indicating the effect of saline groundwater to soil. In the last years, the change from moderately sensitive (e.g., corn) to moderately tolerant crops (e.g., cotton) in the south part of the study area indicates the impacts of soil salinity. The study proposes management methods to alleviate this problem.  相似文献   

6.
The present study was aimed at characterizing the soil-water resource degradation in the rural areas of Gurgaon and Mewat districts, the two economically contrasting areas in policy zones-II and III of the National Capital Region (NCR), and assessing the impact of the study area's local conditions on the type and extent of resource degradation. This involved generation of detailed spatial information on the land use, cropping pattern, farming practices, soils and surface/ground waters of Gurgaon and Mewat districts through actual resource surveys, standard laboratory methods and GIS/remote sensing techniques. The study showed that in contrast to just 2.54% (in rabi season) to 4.87% (in kharif season) of agricultural lands in Gurgaon district, about 11.77% (in rabi season) to 24.23% (in kharif season) of agricultural lands in Mewat district were irrigated with saline to marginally saline canal water. Further, about 10.69% of agricultural lands in the Gurgaon district and 42.15% of agricultural lands in the Mewat district were drain water irrigated. A large part of this surface water irrigated area, particularly in Nuh (48.7%), Nagina (33.5%), and Punhana (24.1%) blocks of Mewat district, was either waterlogged (7.4% area with 0.05 ppm). In fact, sub-surface drinking waters of some areas around battery and automobile manufacturing units in Gurgaon and Pataudi blocks were associated with exceptionally high (>0.1 ppm) Ni concentrations. In general, the ground waters of waterlogged or potentially waterlogged areas in the rural areas of Mewat were more contaminated than the ground waters in the rural areas of Gurgaon district with deeper (>5 m) water depths.Though Cr concentrations in the surface and sub-surface irrigation waters of both Gurgaon and Mewat districts were far above the maximum permissible limit of 1 ppm, their bio-available soil-Cr concentrations were well within permissible limit. Even bio-available Ni concentrations in agricultural lands of Gurgaon district associated with Ni contaminated sub-surface irrigations were well within desirable limit of 0.20 ppm. This was primarily attributed to the calcareous nature of the soils of the study area. About 35% of Gurgaon district and 59% of Mewat district irrigated with poor quality waters were salt-affected. These waterlogged/potentially waterlogged calcareous-salt affected soils of Mewat district were having acute zinc (Zn) deficiency (<0.6 ppm). Some areas with extremely high iron (Fe: 20-25 ppm) and Mn (10-25 ppm) concentrations were also noticed in the Gurgaon, Nuh and Punhana blocks. Generation of reduced conditions owing to paddy cultivation in areas with 3-3.5 m water depths appeared to be the main cause of such point contaminations. Extensive cadmium (Cd) contamination was also noticed in the waterlogged sodic agricultural lands of Nagina village in Mewat district associated with a large scale scrap automobile and battery business. The study could document the processes and provide spatially accurate information to the managers (e.g., National Capital Region Planning Board) and the concerned citizen groups. It could, in fact, clearly point out that dumping of industrial and domestic wastewaters especially from NCT-Delhi into river Yamuna and, to some extent, from NCT-Delhi re-located hazardous industrial units into Najafgarh drain tributaries at Delhi-Gurgaon boundary, and poor "off-farm" water management practices were the main reasons for extensive (point/non-point source) land-water degradation in Gurgaon and Mewat districts of NCR.  相似文献   

7.
Conjunctive use of saline/non-saline irrigation waters is generally aimed at minimizing yield losses and enhancing flexibility of cropping, without much alteration in farming operations. Recommendation of location-specific suitable conjunctive water use plans requires assessment of their long-term impacts on soil salinization/sodification and crop yield reductions. This is conventionally achieved through long-term field experiments. However such impact evaluations are site specific, expensive and time consuming. Appropriate decision support systems (DSS) can be time-efficient and cost-effective means for such long-term impact evaluations. This study demonstrates the application of one such (indigenously developed) DSS for recommending best conjunctive water use plans for a, rice-wheat growing, salt affected farmer’s field in Gurgaon district of Haryana (India). Before application, the DSS was extensively validated on several farmers and controlled experimental fields in Gurgaon and Karnal districts of Haryana (India). Validation of DSS showed its potential to give realistic estimates of root zone soil salinity (with R = 0.76–0.94; AMRE = 0.03–0.06; RMSPD = 0.51–0.90); sodicity (with R = 0.99; AMRE = 0.02; RMSPD = 0.84) and relative crop yield reductions (AMRE = 0.24), under existing (local) resource management practices. Long term (10 years) root zone salt build ups and associated rice/wheat crop yield reductions, in a salt affected farmer’s field, under varied conjunctive water use scenarios were evaluated with the validated DSS. It was observed that long-term applications of canal (CW) and tube well (TW) waters in a cycle and in 1:1 mixed mode, during Kharif season, predicted higher average root zone salt reductions (2–9%) and lower rice crop yield reductions (4–5%) than the existing practice of 3-CW, 3-TW, 3-CW. Besides this, long-term application of 75% CW mixed with 25% TW, during Rabi season, predicted about 17% lower average root-zone salt reductions than the cyclic applications of (1-CW, 1-TW, 2-CW) and (2-CW, 1-TW, 1-CW, i.e., existing irrigation strategy). However, average wheat crop yield reductions (16–17%) simulated under all these strategies were almost at par. In general, cyclic-conjunctive water use strategies emerged as better options than the blending modes. These results were in complete confirmation with actual long-term conjunctive water use experiments on similar soils. It was thus observed that such pre-validated tools could be efficient means for designing, local resource and target crop yield-specific, appropriate conjunctive water use plans for irrigated agricultural lands.  相似文献   

8.
To assess the potential for treated wastewater irrigation to impact levels of fecal indicator bacteria (FIB) and salinity in irrigated soils, levels of Escherichia coli, Enterococcus, and environmental covariates were measured in a treated wastewater holding pond (irrigation source water), water leaving the irrigation system, and in irrigated soils over 2 years in a municipal parkland in Arizona. Higher E. coli levels were measured in the pond in winter (56 CFU 100 mL−1) than in summer (17 CFU 100 mL−1); however, in the irrigation system, levels of FIB decreased from summer (26 CFU 100 mL−1) to winter (4 CFU 100 mL−1), possibly related to low winter water use and corresponding death of residual bacteria within the system. For over 2 years, no increase in FIB was found in irrigated soils, though highest E. coli levels (700 CFU g−1 soil) were measured in deeper (20–25 cm) soils during summer. Measurements of water inputs vs. potential evapotranspiration indicate that irrigation levels may have been sufficient to generate bacterial percolation to deeper soil layers during summer. No overall increase in soil salinity resulting from treated wastewater irrigation was detected, but distinct seasonal peaks as high as 4 ds m−1 occurred during both summers. The peaks significantly declined in winter when surface ET abated and more favorable water balances could be maintained. Monitoring of seasonal shifts in irrigation water quality and/or factors correlated with increases and decreases in FIB will aid in identification of any public health or environmental risks that could arise from the use of treated wastewater for irrigation.  相似文献   

9.
The pristine waters of Kashmir Himalaya are showing signs of deterioration due to multiple reasons. This study researches the causes of deteriorating water quality in the Lidder River, one of the main tributaries of Jhelum River in Kashmir Himalaya. The land use and land cover of the Lidder catchment were generated using multi-spectral, bi-seasonal IRS LISS III (October 2005 and May 2006) satellite data to identify the extent of agriculture and horticulture lands that are the main non-point sources of pollution at the catchment scale. A total of 12 water quality parameters were analyzed over a period of 1 year. Water sampling was done at eight different sampling sites, each with a varied topography and distinct land use/land cover, along the length of Lidder River. It was observed that water quality deteriorated during the months of June–August that coincides with the peak tourist flow and maximal agricultural/horticultural activity. Total phosphorus, orthophosphate phosphorus, nitrate nitrogen, and ammoniacal nitrogen showed higher concentration in the months of July and August, while the concentration of dissolved oxygen decreased in the same period, resulting in deterioration in water quality. Moreover, tourism influx in the Lidder Valley shows a drastic increase through the years, and particularly, the number of tourists visiting the valley has increased in the summer months from June to September, which is also responsible for deteriorating the water quality of Lidder River. In addition to this, the extensive use of fertilizers and pesticides in the agriculture and horticulture lands during the growing season (June–August) is also responsible for the deteriorating water quality of Lidder River.  相似文献   

10.
Diminishing freshwater resources have brought attention to the reuse of degraded water as a water resource rather than a disposal problem. Drainage water from tile-drained, irrigated agricultural land is degraded water that is often in large supply, but the long-term impact and sustainability of its reuse on soil is unknown. Similarly, nothing is known of the ramifications of terminating drainage water reuse. The objective of this study is (i) to monitor the long-term impact on soil chemical properties and thereby the sustainability of drainage water reuse on a marginally productive, saline-sodic, 32.4 ha field located on the west side of California's productive San Joaquin Valley and (ii) to assess spatially what happens to soil when drainage water reuse is terminated. The monitoring and assessment were based on spatial chemical data for soil collected during 10 years of irrigation with drainage water followed by 2 years of no applied irrigation water (only rainfall). Geo-referenced measurements of apparent soil electrical conductivity (EC(a)) were used to direct the soil sampling design to characterize spatial variability of impacted soil properties. Chemical analyses of soil samples were used (i) to characterize the spatial variability of salinity, Na, B, and Mo, which were previously identified as critical to the yield and quality of Bermuda grass (Cynodon dactylon (l.) Pers.) grown for livestock consumption and (ii) to monitor their change during the 12 year study. Soil samples were taken at 0.3 m increments to a depth of 1.2 m at each of 40 sample sites on five occasions: August 1999, April 2002, November 2004, August 2009, and May 2011. Drainage water varying in salinity (1.8-16.3 dS m(-1)), SAR (5.2-52.4), Mo (80-400 μg L(-1)), and B (0.4-15.1 mg L(-1)) was applied from July 2000 to June 2009. Results indicate that salts, Na, Mo, and B were leached from the root zone causing a significant improvement in soil quality from 1999 to 2009. Salinity and SAR returned to original levels or higher in less than two years after termination of irrigation. Boron and Mo showed significant increases. Long-term sustainability of drainage water reuse was supported by the results, but once application of irrigation water was terminated, the field quickly returned to its original saline-sodic condition.  相似文献   

11.
The present study discusses ion sources and assesses the chemical quality of groundwater of Doon Valley in Outer Himalayan region for drinking and irrigational purposes. Valley is almost filled with Doon gravels that are main aquifers supplying water to its habitants. Recharged only by meteoric water, groundwater quality in these aquifers is controlled essentially by chemical processes occurring between water and lithology and locally altered by human activities. Seventy-six water samples were collected from dug wells, hand pumps and tube wells and were analysed for their major ion concentrations. The pH is varying from 5.6 to 7.4 and electrical conductivity from 71 to 951 μmho/cm. Groundwater of Doon valley is dominated by bicarbonate contributing 83% in anionic abundance while calcium and magnesium dominate in cationic concentrations with 88%. The seasonal and spatial variation in ionic concentration, in general, is related to discharge and lithology. The high ratio of (Ca + Mg)/(Na + K), i.e. 10, low ratio of (Na + K)/TZ+, i.e.0.2 and also the presence of carbonate lithology in the northern part of valley, is indicative of carbonate dissolution as the main controlling solute acquisition process in the valley. The low abundance of silica content and high HCO?/H?SiO? ratio also supports carbonate dissolution and less significant role of silicate weathering as the major source for dissolved ions in Doon Valley. The analytical results computed for various indices show that water is of fairly good quality, although, hard but have moderate dissolved solid content. It is free from sodium hazard lying in C?-S? and C?-S? class of USSL diagram and in general suitable for drinking and irrigation except few locations having slightly high salinity hazard.  相似文献   

12.
An extensive field survey was employed for assessing the impacts of long-term wastewater irrigation of forage crops and orange orchards in three suburban agricultural areas in Cyprus (areas I, II, and III), as compared to rainfed agriculture, on the soil geochemical properties and the bioaccumulation of heavy metals (Zn, Ni, Mn, Cu, Co) to the agricultural products. Both ryegrass fields and orange orchards in areas I and II were continuously wastewater irrigated for 10 years, whereas clover fields in area III for 0.5, 4, and 8 years. The results revealed that wastewater reuse for irrigation caused a slight increase in soil salinity and Cl? content in areas I and II, and a remarkable increase, having strong correlation with the period in which wastewater irrigation was practiced, in area III. Soil salinization in area III was due to the high electrical conductivity (EC) of the wastewater applied for irrigation, attributed to the influx of seawater to the sewage collection network in area III. In addition, the wastewater irrigation practice resulted in a slight decrease of the soil pH values in area III, while a subtle impact was identified regarding the CaCO3, Fe, and heavy metal content in the three areas surveyed. The heavy metal content quantified in the forage plants’ above-ground parts was below the critical levels of phytotoxicity and the maximum acceptable concentration in dairy feed, whereas heavy metals quantified in orange fruit pulp were below the maximum permissible levels (MPLs). Heavy metal phytoavailability was confined due to soil properties (high pH and clay content), as evidenced by the calculated low transfer factor (TF).  相似文献   

13.
Groundwater quality assessment has been carried out based on physicochemical parameters (pH, EC, TDS, CO(3), HCO(3), Cl, SO(4), PO(4), NO(2), Ca(+2), Mg(+2), Na(+) and K(+)) and metal concentration in the Rameswaram Island from 25 bore wells. The Langelier Saturation Index of the groundwater shows positive values (63% samples) with a tendency to deposit the CaCO(3) in the majority of water samples. Scatter plot (Ca + Mg/HCO(3)) suggests carbonate weathering process, which is the main contributor of Ca(2+), Mg(2+) and HCO(3) ions to the water. Gibbs diagram suggests rock-water interaction dominance and evaporation dominance which are responsible for the change in the quality of water in the study area. NaCl and mixed CaNaHCO(3) facies are two main hydrogeochemical facies of groundwater. Mathematical calculations and graphical plots of geochemical data reveal that the groundwater of Rameswaram Island is influenced by natural weathering of rocks, anthropogenic activities and seawater intrusion due to over exploitation. Weathering and dissolution of carbonate and gypsum minerals also control the concentration of major ions (Ca(+2), Mg(+2), Na(+) and K(+)) in the groundwater. The nutrient concentration of groundwater is controlled to a large extent by the fertilizers used in agricultural lands and aquaforms. Comparison of geochemical data shows that majority of the groundwater samples are suitable for drinking water and irrigation purposes.  相似文献   

14.
The main objective of this research was to estimate the total mass of nitrogen discharged from various sources in Korea using the mass balance approach. Three different nitrogen mass balances were presented: (1) agricultural activities including raising crops and animal husbandry; (2) domestic activities, and (3) activities in forest and urban areas. These nitrogen balances were combined to estimate riverine discharge of nitrogen to the ocean in national scale. Nitrogen inputs include atmospheric deposition, biological nitrogen fixation, application of inorganic fertilizers/manures, animal feed/imported foodstuffs, and meat/fish. Nitrogen outputs include ammonia volatilization, denitrification, human/animal waste generation, crop/meat production, and riverine discharge to the ocean. The estimated total nitrogen input in Korea was 1,194.5 × 103 tons N/year. Nitrogen discharged into rivers was estimated as 408–422 × 103 tons N/year, of which 66–71% was diffuse in origin. The estimated diffuse discharges for land uses were estimated as 82 × 103 tons N/year from agricultural areas, 7 × 103 tons N/year from forestry and 75 × 103 tons N/year from urban and industrial areas.  相似文献   

15.
This paper gives mathematical details and sample applications of SWAGMAN Farm (SWAGMAN, Salt Water and Groundwater Management), a farm-scale hydrologic economic model that integrates agronomic, climatic, irrigation, hydrogeological and economic aspects of irrigated agriculture. The model is capable of determining optimum mix of land use to keep watertable and soil salinity within acceptable limits while maximising the economic returns. Alternatively, the model can simulate water and salt balance and economics of a given cropping preference. Web-based and Geographic Information Systems versions of the model are available for integration with the environmental reporting systems of the irrigation areas.  相似文献   

16.
Groundwater quality assessment study was carried out around Manimuktha river basin, Tamil Nadu, India. Twenty six bore well samples were analyzed for geochemical variations and quality of groundwater. Four major hydrochemical facies (Ca–HCO3, Na–Cl, Mixed CaNaHCO3, and mixed CaMgCl) were identified using a Piper trilinear diagram. Comparison of geochemical results with World Health Organization, United States Environmental Protection Agency, and Indian Standard Institution drinking water standards shows that all groundwater samples except few are suitable for drinking and irrigation purposes. The major groundwater pollutions are nitrate and phosphate ions due to sewage effluents and fertilizer applications. The study reveals that the groundwater quality changed due to anthropogenic and natural influence such as agricultural, natural weathering process.  相似文献   

17.
Irrigation return flows (IRF) are a major contributor of non-point source pollution to surface and groundwater. We evaluated the effects of irrigation on stream hydrochemistry in a Mediterranean semi-arid catchment (Flumen River, NE Spain). The Flumen River was separated into two zones based on the intensity of irrigation activities in the watershed. General linear models were used to compare the two zones. Relevant covariables (urban sewage, pig farming, and gypsum deposits in the basin) were quantified with the help of geographic information system techniques, accompanied by ground-truthing. High variability of the water quality parameters and temporal dynamics caused by irrigation were used to distinguish the two river reaches. Urban activity and livestock farming had a significant effect on water chemistry. An increase in the concentration of salts (240–541 μS·cm???1 more in winter) and nitrate (average concentrations increased from 8.5 to 20.8 mg·l???1 during irrigation months) was associated with a higher level of IRF. Those river reaches more strongly influenced by urban areas tended to have higher phosphorus (0.19–0.42 mg·l???1 more in winter) concentrations. These results support earlier research about the significant consequences to water quality of both urban expansion and intensive agricultural production in arid and semi-arid regions. Data also indicate that salinization of soils, subsoils, surface water, and groundwater can be an unwelcome result of the application of pig manure for fertilization (increase in sodium concentration in 77.9 to 138.6 mg·l???1).  相似文献   

18.
Locating and forecasting water needs can assist the location of water in dry regions, and improve the management of reservoirs and the canal network. Satellite, ground data, and agrometeorological data were combined to forecast the volume of irrigation water needed during 1993 and 1994 in an irrigation district of 327 km2 located in the Ebro basin, Spain. The main crops were rice, alfalfa plus forage, winter cereals (barley and wheat), sunflower and maize. Their extent was estimated every year by frame area sampling and a regression estimator with satellite data. Initial crop area statistics were obtained by expansion of the sample areas to the entire study area and then a regression estimator with the multitemporal supervised classification of two Landsat-5 TM images was applied. This procedure improved the precision of the estimates by expansion. Net water requiremets (m3 ha-1) of the above mentioned crops were computed from reference evapotranspiration estimates, crop coefficients and effective precipitation. These computations were performed for an average year, i.e. by using long-term averaged meteorological data. Crop hectarage and net crop water requirements were multiplied to obtain, for the entire study area, the volume (hm3 106 m3) of the net crop water requirements. After subtraction of water taken directly from the rivers and non-productive sunflower, the irrigation water volumes were estimated. The comparison of these forecasts with the volumes of water invoiced by the Ebro Basin Water Authority confirmed the feasibility of forecasting the volume of water applied to an individual irrigation district. This is an objective and practical method for estimating the irrigation water volume applied in an irrigated area.  相似文献   

19.
Vegetated ditches as a management practice in irrigated alfalfa   总被引:5,自引:0,他引:5  
The organophosphate (OP) insecticides diazinon and chlorpyrifos have been frequently detected in the San Joaquin River, California, USA. Irrigation tail waters are a significant source of OP pesticides in the watershed. This study tested several management practices for reducing offsite movement of chlorpyrifos to surface water from flood irrigated alfalfa. Management practices evaluated include (1) a constructed, vegetated irrigation tailwater return ditch and (2) increased lag time between chlorpyrifos application and start of flood irrigation. Chlorpyrifos concentrations in whole-water samples of irrigation runoff were variable and ranged from 0.22 mug/l to a maximum of 1.67 mug/l. The median concentration reduction at the end of a 200 m vegetated ditch was 38% compared to 1% in an adjacent conventional tail water ditch. Runoff data collected represented first flush runoff from sets that were irrigated between 48 and 144 h after chlorpyrifos application. There was no consistent effect of irrigation lag time on chlorpyrifos concentration in tailwater for lag times of up to 144 h. Consequently these data indicate that delayed irrigation is not an effective management practice for reducing chlorpyrifos off-site movement to surface water in California flood irrigated alfalfa.  相似文献   

20.
There are more than 4,000 falaj (singular of a peculiar dug channel) distributed in different regions in Oman. The chemical characteristics of the water in 42 falaj were studied to evaluate the major ion chemistry; geochemical processes controlling water composition; and suitability of water for drinking, domestic, and irrigation uses. GIS-based maps indicate that the spatial distribution of chemical properties and concentrations vary within the same region and the different regions as well. The molar ratios of (Ca + Mg)/Total cations, (Na + K)/Total cations, (Ca + Mg)/(Na + K), (Ca + Mg)/(HCO? + SO?), and Na/Cl reveal that the water chemistry of the majority of aflaj are dominated by carbonate weathering and evaporite dissolution, with minor contribution of silicate weathering. The concentrations of most of the elements were less than the permissible limits of Omani standards and WHO guidelines for drinking water and domestic use and do not generally pose any health and environmental problems. Some aflaj in ASH Sharqiyah and Muscat regions can be used for irrigation with slight to severe restriction because of the high levels of electrical conductivity, total dissolved solids, chloride, and sodium absorption ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号